Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87482
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉嚞睿zh_TW
dc.contributor.advisorJe-Ruei Liuen
dc.contributor.author陳彥丞zh_TW
dc.contributor.authorYen-Cheng Chenen
dc.date.accessioned2023-06-13T16:13:07Z-
dc.date.available2025-02-01-
dc.date.copyright2023-06-13-
dc.date.issued2023-
dc.date.submitted2023-02-03-
dc.identifier.citation台灣優良食品發展協會 (TQF)。機能性食品檢驗項目規格及標準3.0。

衛生福利部食品藥物管理署 (2017)。可供食品使用原料一覽表。

吳令怡, 陳介甫, & 黃翊恭. (2013). 肥胖相關代謝症候群與減肥藥. J Chin Med, 24(2), 261-277.

Abenavoli, L., Scarpellini, E., Colica, C., Boccuto, L., Salehi, B., Sharifi-Rad, J., Aiello, V., Romano, B., De Lorenzo, A., & Izzo, A. A. (2019). Gut microbiota and obesity: a role for probiotics. Nutrients, 11(11), 2690.

Adams, M. R., & Nicolaides, L. (1997). Review of the sensitivity of different
foodborne pathogens to fermentation. Food Control, 8(5-6), 227-239.

Angulo, P. (2007). Obesity and nonalcoholic fatty liver disease. Nutrition Reviews, 65(suppl_1), S57-S63.

Axelsson, L. (2004). Lactic acid bacteria: classification and physiology. Food Science and Technology-New York-Marcel Dekker-, 139, 1-66.

Bäckhed, F., Manchester, J. K., Semenkovich, C. F., & Gordon, J. I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of The National Academy of Sciences, 104(3), 979-984.

Baker, R. G., Hayden, M. S., & Ghosh, S. (2011). NF-κB, inflammation, and metabolic disease. Cell Metabolism, 13(1), 11-22.

Bennett, C. N., Hodge, C. L., MacDougald, O. A., & Schwartz, J. (2003). Role of Wnt10b and C/EBPα in spontaneous adipogenesis of 243 cells. Biochemical and Biophysical Research Communications, 302(1), 12-16.

Bessesen, D. H., & Van Gaal, L. F. (2018). Progress and challenges in anti-obesity pharmacotherapy. The Lancet Diabetes & Endocrinology, 6(3), 237-248.
Boden, G. (1997). Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 46(1), 3-10.

Bondini S, Younossi ZM. Non-alcoholic fatty liver disease and hepatitis C infection. Minerva Gastroenterologica e Dietologica. 2006 Jun;52(2):135-143.

Bouter, K. E., van Raalte, D. H., Groen, A. K., & Nieuwdorp, M. (2017). Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology, 152(7), 1671-1678.

Bray, G. A., & Tartaglia, L. A. (2000). Medicinal strategies in the treatment of obesity. Nature, 404(6778), 672-677.

Buzzetti, E., Pinzani, M., & Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 65(8), 1038-1048.

Castaner, O., Goday, A., Park, Y.-M., Lee, S.-H., Magkos, F., Shiow, S.-A. T. E., & Schröder, H. (2018). The gut microbiome profile in obesity: a systematic review. International Journal of Endocrinology, 2018.

Charteris, W. P., Kelly, P. M., Morelli, L., & Collins, J. K. (1998). Antibiotic susceptibility of potentially probiotic Lactobacillus species. Journal of Food Protection, 61(12), 1636-1643.

Clarke, S. F., Murphy, E. F., Nilaweera, K., Ross, P. R., Shanahan, F., O’Toole, P. W., & Cotter, P. D. (2012). The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes, 3(3), 186-202.

Cnop, M., Welsh, N., Jonas, J.-C., Jörns, A., Lenzen, S., & Eizirik, D. L. (2005). Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes, 54(suppl_2), S97-S107.

Coppola, R., Succi, M., Tremonte, P., Reale, A., Salzano, G., & Sorrentino, E. (2005). Antibiotic susceptibility of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. Lait, 85(3), 193-204.

Crovesy, L., Masterson, D., & Rosado, E. L. (2020). Profile of the gut microbiota of adults with obesity: a systematic review. European Journal of Clinical Nutrition, 74(9), 1251-1262.

