請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8745
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李賢源 | |
dc.contributor.author | Chun-Kai Wang | en |
dc.contributor.author | 王俊凱 | zh_TW |
dc.date.accessioned | 2021-05-20T20:00:33Z | - |
dc.date.available | 2012-02-11 | |
dc.date.available | 2021-05-20T20:00:33Z | - |
dc.date.copyright | 2010-02-11 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-03 | |
dc.identifier.citation | [1] 盧琬靖,2007年7月,擔保債權憑證之評價-探討批次證券之槓桿效果,台灣大學財務金融所碩士論文
[2] 吳柏樟,2007年7月,在Factor Copula模式下擔保債權憑證(CDO)之評價,台灣大學財務金融所碩士論文 [3] 陶亞蘭,2008年7月,擔保債權憑證隱含違約相關性之研究-以台灣為例,台灣大學財務金融所碩士論文 [4] Li, D. X., 2000, “On Default Correlations: a Copula Function Approach”, Journal of Fixed Incom, 9, pp. 43-54. [5] Ahluwalia, R. and L. McGinty, 2004, “A Model for Base Correlation Calculation”, JPMorgan, Credit Derivatives Strategy. [6] Amato, J. and J. Gyntelberg, 2005, “CDS Index Tranches and the Pricing of Credit Risk”, BIS Quarterly Review, pp.73-87. [7] Duffie, D. and K. Singleton, 1999, “Modeling Term Structures of Defaultable Bonds”, Review of Financial Studies 12, pp. 687-720. [8] Burtschell, X., Gregory and J. Laurent, 2005, “A Comparative Analysis of CDO Pricing”, Working Paper, BNP Parisbas. [9] Elizabel, A., 2006, “Credit Risk Model I: Default Correlaiton in Intensity Models”, CEMFI Working Paper No. 0605. [10] Elizabel, A. 2006, “Credit Risk Models II: Structural Models”, CEMFI Working Paper No. 0605. [11] Jarrow, R., D. Lando and S. Turnbull, 1997, “A Markov Model for the Term Structure of Credit Risk Spreads”, Review of Finance Studies, pp. 481-523. [12] Hull, J. and A. White, 2004, ”Valuation of a CDO and Nth to Default CDS without Monte Carlo Simulation”, Journal of Derivatives, 12(2) (Winter), pp. 8-23. [13] Altman, E., A. Resti and A. Sironi, 2004, “Default Recovery Rates in Credit Risk Modelling: A Review of the Literature and Empirical Evidence”, Economic Notes by Banca Monte dei Paschi di Seina SpA. Pp. 183-208. [14] Laurent, J.-P. and J. Gregory, 2005, “Basket Default Swaps, CDOs and Factor Copulas”, The Journal of Risk, 7(4), pp. 103-122. [15] O’Kane, D. and M. Livesey, 2004, “Base Correlation Explained”, Lehman Brothers. [16] Kakodkar, N., S. Galiani, J. Jonsson and A. Gallo, 2006, Credit Derivatives Handbook 2006-Vol.2, Merrill Lynch. [17] Andersen, L. and J. Sidenius, 2004/5, “Extensions of the Gaussian Copula: Random Recovery and Random Factor Loadings”, The Journal of Gredit Risk, 1(1), pp. 29-70. [18] Krekel, M., 2008, “Pricing distressed CDOs with Base Correlation and Stochastic Recovery”, UniCredit Markets & Investment Banking. [19] Ech-Chatbi C., 2008, “CDS and CDO Pricing with Stochastic Recovery” [20] Amaroui, S. and S. Hitier, 2008, “Optimal Stochastic Recovery for Base Correlation” [21] Prampolini, A. and M. Dinnis, 2009, “CDO Mapping with Stochastic Recovery”, HSH Nordbank AG. [22] Walker, M. B., 2008, “The Static Hedging of CDO Tranche Correlation Risk”, Working Paper, University of Toronto. [23] Meissner, G., 2008, “The Definitive Guide to CDOs- Market, Application, Valuation and hedging”, Risk books. [24] Leeming, M., (ed.) 2008, “Base Correlation Limits”, Barclays Capital. [25] Kakodkar, A., (ed.) 2009, “Coping with The Copula”, Merrill Lynch. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8745 | - |
dc.description.abstract | 2007年起,由於次級房貸事件爆發,以及接踵而至之信用危機及經濟衰退,使許多信用衍生性商品之信用利差大幅攀升,造成在標準市場模型(One Factor Gaussian Copula)的架構下無法求取Base Correlation,特別是CDX.NA.OG [15, 30%]以及iTraxx Europe [12, 22%]兩優先批次證券。Base Correlation為市場參與者在計算避險係數和結算損益之重要參數,若無法求取將不利於信用衍生性商品之流動性。
Amraoui and Hitier (2008)提出改變回復率之做法來改善標準市場模型,在One Factor Gaussian Copula模型中,將回復率(Recovery Rate)由原本固定常數改成為系統因子之一函數,隨系統因子之水準不同而改變,而Amraoui and Hitier發現改進後的模型能夠降低Base Correlation之水準,並且減少Negative Delta之現象。目前Amraoui and Hitier模型廣為實務上所接受使用,唯仍然建立於Gaussian分配之架構下。本篇論文建立於Amraoui and Hitier對回復率之假設,以Student t分配來取代原本Gaussian分配,試圖建立一擔保抵押債權之評價模型,來和Amraoui and Hitier模型比較其優劣。在本論文中,首先求算不同模型在參數改變下之評價結果,來探討不同評價模型之特性,接著以Base Correlation及Correlation Skew兩個面相來比較不同模型,進而尋求更完整且實用之信用衍生性商品評價模型。 | zh_TW |
