請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87462完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳政鴻 | zh_TW |
| dc.contributor.advisor | Cheng-Hung Wu | en |
| dc.contributor.author | 蔡佩穎 | zh_TW |
| dc.contributor.author | Pei-Ying Tsai | en |
| dc.date.accessioned | 2023-06-13T16:05:37Z | - |
| dc.date.available | 2025-10-20 | - |
| dc.date.copyright | 2023-06-13 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-10-31 | - |
| dc.identifier.citation | Abdulsalam, Y. S., & Hedabou, M. (2021). Security and Privacy in Cloud Computing: Technical Review. Future Internet, 14(1), 11. https://doi.org/10.3390/fi14010011
Abrishami, S., Naghibzadeh, M., & Epema, D. H. J. (2012). Cost-Driven Scheduling of Grid Workflows Using Partial Critical Paths. IEEE Transactions on Parallel and Distributed Systems, 23(8), 1400–1414. https://doi.org/10.1109/TPDS.2011.303 Alam, S. J., & Parunak, H. V. D. (Eds.). (2014). Multi-Agent-Based Simulation XIV: International Workshop, MABS 2013, Saint Paul, MN, USA, May 6-7, 2013, Revised Selected Papers (Vol. 8235). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54783-6 Ateya, A. A., Muthanna, A., Gudkova, I., Abuarqoub, A., Vybornova, A., & Koucheryavy, A. (2018). Development of Intelligent Core Network for Tactile Internet and Future Smart Systems. 20. Atlam, H. F., Walters, R. J., & Wills, G. B. (2018). Fog Computing and the Internet of Things: A Review. 18. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (n.d.). Fog computing and its role in the internet of things. 3. Cafaro, M., & Aloisio, G. (Eds.). (2011). Grids, Clouds and Virtualization. Springer London. https://doi.org/10.1007/978-0-85729-049-6 Chen, D., Zou, F., Lu, R., Yu, L., Li, Z., & Wang, J. (2016). Multi-objective optimization of community detection using discrete teaching–learning-based optimization with decomposition. Information Sciences, 369, 402–418. https://doi.org/10.1016/j.ins.2016.06.025 Chen, M., & Hao, Y. (2018). Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network. IEEE Journal on Selected Areas in Communications, 36(3), 587–597. https://doi.org/10.1109/JSAC.2018.2815360 Cirne, W., Desai, N., Frachtenberg, E., & Schwiegelshohn, U. (Eds.). (2013). Job Scheduling Strategies for Parallel Processing: 16th International Workshop, JSSPP 2012, Shanghai, China, May 25, 2012. Revised Selected Papers (Vol. 7698). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35867-8 Davis, R. I., & Burns, A. (2011). A survey of hard real-time scheduling for multiprocessor systems. ACM Computing Surveys, 43(4), 1–44. https://doi.org/10.1145/1978802.1978814 de Farias, D. P., & Van Roy, B. (2003). The Linear Programming Approach to Approximate Dynamic Programming. Operations Research, 51(6), 850–865. https://doi.org/10.1287/opre.51.6.850.24925 Dominguez, R., Cannella, S., & Framinan, J. M. (2015). SCOPE: A Multi-Agent system tool for supply chain network analysis. IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON), 1–5. https://doi.org/10.1109/EUROCON.2015.7313688 Dorri, A., Kanhere, S. S., & Jurdak, R. (2018). Multi-Agent Systems: A Survey. IEEE Access, 6, 28573–28593. https://doi.org/10.1109/ACCESS.2018.2831228 Dua, A., Chan, C. W., Bambos, N., & Apostolopoulos, J. (2010). Channel, Deadline, and Distortion (𝐶𝐷2) Aware Scheduling for Video Streams over Wireless. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 9(3), 11. Fallahi, A., & Hossain, E. (2009). A Dynamic Programming Approach for QoS-Aware Power Management in Wireless Video Sensor Networks. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 58(2), 12. Ghorbannia Delavar, A., & Aryan, Y. (2014). HSGA: A hybrid heuristic algorithm for workflow scheduling in cloud systems. Cluster Computing, 17(1), 129–137. https://doi.org/10.1007/s10586-013-0275-6 Haddad, S., & Pomello, L. (Eds.). (2012). Application and Theory of Petri Nets (Vol. 7347). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31131-4 Huang, J. (2014). The Workflow Task Scheduling Algorithm Based on the GA Model in the Cloud Computing Environment. Journal of Software, 9(4), 873–880. https://doi.org/10.4304/jsw.9.4.873-880 Jararweh, Y., Doulat, A., AlQudah, O., Ahmed, E., Al-Ayyoub, M., & Benkhelifa, E. (2016). The future of mobile cloud computing: Integrating cloudlets and Mobile Edge Computing. 2016 23rd International Conference on Telecommunications (ICT), 1–5. https://doi.org/10.1109/ICT.2016.7500486 Koppen, M. (n.d.). The curse of dimensionality. 22. Kwang Mong Sim. (2012). Agent-Based Cloud Computing. IEEE Transactions on Services Computing, 5(4), 564–577. https://doi.org/10.1109/TSC.2011.52 Kwok, Y.-K., & Ahmad, I. (1999). Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Computing Surveys, 31(4), 406–471. https://doi.org/10.1145/344588.344618 Li, C., Liu, F., Cao, H., & Wang, Q. (2009). A stochastic dynamic programming based model for uncertain production planning of re-manufacturing system. International Journal of Production Research, 47(13), 3657–3668. https://doi.org/10.1080/00207540701837029 Li, D., Wang, Q., Wang, J., & Yao, Y. R. (2008). Mitigation of Curse of Dimensionality in Dynamic Programming. IFAC Proceedings Volumes, 41(2), 7778–7783. https://doi.org/10.3182/20080706-5-KR-1001.01315 Li, G., & Cai, J. (2020). An Online Incentive Mechanism for Collaborative Task Offloading in Mobile Edge Computing. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 19(1), 13. Luo, X. (n.d.). From Augmented Reality to Augmented Computing: A Look at Cloud-Mobile Convergence. 4. MadadyarAdeh, M., & Bagherzadeh, J. (2011). An improved ant algorithm for grid scheduling problem using biased initial ants. 2011 3rd International Conference on Computer Research and Development, 373–378. https://doi.org/10.1109/ICCRD.2011.5764154 Mak, T., Cheung, P. Y. K., Lam, K.-P., & Luk, W. (2011). Adaptive Routing in Network-on-Chips Using a Dynamic-Programming Network. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 58(8), 16. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358. https://doi.org/10.1109/COMST.2017.2745201 Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., & Walker, K. R. (n.d.). Agile Application-Aware Adaptation for Mobility. 12. Nunna, S., Kousaridas, A., Ibrahim, M., Dillinger, M., Thuemmler, C., Feussner, H., & Schneider, A. (n.d.). Enabling Real-Time Context-Aware Collaboration through 5G and Mobile Edge Computing. 5. Pang, Z., Sun, L., Wang, Z., Tian, E., & Yang, S. (n.d.). A Survey of Cloudlet Based Mobile Computing. 8. Patel, M., Sabella, D., Sprecher, N., & Young, V. (n.d.). Mobile edge computing—A key technology towards 5G. 16. Pathirage, M., Perera, S., Kumara, I., & Weerawarana, S. (2011). A Multi-tenant Architecture for Business Process Executions. 2011 IEEE International Conference on Web Services, 121–128. https://doi.org/10.1109/ICWS.2011.99 Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context Aware Computing for The Internet of Things: A Survey. 16(1), 41. Powell, W. B., Bouzaiene-Ayari, B., Berger, J., Boukhtouta, A., & George, A. P. (2011). The Effect of Robust Decisions on the Cost of Uncertainty in Military Airlift Operations. ACM Transactions on Modeling and Computer Simulation, 22(1), 1–19. https://doi.org/10.1145/2043635.2043636 Rani, D. S. (2021). Deep learning based dynamic task offloading in mobile cloudlet environments. Evolutionary Intelligence, 9. Rempel, M., & Cai, J. (2021). A review of approximate dynamic programming applications within military operations research. Operations Research Perspectives, 8, 100204. https://doi.org/10.1016/j.orp.2021.100204 Rust, J. (1997). Using Randomization to Break the Curse of Dimensionality. Econometrica, 65(3), 487. https://doi.org/10.2307/2171751 Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4), 14–23. https://doi.org/10.1109/MPRV.2009.82 Sellami, K., Ahmed-Nacer, M., Tiako, P. F., & Chelouah, R. (n.d.). IMMUNE GENETIC ALGORITHM FOR SCHEDULING SERVICE WORKFLOWS WITH QOS CONSTRAINTS IN CLOUD COMPUTING. 