Darlington, G. J., Ross, S. E., & MacDougald, O. A. (1998). The role of C/EBP genes in adipocyte differentiation. Journal of Biological Chemistry, 273(46), 30057-30060.
Davis, J. A., Collier, F., Mohebbi, M., Stuart, A. L., Loughman, A., Pasco, J. A., & Jacka, F. N. (2020). Obesity, Akkermansia muciniphila, and proton pump inhibitors: is there a link? Obesity Research & Clinical Practice, 14(6), 524-530.
Duncan, S. H., Lobley, G., Holtrop, G., Ince, J., Johnstone, A., Louis, P., & Flint, H. J. (2008). Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity, 32(11), 1720-1724.

Ferrante Jr, A. (2007). Obesity‐induced inflammation: a metabolic dialogue in the language of inflammation. Journal of Internal Medicine, 262(4), 408-414.

Ferre, P., & Foufelle, F. (2010). Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP‐1c. Diabetes, Obesity and Metabolism, 12, 83-92.

Ferré, P., Phan, F., & Foufelle, F. (2021). SREBP-1c and lipogenesis in the liver: An update. Biochemical Journal, 478(20), 3723-3739.

Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le Lièpvre, X., Berthelier-Lubrano, C., Spiegelman, B., Kim, J. B., & Ferré, P. (1999). ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Molecular and Cellular Biology, 19(5), 3760-3768.

Gérard, P. (2016). Gut microbiota and obesity. Cellular and Molecular Life Sciences, 73(1), 147-162.

Gerritsen, J., Hornung, B., Renckens, B., van Hijum, S. A., Dos Santos, V. A. M., Rijkers, G. T., Schaap, P. J., de Vos, W. M., & Smidt, H. (2017). Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine. PeerJ, 5, e3698.

Gerritsen, J., Timmerman, H. M., Fuentes, S., van Minnen, L. P., Panneman, H., Konstantinov, S. R., Rombouts, F. M., Gooszen, H. G., Akkermans, L. M., & Smidt, H. (2011). Correlation between protection against sepsis by probiotic therapy and stimulation of a novel bacterial phylotype. Applied and Environmental Microbiology, 77(21), 7749-7756.

Godoy-Matos, A. F., Silva Júnior, W. S., & Valerio, C. M. (2020). NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetology & Metabolic Syndrome, 12(1), 1-20.

Gual, P., Le Marchand-Brustel, Y., & Tanti, J.-F. (2005). Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 87(1), 99-109.

Guo, L., Li, X., Huang, J., Huang, H., Zhang, Y., Qian, S., Zhu, H., Zhang, Y., Liu, Y., & Wang, K. (2012). Histone demethylase Kdm4b functions as a co-factor of C/EBPβ to promote mitotic clonal expansion during differentiation of 3T3-L1 preadipocytes. Cell Death & Differentiation, 19(12), 1917-1927.

Hagi, T., Geerlings, S. Y., Nijsse, B., & Belzer, C. (2020). The effect of bile acids on the growth and global gene expression profiles in Akkermansia muciniphila. Applied Microbiology and Biotechnology, 104(24), 10641-10653.

Hall, P., & Cash, J. (2012). What is the real function of the liver ‘function’tests? The Ulster Medical Journal, 81(1), 30.

Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W. Z., Strowig, T., Thaiss, C. A., Kau, A. L., Eisenbarth, S. C., & Jurczak, M. J. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 482(7384), 179-185.

Hombach, M., Böttger, E. C., & Roos, M. (2013). The critical influence of the intermediate category on interpretation errors in revised EUCAST and CLSI antimicrobial susceptibility testing guidelines. Clinical Microbiology and Infection, 19(2), E59-E71.

Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., Furukawa, S., Tochino, Y., Komuro, R., Matsuda, M., & Shimomura, I. (2007). Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes, 56(4), 901-911.

Hotel, A. C. P., & Cordoba, A. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention, 5(1), 1-10.

Huang, Y., Wu, F., Wang, X., Sui, Y., Yang, L., & Wang, J. (2013). Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. Journal of Dairy Science, 96(5), 2816-2825.

Iacono, A., Raso, G. M., Canani, R. B., Calignano, A., & Meli, R. (2011). Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. The Journal of Nutritional Biochemistry, 22(8), 699-711.