dc.description.abstract | Since mid-2007, the outburst of subprime crisis and the consecutive credit crunch as well as economic recession have led to the recent widening in super-senior spreads, which pushed the base correlation to its limits that can be allowed under One Factor Gaussian Copula (OFGC) model. Base correlation is mainly used by market practitioners in calculating hedge ratio, mark-to-market profit and loss and the spreads of bespoke tranches. Hence, the inability to calibrate base correlation could have seriously negative impact on credit market.
Amraoui and Hitier (2008) proposed a new method to enhance OFGC model by modeling the recovery rate as a deterministic function of the systematic risk. The new model can reduce the levels of base correlation for each tranches and the number of negative deltas for super senior tranche (ex: CDX.NA.IG 15-30% tranche), yet it has been built under the framework of Gaussian distribution. In this paper, we replace Gaussian distribution with Student-t distribution under the stochastic recovery rate model proposed by Amraoui and Hitier (2008). In our study, we look into the parameter sensitivities of the two models and then compare the two models in terms of the results of pricing and base correlation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:00:33Z (GMT). No. of bitstreams: 1 ntu-99-R96723043-1.pdf: 497343 bytes, checksum: 60520ab238a09907146a5f3e991d86c8 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 第一章 前言 ....9
第二章 信用衍生性商品暨市場概況 ....11 2.1 信用違約交換.................................................................................................11 2.2 擔保債權憑證.................................................................................................13 2.3 合成型擔保債權憑證.....................................................................................17 2.4 信用違約交換指數.........................................................................................18 2.5 Base Correlation架構之限制.........................................................................23 第三章 文獻回顧.........................................................................................................25 3.1 信用風險模型.................................................................................................25 3.2 擔保債權憑證之評價.....................................................................................28 3.3 違約回復率之設定.........................................................................................30 第四章 模型介紹.........................................................................................................32 4.1 One Factor Gaussian Copula Model................................................................33 4.2 One Factor Student t Copula Model................................................................35 4.3 擔保債權憑證之評價.....................................................................................37 4.4 隨機回復率.....................................................................................................39 4.5 Base Correlation:JPMorgan Method..............................................................47 第五章 實證分析.........................................................................................................51 5.1 模型評價比較.................................................................................................51 5.2 Base Correlation比較......................................................................................60 第六章 結論 62 參考文獻.........................................................................................................................63 | |
dc.language.iso | zh-TW | |
dc.title | 隨機回復率架構下之擔保債權憑證評價模型比較 | zh_TW |
dc.title | The Comparison of CDO Pricing With Stochastic Recovery Rate | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝承熹,江彌修 | |
dc.subject.keyword | 合成型擔保債權憑證,信用指數,隨機回復率, | zh_TW |
dc.subject.keyword | Base Correlation,Factor copula model, | en |
dc.relation.page | 64 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-02-03 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
顯示於系所單位: | 財務金融學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 485.69 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。