16. Sharifkhani, A., & Beaulieu, N. C. (n.d.). Dynamic Power Allocation over Block-Fading Channels with Delay Constraint. 7. Shi, B., Yang, J., Huang, Z., & Hui, P. (2015). Offloading Guidelines for Augmented Reality Applications on Wearable Devices. Proceedings of the 23rd ACM International Conference on Multimedia, 1271–1274. https://doi.org/10.1145/2733373.2806402 Shi, J., Leau, Y.-B., Li, K., Park, Y.-J., & Yan, Z. (2020). Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion. IEEE Access, 8, 202858–202871. https://doi.org/10.1109/ACCESS.2020.3036421 Simester, D. I., Sun, P., & Tsitsiklis, J. N. (2006). Dynamic Catalog Mailing Policies. Management Science, 52(5), 683–696. https://doi.org/10.1287/mnsc.1050.0504 Singh, A., Juneja, D., & Malhotra, M. (2015). Autonomous Agent Based Load Balancing Algorithm in Cloud Computing. Procedia Computer Science, 45, 832–841. https://doi.org/10.1016/j.procs.2015.03.168 Singh, P., Dutta, M., & Aggarwal, N. (2017). A review of task scheduling based on meta-heuristics approach in cloud computing. Knowledge and Information Systems, 52(1), 1–51. https://doi.org/10.1007/s10115-017-1044-2 Sun, C.-J., & Wu, C.-H. (n.d.). A Scalable Linear Programming Decomposition Method for Dynamic Dispatching and Preventive Maintenance of Deteriorating Machines. 161. Tsai, Y.-H., & Wu, C.-H. (n.d.). Multi-agent Decomposition and Synthesis Methods for Dynamic Dispatching and Preventive Maintenance. 175. Verbelen, T., Simoens, P., Turck, F. D., & Dhoedt, B. (n.d.). Cloudlets: Bringing the cloud to the mobile user. 7. Verma, M., Bhardwaj, N., & Yadav, A. K. (2016). Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment. 10. Xu, F., Hu, L., Jia, T., & Du, S. (2021). Impact feature recognition method for non-stationary signals based on variational modal decomposition noise reduction and support vector machine optimized by whale optimization algorithm. Review of Scientific Instruments, 92(12), 125102. https://doi.org/10.1063/5.0065197 Xu, J., Chen, L., & Zhou, P. (2018). Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 207–215. https://doi.org/10.1109/INFOCOM.2018.8485977 Yassa, S., Chelouah, R., Kadima, H., & Granado, B. (2013). Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments. The Scientific World Journal, 2013, 1–13. https://doi.org/10.1155/2013/350934 Yi, S., Hao, Z., Qin, Z., & Li, Q. (n.d.). Fog Computing: Platform and Applications. 6. Yu, J., & Buyya, R. (2005). A Taxonomy of Workflow Management Systems for Grid Computing. Journal of Grid Computing, 3(3–4), 171–200. https://doi.org/10.1007/s10723-005-9010-8 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87462 | - |
| dc.description.abstract | 因應物聯網快速發展及龐大的運算需求,雲端運算雖為終端設備帶來較佳的運算效能,但其附帶的傳輸延遲已無法滿足使用者的即時運算需求。邊緣運算伺服器容易設置的特性使其可以提供使用者較小傳輸延遲的運算服務。故本研究針對邊緣運算伺服器運算任務分配決策問題進行優化,考量真實運算系統的隨機性及多樣性,最小化邊緣伺服器的運算成本。
首先,針對伺服器內的運算任務分配決策問題,本研究透過混合整數線性規劃拆解模型(Mixed Integer Linear Programming Decomposition ,簡稱MILPD)拆解大型維度問題,再利用動態規劃方法建立應用於多任務多處理器的運算決策模型(Processing Dynamic Decision Model,簡稱PDDM),對拆解後的子問題進行獨立求解,在保留決策模型動態特性的條件下,使系統可以在合理之運算時間內獲得近似最佳決策,找到為運算系統帶來最小運算成本的動態決策方法。 透過模擬驗證本研究開發之具擴展性動態任務分配決策方法(Dynamic processing task allocation decision approach with scalability,簡稱DPDS)在不同邊緣運算伺服器之效果。實驗結果顯示DPDS能有效降低邊緣伺服器之運算成本與運算時間,尤其在任務型態數量增加時,效果更為顯著。 | zh_TW |
| dc.description.abstract | In response to the rapid development of the IoT and huge computing demands, although cloud computing brings better computing performance to end-users, the accompanying transmission latency can’t meet users' real-time needs. Relatively, edge computing servers are easy to set up, which makes them can have a smaller transmission distance. Therefore, this study optimizes task allocation decision-making of edge computing servers, considering the randomness and diversity of the real computing system, and minimizing the overall computing cost of the server.