Ji, Y., Kim, H., Park, H., Lee, J., Yeo, S., Yang, J., Park, S., Yoon, H., Cho, G., & Franz, C. (2012). Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Beneficial Microbes, 3(1), 13-22.

Kabon, B., Nagele, A., Reddy, D., Eagon, C., James, Daniel, & Kurz, A. (2004). Obesity decreases perioperative tissue oxygenation. Anesthesiology, 100(2), 274-280.
Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840-846.

Kim, S., Choi, S.-I., Jang, M., Jeong, Y., Kang, C.-H., & Kim, G.-H. (2020). Anti-adipogenic effect of Lactobacillus fermentum MG4231 and MG4244 through AMPK pathway in 3T3-L1 preadipocytes. Food Science and Biotechnology, 29(11), 1541-1551.

Klöting, N., Fasshauer, M., Dietrich, A., Kovacs, P., Schön, M. R., Kern, M., ... & Blüher, M. (2010). Insulin-sensitive obesity. American Journal of Physiology-Endocrinology and Metabolism, 299(3), E506-E515

Klöting, N., & Blüher, M. (2014). Adipocyte dysfunction, inflammation and metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 15(4), 277-287.

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345.

Körner, A., Wabitsch, M., Seidel, B., Fischer-Posovszky, P., Berthold, A., Stumvoll, M., Blüher, M., Kratzsch, J., & Kiess, W. (2005). Adiponectin expression in humans is dependent on differentiation of adipocytes and down-regulated by humoral serum components of high molecular weight. Biochemical and Biophysical Research Communications, 337(2), 540-550.

Kostrzynska, M., & Bachand, A. (2006). Use of microbial antagonism to reduce pathogen levels on produce and meat products: a review. Canadian Journal of Microbiology, 52(11), 1017-1026.

Lee, S.-J., Depoortere, I., & Hatt, H. (2019). Therapeutic potential of ectopic olfactory and taste receptors. Nature Reviews Drug Discovery, 18(2), 116-138.

Lee, Y.-h., Kim, S. H., Lee, Y. J., Kang, E. S., Lee, B.-W., Cha, B. S., Kim, J. W., Song, D. H., & Lee, H. C. (2013). Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cellular and Molecular Life Sciences, 70(20), 3959-3971.

Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of The National Academy of Sciences, 102(31), 11070-11075.

Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Human gut microbes associated with obesity. Nature, 444(7122), 1022-1023.

Li, B., Zhang, X., Guo, F., Wu, W., & Zhang, T. (2013). Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Research, 47(13), 4207-4216.

Li, S., Ogawa, W., Emi, A., Hayashi, K., Senga, Y., Nomura, K., Hara, K., Yu, D., & Kasuga, M. (2011). Role of S6K1 in regulation of SREBP1c expression in the liver. Biochemical and biophysical research communications, 412(2), 197-202.

Lim, P., Loke, C., Ho, Y., & Tan, H. (2020). Cholesterol homeostasis associated with probiotic supplementation in vivo. Journal of Applied Microbiology, 129(5), 1374-1388.

Londos, C., Brasaemle, D. L., Schultz, C. J., ADLER‐WAILES, D. C., Levin, D. M., Kimmel, A. R., & Rondinone, C. M. (1999). On the control of lipolysis in adipocytes. Annals of the New York Academy of Sciences, 892(1), 155-168.

Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73(5), 1576-1585.

Macdougald, O. A. (2014). Methods of Adipose Tissue Biology Part A. Academic Press.
Mota de Sá, P., Richard, A., Hang, H., & Stephens, J. (2017). Transcriptional regulation of adipogenesis. Compr Physiol 7: 635–674. In.

Mu, R.-F., Niu, Y.-F., Wang, Q., Zhou, H.-M., Hu, J., Qin, W.-Y., & Xiong, W.-Y. (2020). Eriocalyxin B inhibits adipogenesis in 3T3-L1 adipocytes by cell cycle arrest. Natural Products and Bioprospecting, 10(3), 131-140.

Nedvidkova, J., Smitka, K., Kopsky, V., & Hainer, V. (2005). Adiponectin, an adipocyte-derived protein. Physiol Res, 54(2), 133-140.

Nova, E., Pérez de Heredia, F., Gómez‐Martínez, S., & Marcos, A. (2016). The role of probiotics on the microbiota: effect on obesity. Nutrition in Clinical Practice, 31(3), 387-400.

Ortega, F. B., Lavie, C. J., & Blair, S. N. (2016). Obesity and cardiovascular disease. Circulation Research, 118(11), 1752-1770.

Park, J. S., Seo, J. H., & Youn, H.-S. (2013). Gut microbiota and clinical disease: obesity and nonalcoholic fatty liver disease. Pediatric Gastroenterology, Hepatology & Nutrition, 16(1), 22-27.

Poirier, P., & Eckel, R. H. (2002). Obesity and cardiovascular disease. Current Atherosclerosis Reports, 4(6), 448-453.

Quigley, E. M. (2019). Prebiotics and probiotics in digestive health. Clinical Gastroenterology and Hepatology, 17(2), 333-344.

Randle, P., Garland, P., Hales, C., & Newsholme, E. (1963). The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet, 281(7285), 785-789.

Rather, S. A., Pothuraju, R., Sharma, R. K., De, S., Mir, N. A., & Jangra, S. (2014). Anti‐obesity effect of feeding probiotic dahi containing Lactobacillus casei NCDC 19 in high fat diet‐induced obese mice. International Journal of Dairy Technology, 67(4), 504-509.

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., & Stahl, B. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-S63.

Robitaille, J., Houde, A., Lemieux, S., Pérusse, L., Gaudet, D., & Vohl, M.-C. (2007). Variants within the muscle and liver isoforms of the carnitine palmitoyltransferase I (CPT1) gene interact with fat intake to modulate indices of obesity in French-Canadians. Journal of Molecular Medicine, 85(2), 129-137.

Ross, M. G., & Desai, M. (2013). Developmental programming of offspring obesity, adipogenesis, and appetite. Clinical Obstetrics and Gynecology, 56(3), 529.

Sanz, Y., Santacruz, A., & Gauffin, P. (2010). Gut microbiota in obesity and metabolic disorders. Proceedings of the Nutrition Society, 69(3), 434-441.

Shen, Y., Xu, X., Yue, K., & Xu, G. (2015). Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high‐fat diet‐fed rats. Obesity, 23(5), 1000-1006.

Servin, A. L., & Coconnier, M. H. (2003). Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Practice & Research Clinical Gastroenterology, 17(5), 741-754.

Shimomura, I., Matsuda, M., Hammer, R. E., Bashmakov, Y., Brown, M. S., & Goldstein, J. L. (2000). Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Molecular Cell, 6(1), 77-86.

Stavropoulos-Kalinoglou, A., Metsios, G. S., Panoulas, V. F., Nightingale, P., Koutedakis, Y., & Kitas, G. D. (2012). Anti-tumour necrosis factor alpha therapy improves insulin sensitivity in normal-weight but not in obese patients with rheumatoid arthritis. Arthritis Research & Therapy, 14(4), 1-7.

Stienstra, R., Duval, C., Müller, M., & Kersten, S. (2007). PPARs, obesity, and inflammation. PPAR Research, 2007.

Stojanov, S., Berlec, A., & Štrukelj, B. (2020). The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms, 8(11), 1715.

Suganami, T., Tanaka, M., & Ogawa, Y. (2016). Molecular mechanisms underlying obesity-induced chronic inflammation. Chronic Inflammation (pp. 291-298). Springer.

Tak, Y. J., & Lee, S. Y. (2021). Anti-obesity drugs: long-term efficacy and safety: an updated review. The World Journal of Men's Health, 39(2), 208.

Tang, Q.-Q., Otto, T. C., & Lane, M. D. (2003). Mitotic clonal expansion: a synchronous process required for adipogenesis. Proceedings of The National Academy of Sciences, 100(1), 44-49.

Trayhurn, P., & Wood, I. S. (2004). Adipokines: inflammation and the pleiotropic role of white adipose tissue. British Journal of Nutrition, 92(3), 347-355.

Tsai, Y.-T., Cheng, P.-C., & Pan, T.-M. (2014). Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Applied Microbiology and Biotechnology, 98(1), 1-10.