For computing task allocation problems, this study uses a Mixed-Integer Linear Programming Decomposition model(MILPD) to decompose large-scale dimensional problems and solves the sub-problems by Processing Dynamic Decision Model (PDDM) independently. The model enables the system to obtain near-optimal decisions in a reasonable time with retaining the dynamic characteristics. This study verifies the effect of the Dynamic processing task allocation decision approach with scalability (DPDS) developed in this thesis on different edge computing servers through simulation. The experimental results show that DPDS can effectively reduce the computing cost and cycle time of edge computing servers, especially when the number of task types increases, the effect is more significant. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-13T16:05:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-06-13T16:05:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 IX 附表目錄 XI CHAPTER 1 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究方法 4 1.4 研究流程 4 CHAPTER 2 文獻回顧 6 2.1 邊緣運算 6 2.2 運算任務分配與排程決策 8 2.3 動態規劃模型的應用與限制 9 2.4 問題拆解概念及其應用 11 2.5 多智能體架構及其應用 12 2.6 文獻探討小結 13 CHAPTER 3 問題描述與模型架構 14 3.1 研究問題描述與假設 14 3.1.1 研究問題描述 14 3.1.2 研究問題假設 14 3.2 多任務多處理器運算動態決策模型 14 3.2.1 參數與變數符號定義 15 3.2.2 多任務多處理器運算動態決策模型 15 3.2.3 動態規劃模型求解複雜度說明 17 3.3 混合整數線性規劃分解模型 19 3.3.1 參數與變數符號定義 19 3.3.2 混合整數線性規劃模型 20 3.4 具擴展性動態任務分配決策方法說明 22 3.5 小結 23 CHAPTER 4 系統模擬結果與數值分析 24 4.1 求解程式演算邏輯 24 4.1.1 MILPD模型求解程式 24 4.1.2 PDDM模型求解程式 24 4.1.3 模擬實驗環境介紹 25 4.2 多任務多處理器邊緣運算伺服器實驗 26 4.2.1 比較方法說明 26 4.2.2 實驗設計 27 4.2.3 實驗結果 28 4.2.4 實驗分析:顯著性假說檢定 38 4.2.5 變異數分析與主效果圖:利用率 40 4.3 小結 43 CHAPTER 5 結論與未來研究方向 44 5.1 結論 44 5.2 未來研究方向 44 參考文獻 46 附錄 53 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 邊緣運算 | zh_TW |
| dc.subject | 降低複雜度 | zh_TW |
| dc.subject | 任務分配決策 | zh_TW |
| dc.subject | 動態規劃 | zh_TW |
| dc.subject | 混合整數線性規劃 | zh_TW |
| dc.subject | Task allocation decision | en |
| dc.subject | Reducing complexity | en |
| dc.subject | Dynamic programming | en |
| dc.subject | Edge computing | en |
| dc.subject | Mixed-integer linear programming | en |
| dc.title | 運用MILP分解之邊緣運算動態任務分配決策研究 | zh_TW |
| dc.title | Dynamic Task Allocation for Edge Computing through MILP Decomposition | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭世昐;陳文智 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Fen Cheng;Wen-Chih Chen | en |
| dc.subject.keyword | 邊緣運算,任務分配決策,降低複雜度,動態規劃,混合整數線性規劃, | zh_TW |
| dc.subject.keyword | Edge computing,Task allocation decision,Reducing complexity,Dynamic programming,Mixed-integer linear programming, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202210019 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-11-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