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. A., & Affourtit, J. P. (2009). A core gut microbiome in obese and lean twins. Nature, 457(7228), 480-484.

Vázquez-Vela, M. E. F., Torres, N., & Tovar, A. R. (2008). White adipose tissue as endocrine organ and its role in obesity. Archives of Medical Research, 39(8), 715-728.

Vigilanza, P., Aquilano, K., Baldelli, S., Rotilio, G., & Ciriolo, M. R. (2011). Modulation of intracellular glutathione affects adipogenesis in 3T3‐L1 cells. Journal of Cellular Physiology, 226(8), 2016-2024.

Wang, B., Kong, Q., Li, X., Zhao, J., Zhang, H., Chen, W., & Wang, G. (2020). A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients, 12(10), 3197.

Wang, B., Wood, I. S., & Trayhurn, P. (2007). Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflügers Archiv-European Journal of Physiology, 455(3), 479-492.
Wang, Y. (2009). Prebiotics: Present and future in food science and technology. Food Research International, 42(1), 8-12.

Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796-1808.

Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21(2-3), 213-251.

Wu, C.-C., Weng, W.-L., Lai, W.-L., Tsai, H.-P., Liu, W.-H., Lee, M.-H., & Tsai, Y.-C. (2015). Effect of Lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evidence-based Complementary and Alternative Medicine, 2015.

Xu, J., Mahowald, M. A., Ley, R. E., Lozupone, C. A., Hamady, M., Martens, E. C., Henrissat, B., Coutinho, P. M., Minx, P., & Latreille, P. (2007). Evolution of symbiotic bacteria in the distal human intestine. PLoS biology, 5(7), e156.

Yang, A., & Mottillo, E. P. (2020). Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochemical Journal, 477(5), 985-1008.

Yoon, K.-H., Lee, J.-H., Kim, J.-W., Cho, J. H., Choi, Y.-H., Ko, S.-H., Zimmet, P., & Son, H.-Y. (2006). Epidemic obesity and type 2 diabetes in Asia. The Lancet, 368(9548), 1681-1688.

Yusuf, S., Hawken, S., Ôunpuu, S., Dans, T., Avezum, A., Lanas, F., McQueen, M., Budaj, A., Pais, P., & Varigos, J. (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The Lancet, 364(9438), 937-952.

Zhang, J.-W., Tang, Q.-Q., Vinson, C., & Lane, M. D. (2004). Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proceedings of The National Academy of Sciences, 101(1), 43-47.

Zhang, L., Li, N., Caicedo, R., & Neu, J. (2005). Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-α–induced interleukin-8 production in caco-2 cells. The Journal of Nutrition, 135(7), 1752-1756.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87482-
dc.description.abstract隨著人類生活水平的提升,肥胖已成為現代人不可忽視的文明病之一。在造成代謝系統失調的同時也提升了第二型糖尿病、心血管疾病和非酒精性脂肪肝等疾病發生風險。目前針對肥胖治療主要分為服用減肥藥或進行減重手術兩種方法,但此二者都會對人體造成一定程度的影響。故近幾年許多研究都在致力於開發更為安全的減肥策略。乳酸菌作為一個普遍運用在人類食品加工的微生物,已在許多動物實驗模型中被證明具有能夠降低血酯、抗發炎、抗肥胖等諸多功效。而益生菌主要歸類於乳酸菌群,更被證明在大量攝取後能夠對人體腸道菌群造成顯著影響,能透過各種途徑調節宿主的能量及代謝平衡,並在影響新陳代謝的情況,具有治療肥胖症狀的潛力。本研究的目的為以3T3-L1細胞和高脂飼料所誘導的SD大鼠為試驗模型,篩選出具有抗肥胖潛力的乳酸菌株,同時評估它們是否有成為益生菌的發展性。根據結果顯示,YPK11和YPK12兩株菌的處理不僅顯著降低成熟脂肪細胞中的脂質含量水平,還下調了脂肪生成相關基因,C/EBPα和PPARγ的表達,並在抑制脂肪堆積的同時還造成了細胞週期的延滯進而影響細胞分化。在益生菌潛力的評估中,這兩株菌在pH 3的酸性環境下具有一定的耐受性,其菌株的代謝物也擁有抗部分病原菌的活性。此外、根據動物實驗的結果顯示,在餵食8週後,高劑量的YPK11顯著減輕了用高脂飼料誘導肥胖的老鼠體重,而血清和肝臟的三酸甘油脂水平也有降低的趨勢,並同時影響了脂肪生成和代謝相關基因,SREBP1c 和 CPT-1的表現。 而通過利用第三代定序技術的腸道菌相分析結果顯示,與一般肥胖對照組的老鼠相比,在充分補充YPK11後能夠顯著改變肥胖鼠的腸道菌群組成。我們的研究表明,YPK11和YPK12 的處理能通過多種機制來影響成熟脂肪細胞中的脂質積累,並能抑制脂肪細胞生成; 而YPK11在動物試驗也表現出其能夠影響肥胖動物模型的腸道菌群並具有抗肥胖的潛力。zh_TW
dc.description.abstractWith changes in lifestyles, obesity has become a common chronic symptom of modern people. Abnormal or excessive fat accumulation is considered to be the main contributor to obesity, which in turn causes metabolic disorders and the occurrence of various diseases. Probiotics are living microorganisms, mainly lactic acid bacteria (LAB), that can improve human intestinal microbial balance and possess the potential anti-obesity ability by regulating lipid and glucose metabolism. Based on clinical evidence, current anti-obesity drugs are discovered to bring several side effects to the human body; in our study, we aimed to screen potential LAB strains with the anti-obesity ability and determined their effects on high-fat-diet (HFD)-induced obese rat model. During cell differentiation and adipogenesis, 3T3-L1 adipocytes, a widely used cell model in metabolism research, were treated with cell-free extracts (CFE) from two identified LAB strains, YPK11, and YPK12. According to the results, treatments with both strains not only significantly decreased the levels of lipid content in adipocytes but also down-regulated the expression of adipogenic-related genes. Cell cycle arrest and the reduction of cell proliferation rates were also observed in cell cycle assays after CFE treatment. In the subsequent study, the in vivo test was performed to examine the effects of YPK11 and YPK12 on HFD-induced obese rats. After eight weeks of feeding, the administration of high dose YPK11 (1010 CFU in 0.2 mL PBS/kg BW/day) appeared to alleviate body weight gain and adipose tissue amount, whereas the decreasing trend of cholesterol and total triglyceride levels in serum and liver were also observed. Moreover, the results of gut microbiota analysis, performed by third-generation sequencing, indicated that gut microbiota composition changed after feeding the obese rats with sufficient YPK11 compared to the HFD control group. In conclusion, our studies revealed that the treatment of YPK11 and YPK12 affected the lipid accumulation in mature adipocytes by multiple mechanisms and ultimately caused adipogenesis inhibition, while YPK11 also showed potential anti-obesity ability in vivo. Our study provides an opportunity to determine other LAB strains with the same function and bring a different strategy for treating obesity in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-13T16:13:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-13T16:13:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 I
中文摘要 II
Abstract IV
Contents V
List of Figures X
List of Tables XIII
Introduction 1
Material and Methods 13
2.1 Activation and preservation of lactic acid bacterial strains 13
2.2 Sample preparation 13
2.2.1 Collection of bacterial cell-free extracts 14
2.2.2 BSA protein assay 15
2.3 In vitro test 15
2.3.1 3T3-L1 cell culture 15
2.3.2 3T3-L1 cell differentiation 16
2.3.3 Cytotoxicity assay 16
2.3.4 Cell grouping 17
2.3.5 Experimental subgroups and objectives 17
2.3.6 Oil-red O staining 18
2.3.7 RNA extraction 18
2.3.8 cDNA preparation 19
2.3.9 Quantitative real-time PCR 19
2.3.10 Cell proliferation and cell cycle assay 19
2.4 In vitro test 24
2.4.1 Experimental animals 24
2.4.2 Experimental design 24
2.4.3 Experimental testing items 25
2.4.3.1 Food intake and feed efficiency 25
2.4.3.2 Body values and organ weight 25
2.4.3.3 Blood chemistry 25
2.4.3.4 Analysis of liver lipid 26
2.4.3.5 RNA extraction and quantitative real-time PCR 26
2.4.3.6 Hepatic histology analysis 27
2.4.3.7 Gut microbiota analysis 27
2.5 Probiotic evaluation assay 31
2.5.1 Acid tolerance test 31
2.5.2 Bile-salt tolerance test 31
2.5.3 Antibiotic susceptibility test 31
2.5.4 Anti-pathogenic activity test 32
2.5.5 Adhesion test 32
2.6 Statistic analysis 33
Results 37
3.1 In vitro test performed by 3T3-L1 cell model 37
3.1.1 Effects of CFEs from 27 LAB strains on 3T3-L1 cell viability 37
3.1.2 Effects of CFEs from 19 LAB strains on lipid accumulation 37
3.1.3 Effects of CFEs from YPK11 and YPK12 on adipogenesis 38
3.1.4 Effects of CFEs from YPK11 and YPK12 on MCE period 39
3.1.5 Effects of CFEs from YPK11 and YPK12 on cell differentiation 40
3.1.6 Effects of CFEs from YPK11 and YPK12 on lipogenesis 41
3.1.7 Evaluation of YPK11 and YPK12 with lipogenesis-promoting capacity 42
3.2 Evaluation of bacterial strains with probiotic potential 56
3.2.1 Gram staining of experimental strains 56
3.2.2 Acid tolerance ability of bacterial strains 56
3.2.3 Bile-salt tolerance ability of bacterial strains to 56
3.2.4 Antibiotic susceptibility of bacterial strains 56
3.2.5 Evaluation of bacterial strains with anti-pathogenic ability 57
3.2.6 Adhesion ability of bacterial strains to Caco-2 cells 57
3.3 In vivo tests 65
3.3.1 Body weight measurement of experiment rats 65
3.3.2 Record of food intake and feed efficiency 65
3.3.3 Measurement of body value and organ weights 66
3.3.4 Measurement of adipose tissue weight and body fat percentage 66
3.3.5 Analysis of serum biochemistry 66
3.3.6 Assessment of liver damage 67
3.3.7 Analysis of metabolic-related gene expression 68
3.3.8 Diversity of gut microbiota in experimental rats 68
3.3.9 Gut microbial composition in experimental rats 69
Discussion 87
4.1 The discussion of cell experiments 87
4.1.1 The treatments of YPK11 and YPK12 inhibited adipogenesis 87
4.1.2 The potential anti-adipogenesis mechanism 88
4.1.3 The treatments of YPK11 and YPK12 affected cell proliferation 89
4.1.4 The treatments of YPK11 and YPK12 affected lipogenesis 90
4.1.5 Evaluation of YPK11 and YPK12 with lipolysis promoting ability 91
4.2 The discussion of strain characteristics 92
4.1.1 The evaluation of YPK11 and YPK12 with probiotic potential 92
4.3 The discussion of animal experiments 94
4.3.1 Oral administration of LAB strains alleviated obesity symptoms in HFD-induced obese rats 94
4.3.2 Oral administration of LAB strains attenuated the symptoms of NAFLD in HFD-induced obese rats 95
4.3.3 Supplementation with YPK11 affected the composition of gut microbiota in HFD-induced obese rats 96
Conclusion 99
References 100
-
dc.language.isoen-
dc.subject乳酸菌zh_TW
dc.subject腸道菌相zh_TW
dc.subject3T3-L1zh_TW
dc.subject肥胖zh_TW
dc.subject脂肪生成zh_TW
dc.subject益生菌zh_TW
dc.subjectgut microbiotaen
dc.subjectobesityen
dc.subjectlactic acid bacteriaen
dc.subjectprobioticsen
dc.subject3T3-L1en
dc.subjectadipogenesisen
dc.title篩選具有抗肥胖功效的潛力乳酸菌株zh_TW
dc.titleScreening of potential lactic acid bacterial strains with the anti-obesity abilityen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉啟德;謝建元zh_TW
dc.contributor.oralexamcommitteeChi-Te LIu ;Chien-Yan Hsiehen
dc.subject.keyword肥胖,乳酸菌,益生菌,3T3-L1,脂肪生成,腸道菌相,zh_TW
dc.subject.keywordobesity,lactic acid bacteria,probiotics,3T3-L1,adipogenesis,gut microbiota,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202300195-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-05-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
dc.date.embargo-lift2025-02-01-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved