Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87420
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光zh_TW
dc.contributor.advisorChi-Kuang Sunen
dc.contributor.author吳沛哲zh_TW
dc.contributor.authorPei-Jhe Wuen
dc.date.accessioned2023-05-26T16:06:49Z-
dc.date.available2023-11-10-
dc.date.copyright2023-05-02-
dc.date.issued2023-
dc.date.submitted2023-01-31-
dc.identifier.citationAbbott, C. A., Malik, R. A., Van Ross, E. R., Kulkarni, J., & Boulton, A. J. (2011). Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the UK. Diabetes care, 34(10), 2220-2224.
Abhishek, K., & Khunger, N. (2015). Complications of skin biopsy. Journal of cutaneous and aesthetic surgery, 8(4), 239.
Alam, U., Jeziorska, M., Petropoulos, I. N., Asghar, O., Fadavi, H., Ponirakis, G., Marshall, A., Tavakoli, M., Boulton, A. J., & Efron, N. (2017). Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PloS one, 12(7), e0180175.
Albers, J. W., & Pop-Busui, R. (2014). Diabetic neuropathy: mechanisms, emerging treatments, and subtypes. Current neurology and neuroscience reports, 14(8), 1-11.
Anderson, J., & Van Itallie, C. (2009). Cold Spring Harb. Perspect. Biol, 1, a002584.
Angus‐Leppan, H., & Burke, D. (1992). The function of large and small nerve fibers in renal failure. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 15(3), 288-294.
Aptel, F., Olivier, N., Deniset-Besseau, A., Legeais, J.-M., Plamann, K., Schanne-Klein, M.-C., & Beaurepaire, E. (2010). Multimodal nonlinear imaging of the human cornea. Investigative ophthalmology & visual science, 51(5), 2459-2465.
Arthur, R. P., & Shelley, W. B. (1959). The innervation of human epidermis. Journal of Investigative Dermatology, 32(3), 397-411.
Association, A. D. (2016). Erratum. Classification and diagnosis of diabetes. Sec. 2. In Standards of Medical Care in Diabetes–2016. Diabetes Care 2016; 39 (Suppl. 1): S13–S22. Diabetes care, 39(9), 1653-1653.
Avellanal, M., Riquelme, I., & Díaz-Regañón, G. (2020). Quantitative Sensory Testing in pain assessment and treatment. Brief review and algorithmic management proposal. Revista Española de Anestesiología y Reanimación (English Edition), 67(4), 187-194.
Barad, Y., Eisenberg, H., Horowitz, M., & Silberberg, Y. (1997). Nonlinear scanning laser microscopy by third harmonic generation. Applied Physics Letters, 70(8), 922-924.
Bianchi, S. (2008). Ultrasound of the peripheral nerves. Joint Bone Spine, 75(6), 643-649.
Boulton, A., Gries, F., & Jervell, J. (1998). Guidelines for the diagnosis and outpatient management of diabetic peripheral neuropathy. Diabetic Medicine, 15(6), 508-514.
Bourquin, A.-F., Süveges, M., Pertin, M., Gilliard, N., Sardy, S., Davison, A. C., Spahn, D. R., & Decosterd, I. (2006). Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain, 122(1-2), 14. e11-14. e14.
Breiner, A., Lovblom, L. E., Perkins, B. A., & Bril, V. (2014). Does the prevailing hypothesis that small-fiber dysfunction precedes large-fiber dysfunction apply to type 1 diabetic patients? Diabetes care, 37(5), 1418-1424.
Brown, M. J., Martin, J. R., & Asbury, A. K. (1976). Painful diabetic neuropathy: a morphometric study. Archives of neurology, 33(3), 164-171.
Callaghan, B. C., Cheng, H. T., Stables, C. L., Smith, A. L., & Feldman, E. L. (2012). Diabetic neuropathy: clinical manifestations and current treatments. The lancet NEUROLOGY, 11(6), 521-534.
Cavanagh, H. D., Petroll, W. M., Alizadeh, H., He, Y.-G., McCulley, J. P., & Jester, J. V. (1993). Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease. Ophthalmology, 100(10), 1444-1454.
Chao, C., Tsai, L., Chiou, Y., Tseng, M., Hsieh, S.-T., Chang, S.-C., & Chang, Y.-C. (2003). Peripheral nerve disease in SARS:: report of a case. Neurology, 61(12), 1820-1821.
Charnogursky, G., Lee, H., & Lopez, N. (2014). Diabetic neuropathy. Handbook of Clinical Neurology, 120, 773-785.
Chen, X., Graham, J., Dabbah, M. A., Petropoulos, I. N., Ponirakis, G., Asghar, O., Alam, U., Marshall, A., Fadavi, H., & Ferdousi, M. (2015). Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes care, 38(6), 1138-1144.
Cho, N. H., Shaw, J., Karuranga, S., Huang, Y., da Rocha Fernandes, J., Ohlrogge, A., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, 138, 271-281.
Chong, P. S. T., & Cros, D. P. (2004). Technology literature review: quantitative sensory testing. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 29(5), 734-747.
Chong, S. P., Merkle, C. W., Cooke, D. F., Zhang, T., Radhakrishnan, H., Krubitzer, L., & Srinivasan, V. J. (2015). Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography. Optics letters, 40(21), 4911-4914.
Débarre, D., Supatto, W., Pena, A.-M., Fabre, A., Tordjmann, T., Combettes, L., Schanne-Klein, M.-C., & Beaurepaire, E. (2006). Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nature methods, 3(1), 47-53.
Decosterd, I., & Woolf, C. J. (2000). Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain, 87(2), 149-158.
Delmas, P., Hao, J., & Rodat-Despoix, L. (2011). Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nature Reviews Neuroscience, 12(3), 139-153.
Dietzel, S., Pircher, J., Nekolla, A. K., Gull, M., Brändli, A. W., Pohl, U., & Rehberg, M. (2014). Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy. PloS one, 9(6), e99615.
Dubois, A., Vabre, L., Boccara, A.-C., & Beaurepaire, E. (2002). High-resolution full-field optical coherence tomography with a Linnik microscope. Applied optics, 41(4), 805-812.
Dyck, P., Dyck, P., Kennedy, W., Kesserwani, H., Melanson, M., Ochoa, J., Shy, M., Stevens, J., Suarez, G., & O'Brien, P. (1998). Limitations of quantitative sensory testing when patients are biased toward a bad outcome. Neurology, 50(5), 1213-1213.
Ehrlich, P. (1886). Ueber die Methylenblaureaction der lebenden Nervensubstanz. DMW-Deutsche Medizinische Wochenschrift, 12(04), 49-52.
England, J. D., Gronseth, G. S., Franklin, G., Miller, R. G., Asbury, A. K., Carter, G. T., Cohen, J. A., Fisher, M. A., Howard, J. F., & Kinsella, L. J. (2005). Distal symmetrical polyneuropathy: a definition for clinical research. A report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Archives of physical medicine and rehabilitation, 86(1), 167-174.
Feldman, E. L., Callaghan, B. C., Pop-Busui, R., Zochodne, D. W., Wright, D. E., Bennett, D. L., Bril, V., Russell, J. W., & Viswanathan, V. (2019). Diabetic neuropathy. Nature reviews Disease primers, 5(1), 1-18.
Fitzpatrick, A. (2013). Challenges of living with diabetic peripheral neuropathy. Nurse Prescribing, 11(5), 228-231.
Freeman, R., Chase, K. P., & Risk, M. R. (2003). Quantitative sensory testing cannot differentiate simulated sensory loss from sensory neuropathy. Neurology, 60(3), 465-470.
Fritjof, H., & Winfried, D. (2005). Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940.
Goppert-Mayer, M. (1931). Uber Elementarrakte mit zwei Quantensprungen. Ann. Phys., 9, 273-294.
Gregg, E. W., Gu, Q., Williams, D., De Rekeneire, N., Cheng, Y. J., Geiss, L., & Engelgau, M. (2007). Prevalence of lower extremity diseases associated with normal glucose levels, impaired fasting glucose, and diabetes among US adults aged 40 or older. Diabetes research and clinical practice, 77(3), 485-488.
Gualda, E., Filippidis, G., Mari, M., Voglis, G., Vlachos, M., Fotakis, C., & Tavernarakis, N. (2008). In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy. Journal of microscopy, 232(2), 270-275.
Hammi, C., & Yeung, B. (2022). Neuropathy. In StatPearls [Internet]. StatPearls Publishing.
Hanewinckel, R., Drenthen, J., van Oijen, M., Hofman, A., van Doorn, P. A., & Ikram, M. A. (2016). Prevalence of polyneuropathy in the general middle-aged and elderly population. Neurology, 87(18), 1892-1898.
Hanewinckel, R., van Oijen, M., Ikram, M. A., & van Doorn, P. A. (2016). The epidemiology and risk factors of chronic polyneuropathy. European journal of epidemiology, 31(1), 5-20.
Hansson, P., Backonja, M., & Bouhassira, D. (2007). Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain, 129(3), 256-259.
Haus, H.A. (1984). Waves and Fields in Optoelectronics (Prentice-Hall).
Heimans, J., Bertelsmann, F., & Van Rooy, J. (1986). Large and small nerve fiber function in painful diabetic neuropathy. Journal of the neurological sciences, 74(1), 1-9.
Hilliges, M., Wang, L., & Johansson, O. (1995). Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. Journal of Investigative Dermatology, 104(1), 134-137.
Hoeijmakers, J. G., Faber, C. G., Lauria, G., Merkies, I. S., & Waxman, S. G. (2012). Small-fibre neuropathies—advances in diagnosis, pathophysiology and management. Nature Reviews Neurology, 8(7), 369-379.
Holland, N. R., Crawford, T. O., Hauer, P., Cornblath, D. R., Griffin, J. W., & McArthur, J. C. (1998). Small‐fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 44(1), 47-59.
Hsieh, S.-T., Chiang, H.-Y., & Lin, W.-M. (2000). Pathology of nerve terminal degeneration in the skin. Journal of Neuropathology & Experimental Neurology, 59(4), 297-307.
Icks, A., Scheer, M., Morbach, S., Genz, J., Haastert, B., Giani, G., Glaeske, G., & Hoffmann, F. (2011). Time-dependent impact of diabetes on mortality in patients after major lower extremity amputation: survival in a population-based 5-year cohort in Germany. Diabetes care, 34(6), 1350-1354.
Iqbal, Z., Azmi, S., Yadav, R., Ferdousi, M., Kumar, M., Cuthbertson, D. J., Lim, J., Malik, R. A., & Alam, U. (2018). Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clinical therapeutics, 40(6), 828-849.
Julius, D., & Basbaum, A. I. (2001). Molecular mechanisms of nociception. Nature, 413(6852), 203-210.
Jung, S. H., Kim, S., Chung, A. Y., Kim, H. T., So, J. H., Ryu, J., Park, H. C., & Kim, C. H. (2010). Visualization of myelination in GFP‐transgenic zebrafish. Developmental Dynamics, 239(2), 592-597.
König, K. (2000). Multiphoton microscopy in life sciences. Journal of microscopy, 200(2), 83-104.
Kalteniece, A. (2020). Establishing Corneal Confocal Microscopy as a Surrogate Endpoint for the Assessment of Diabetic Peripheral Neuropathy. The University of Manchester (United Kingdom).
Karlsson, P., Nyengaard, J., Polydefkis, M., & Jensen, T. (2015). Structural and functional assessment of skin nerve fibres in small‐fibre pathology. European Journal of Pain, 19(8), 1059-1070.
Kennedy, W. R., & Wendelschafer-Crabb, G. (1993). The innervation of human epidermis. Journal of the neurological sciences, 115(2), 184-190.
Kennedy, W. R., Wendelschafer-Crabb, G., & Johnson, T. (1996). Quantitation of epidermal nerves in diabetic neuropathy. Neurology, 47(4), 1042-1048.
Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & Al Kaabi, J. (2020). Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. Journal of epidemiology and global health, 10(1), 107.
Khdour, M. R. (2020). Treatment of diabetic peripheral neuropathy: a review. Journal of Pharmacy and Pharmacology, 72(7), 863-872.
Landmann, G. (2012). Diagnostik und Therapie der schmerzhaften Polyneuropathie. Psychiatria et Neurologia, 5, 13-16.
Larsson, J., Agardh, C.-D., Apelqvist, J., & Stenström, A. (1998). Long term prognosis after healed amputation in patients with diabetes. Clinical Orthopaedics and Related Research®, 350, 149-158.
Lauria, G. (1999). Innervation of the human epidermis. A historical review. The Italian Journal of Neurological Sciences, 20(1), 63-70.
Lauria, G., Borgna, M., Morbin, M., Lombardi, R., Mazzoleni, G., Sghirlanzoni, A., & Pareyson, D. (2004). Tubule and neurofilament immunoreactivity in human hairy skin: markers for intraepidermal nerve fibers. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 30(3), 310-316.
Lauria, G., Hsieh, S. T., Johansson, O., Kennedy, W. R., Leger, J. M., Mellgren, S. I., Nolano, M., Merkies, I. S., Polydefkis, M., & Smith, A. G. (2010). European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Fe‐deration of Neurological Societies and the Peripheral Nerve Society. European journal of neurology, 17(7), 903-e949.
Lauria, G., McArthur, J. C., Hauer, P. E., Griffin, J. W., & Cornblath, D. R. (1998). Neuropathological alterations in diabetic truncal neuropathy: evaluation by skin biopsy. Journal of Neurology, Neurosurgery & Psychiatry, 65(5), 762-766.
Lauria, G., Merkies, I. S., & Faber, C. G. (2012). Small fibre neuropathy. Current opinion in neurology, 25(5), 542-549.
Lee, E. J., Kim, B., Ahn, H.-G., Park, S.-H., Cheong, E., & Lee, S. (2015). In-vivo and label-free imaging of cellular and tissue structures in mouse ear skin by using second-and third-harmonic generation microscopy. Journal of the Korean Physical Society, 66(4), 597-601.
Leinninger, G. M., Vincent, A. M., & Feldman, E. L. (2004). The role of growth factors in diabetic peripheral neuropathy. Journal of the peripheral nervous system, 9(1), 26-53.
Lemp, M. A., Dilly, P. N., & Boyde, A. (1985). Tandem-scanning (confocal) microscopy of the full-thickness cornea. Cornea, 4(4), 205-209.
Liao, Y.-H., Su, Y.-H., Shih, Y.-T., Chen, W.-S., Jee, S.-H., & Sun, C.-K. (2019). In vivo third-harmonic generation microscopy study on vitiligo patients. Journal of biomedical optics, 25(1), 014504.
Lim, H., Sharoukhov, D., Kassim, I., Zhang, Y., Salzer, J. L., & Melendez-Vasquez, C. V. (2014). Label-free imaging of Schwann cell myelination by third harmonic generation microscopy. Proceedings of the National Academy of Sciences, 111(50), 18025-18030.
Lin, K. H., Liao, Y. H., Wei, M. L., & Sun, C. K. (2020). Comparative analysis of intrinsic skin aging between Caucasian and Asian subjects by slide‐free in vivo harmonic generation microscopy. Journal of biophotonics, 13(4), e201960063.
Liu, H.-S., Jan, M.-S., Chou, C.-K., Chen, P.-H., & Ke, N.-J. (1999). Is green fluorescent protein toxic to the living cells? Biochemical and biophysical research communications, 260(3), 712-717.
Liu, L., Gardecki, J. A., Nadkarni, S. K., Toussaint, J. D., Yagi, Y., Bouma, B. E., & Tearney, G. J. (2011). Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nature medicine, 17(8), 1010-1014.
Liu, Y. W. (2021). Activation-Enhanced Labeling of Type Specific Cutaneous Nerve Fibers. Master thesis, Department of Life Science, National Taiwan University, Taipei, [Online]. Available: https://hdl.handle.net/11296/vus7g3
Müller, M., Squier, J., Wilson, K., & Brakenhoff, G. (1998). 3D microscopy of transparent objects using third-harmonic generation. Journal of microscopy, 191(3), 266-274.
Mallik, A., & Weir, A. (2005). Nerve conduction studies: essentials and pitfalls in practice. Journal of Neurology, Neurosurgery & Psychiatry, 76(suppl 2), ii23-ii31.
Mangus, L. M., Rao, D. B., & Ebenezer, G. J. (2020). Intraepidermal nerve fiber analysis in human patients and animal models of peripheral neuropathy: a comparative review. Toxicologic pathology, 48(1), 59-70.
Margolis, D. J., & Jeffcoate, W. (2013). Epidemiology of foot ulceration and amputation: can global variation be explained? Medical Clinics, 97(5), 791-805.
Martins-Mendes, D., Monteiro-Soares, M., Boyko, E. J., Ribeiro, M., Barata, P., Lima, J., & Soares, R. (2014). The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. Journal of Diabetes and its Complications, 28(5), 632-638.
Martyn, C., & Hughes, R. (1997). Epidemiology of peripheral neuropathy. Journal of neurology, neurosurgery, and psychiatry, 62(4), 310.
Matsui, A., Tanaka, E., Choi, H. S., Kianzad, V., Gioux, S., Lomnes, S. J., & Frangioni, J. V. (2010). Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery, 148(1), 78-86.
Matthews, T. P., Zhang, C., Yao, D.-K., Maslov, K. I., & Wang, L. V. (2014). Label-free photoacoustic microscopy of peripheral nerves. Journal of biomedical optics, 19(1), 016004.
McCarthy, B., Hsieh, S.-T., Stocks, A., Hauer, P., Macko, C., Cornblath, D., Griffin, J., & McArthur, J. (1995). Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology, 45(10), 1848-1855.
Meshulach, D., Barad, Y., & Silberberg, Y. (1997). Measurement of ultrashort optical pulses by third-harmonic generation. JOSA B, 14(8), 2122-2125.
Mihara, M. (1984). Regenerated cutaneous nerves in human epidermal and subepidermal regions. An electron microscopy study. Archives of dermatological research, 276(2), 115-122.
Minsky, M. (1988). Memoir on inventing the confocal scanning microscope. Scanning, 10(4), 128-138.
Myers, M. I., & Peltier, A. C. (2013). Uses of skin biopsy for sensory and autonomic nerve assessment. Current neurology and neuroscience reports, 13(1), 1-8.
Nathan, D., Genuth, S., Lachin, J., Cleary, P., Crofford, O., Davis, M., Rand, L., & Siebert, C. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England journal of medicine, 329(14), 977-986.
Niederer, R. L., & McGhee, C. N. J. (2010). Clinical in vivo confocal microscopy of the human cornea in health and disease. Progress in retinal and eye research, 29(1), 30-58.
Novotny, G., & Gommert-Novotny, E. (1988). Intraepidermal nerves in human digital skin. Cell and tissue research, 254(1), 111-117.
Oaklander, A. L., & Siegel, S. M. (2005). Cutaneous innervation: form and function. Journal of the American Academy of Dermatology, 53(6), 1027-1037.
Oliveira-Soto, L., & Efron, N. (2001). Morphology of corneal nerves using confocal microscopy. Cornea, 20(4), 374-384.
Oz, M., Lorke, D. E., Hasan, M., & Petroianu, G. A. (2011). Cellular and molecular actions of Methylene Blue in the nervous system. Medicinal research reviews, 31(1), 93-117.
Pan, C.-L., Lin, Y.-H., Lin, W.-M., Tai, T.-Y., & Hsieh, S.-T. (2001). Degeneration of nociceptive nerve terminals in human peripheral neuropathy. Neuroreport, 12(4), 787-792.
Parodi, V., Jacchetti, E., Osellame, R., Cerullo, G., Polli, D., & Raimondi, M. T. (2020). Nonlinear optical microscopy: From fundamentals to applications in live bioimaging. Frontiers in bioengineering and biotechnology, 8, 585363.
Pecoraro, R. E., Reiber, G. E., & Burgess, E. M. (1990). Pathways to diabetic limb amputation: basis for prevention. Diabetes care, 13(5), 513-521.
Petropoulos, I. N., Alam, U., Fadavi, H., Asghar, O., Green, P., Ponirakis, G., Marshall, A., Boulton, A. J., Tavakoli, M., & Malik, R. A. (2013). Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy. Diabetes care, 36(11), 3646-3651.
Pirart, J. (1978). Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes care, 1(3), 168-188.
Pittenger, G. L., Ray, M., Burcus, N. I., McNulty, P., Basta, B., & Vinik, A. I. (2004). Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes care, 27(8), 1974-1979.
Ponirakis, G., Elhadd, T., Chinnaiyan, S., Dabbous, Z., Siddiqui, M., Al‐muhannadi, H., Petropoulos, I., Khan, A., Ashawesh, K. A., & Dukhan, K. M. (2019). Prevalence and risk factors for painful diabetic neuropathy in secondary healthcare in Qatar. Journal of Diabetes Investigation, 10(6), 1558-1564.
Ponirakis, G., Elhadd, T., Chinnaiyan, S., Dabbous, Z., Siddiqui, M., Al‐muhannadi, H., Petropoulos, I. N., Khan, A., Ashawesh, K. A., & Dukhan, K. M. O. (2020). Prevalence and management of diabetic neuropathy in secondary care in Qatar. Diabetes/Metabolism Research and Reviews, 36(4), e3286.
Pop-Busui, R., Boulton, A. J., Feldman, E. L., Bril, V., Freeman, R., Malik, R. A., Sosenko, J. M., & Ziegler, D. (2017). Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes care, 40(1), 136-154.
Provitera, V., Nolano, M., Pagano, A., Caporaso, G., Stancanelli, A., & Santoro, L. (2007). Myelinated nerve endings in human skin. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 35(6), 767-775.
Pruitt III, J., Moracho-Vilrriales, C., Threatt, T., Wagner, S., Wu, J., & Romero-Sandoval, E. A. (2017). Identification, prevalence, and treatment of painful diabetic neuropathy in patients from a rural area in South Carolina. Journal of Pain Research, 10, 833.
Raasing, L. R., Vogels, O. J., Veltkamp, M., van Swol, C. F., & Grutters, J. C. (2021). Current view of diagnosing small fiber neuropathy. Journal of Neuromuscular Diseases, 8(2), 185-207.
Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annu. Rev. Neurosci., 29, 449-476.
Rajan, B., Polydefkis, M., Hauer, P., Griffin, J. W., & McArthur, J. C. (2003). Epidermal reinnervation after intracutaneous axotomy in man. Journal of Comparative Neurology, 457(1), 24-36.
Rehberg, M., Krombach, F., Pohl, U., & Dietzel, S. (2011). Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy. PloS one, 6(11), e28237.
Richardson, K. (1969). The fine structure of autonomic nerves after vital staining with methylene blue. The Anatomical Record, 164(3), 359-377.
Rr, A., Parrish, J., & PARRISH, J. (1981). The optics of human skin. J Invest, 7, 33-37.
Shepherd, G. M., & Raastad, M. (2003). Axonal varicosity distributions along parallel fibers: a new angle on a cerebellar circuit. The Cerebellum, 2(2), 110-113.
Shun, C. T., Chang, Y. C., Wu, H. P., Hsieh, S. C., Lin, W. M., Lin, Y. H., Tai, T. Y., & Hsieh, S. T. (2004). Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain, 127(7), 1593-1605.
Siao, P., & Cros, D. P. (2003). Quantitative sensory testing. Physical Medicine and Rehabilitation Clinics, 14(2), 261-286.
Siao, P., & Kaku, M. (2019). A clinician's approach to peripheral neuropathy. Seminars in neurology,
Singer, M. A., Vernino, S. A., & Wolfe, G. I. (2012). Idiopathic neuropathy: new paradigms, new promise. Journal of the peripheral nervous system, 17, 43-49.
Sommer, C., Geber, C., Young, P., Forst, R., Birklein, F., & Schoser, B. (2018). Polyneuropathies. Deutsches Ärzteblatt International, 115(6), 83.
Squier, J., Hoover, E., Chandler, E., Young, M., Hill, S., Backus, S., & Durfee, C. (2012). Advances in Multiphoton Microscopy. Frontiers in Optics,
Stoll, G., Bendszus, M., Perez, J., & Pham, M. (2009). Magnetic resonance imaging of the peripheral nervous system. Journal of neurology, 256(7), 1043-1051.
Sumner, C., Sheth, S., Griffin, J., Cornblath, D., & Polydefkis, M. (2003). The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology, 60(1), 108-111.
Sun, C.-K., Wu, P.-J., Chen, S.-T., Su, Y.-H., Wei, M.-L., Wang, C.-Y., Gao, H.-C., Sung, K.-B., & Liao, Y.-H. (2020). Slide-free clinical imaging of melanin with absolute quantities using label-free third-harmonic-generation enhancement-ratio microscopy. Biomedical Optics Express, 11(6), 3009-3024.
Sun, C. K., & Chen, S. Y. (2017). U.S. Patent No. 9,795,340. Washington, DC: U.S. Patent and Trademark Office.
Talagas, M., Lebonvallet, N., Leschiera, R., Elies, P., Marcorelles, P., & Misery, L. (2020). Intra‐epidermal nerve endings progress within keratinocyte cytoplasmic tunnels in normal human skin. Experimental Dermatology, 29(4), 387-392.
Tavakoli, M., Petropoulos, I. N., & Malik, R. A. (2012). Assessing corneal nerve structure and function in diabetic neuropathy. Clinical and Experimental Optometry, 95(3), 338-347.
Tentolouris, N., Al-Sabbagh, S., Walker, M. G., Boulton, A. J., & Jude, E. B. (2004). Mortality in diabetic and nondiabetic patients after amputations performed from 1990 to 1995: a 5-year follow-up study. Diabetes care, 27(7), 1598-1604.
Tokarz, D., Cisek, R., Prent, N., Fekl, U., & Barzda, V. (2012). Measuring the molecular second hyperpolarizability in absorptive solutions by the third harmonic generation ratio technique. Analytica chimica acta, 755, 86-92.
Tseng, H. C. (2022). Developing Epi-third Harmonic Generation Microscopy to Observe Intraepidermal Free Nerve Endings. Master Thesis, Department of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan.
Upadhyaya, V., & Choudur, H. (2021). Imaging in peripheral neuropathy: ultrasound and MRI. Indian J Musculoskelet Radiol, 3(01), 14-23.
Veves, A., Backonja, M., & Malik, R. A. (2008). Painful diabetic neuropathy: epidemiology, natural history, early diagnosis, and treatment options. Pain medicine, 9(6), 660-674.
Vinik, A., & Mehrabyan, A. (2004). Diabetic neuropathies. Medical Clinics, 88(4), 947-999.
Vinik, A. I. (2003). Management of neuropathy and foot problems in diabetic patients. Clinical Cornerstone, 5(2), 38-55.
Visser, N. A., Notermans, N. C., Linssen, R. S., van den Berg, L. H., & Vrancken, A. F. (2015). Incidence of polyneuropathy in Utrecht, the Netherlands. Neurology, 84(3), 259-264.
Wang, L., Hilliges, M., Jernberg, T., Wiegleb-Edström, D., & Johansson, O. (1990). Protein gene product 9.5-immunoreactive nerve fibres and cells in human skin. Cell and tissue research, 261(1), 25-33.
Weddell, G. (1941). The pattern of cutaneous innervation in relation to cutaneous sensibility. Journal of Anatomy, 75(Pt 3), 346.
Weddell, G., Pallie, W., & Palmer, E. (1954). The morphology of peripheral nerve terminations in the skin. Journal of Cell Science, 3(32), 483-501.
Wei, M.-L., Liao, Y.-H., Weng, W.-H., Shih, Y.-T., Sheen, Y.-S., & Sun, C.-K. (2021). A study on applying slide-free label-free harmonic generation microscopy for noninvasive assessment of melasma treatments with histopathological parameters. IEEE Journal of Selected Topics in Quantum Electronics, 27(4), 1-10.
Weigelin, B., Bakker, G.-J., & Friedl, P. (2012). Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics. IntraVital, 1(1), 32-43.
Weng, W.-H., Liao, Y.-H., Tsai, M.-R., Wei, M.-L., Huang, H.-Y., & Sun, C.-K. (2016). Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors in vivo by label-free third-harmonic generation microscopy. Journal of biomedical optics, 21(7), 076009.
Witte, S., Negrean, A., Lodder, J. C., De Kock, C. P., Testa Silva, G., Mansvelder, H. D., & Louise Groot, M. (2011). Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proceedings of the National Academy of Sciences, 108(15), 5970-5975.
Woollard, H. (1936). Intra-epidermal nerve endings. Journal of Anatomy, 71(Pt 1), 54.
Wu, P.-J., Chen, S.-T., Liao, Y.-H., & Sun, C.-K. (2021). In vivo harmonic generation microscopy for monitoring the height of basal keratinocytes in solar lentigines after laser depigmentation treatment. Biomedical Optics Express, 12(10), 6129-6142.
Wu, P. J., Chen, S. T., Sheen, Y. S., Sun, C. K., & Liao, Y. H. (2022). A longitudinal comparative study by in vivo harmonic generation microscopy: Q‐switched ruby laser versus picosecond 532‐nm Nd: YAG laser for the treatment of solar lentigines. JEADV Clinical Practice.
Wu, P. J., Tseng, H. C., Chao, C. C., Liao, Y. H., Yen, C. T., Lin, W. Y., Hsieh, S. T., Sun, W. Z. and Sun, C. K. (2022). A Noninvasive Skin Biopsy of Free Nerve Endings via Realtime Third-Harmonic Microscopy. bioRxiv, 2022-12.
Xia, F., Wu, C., Sinefeld, D., Li, B., Qin, Y., & Xu, C. (2018). In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination. Biomedical Optics Express, 9(12), 6545-6555.
Xu, X., Yu, C., Xu, L., & Xu, J. (2022). Emerging roles of keratinocytes in nociceptive transduction and regulation. Frontiers in Molecular Neuroscience.
Yamanaka, M., Teranishi, T., Kawagoe, H., & Nishizawa, N. (2016). Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging. Scientific Reports, 6(1), 1-8.
Yeh, H. Y., Lee, J. C., Chi, H. H., Chen, C. C., Liu, Q., & Yen, C. T. (2021). Longitudinal intravital imaging nerve degeneration and sprouting in the toes of spared nerve injured mice. Journal of Comparative Neurology, 529(12), 3247-3264.
Yelin, D., & Silberberg, Y. (1999). Laser scanning third-harmonic-generation microscopy in biology. Optics express, 5(8), 169-175.
Yu, S. W. (2020). Intra-vital methylene blue labeling of nerve fibers in the skin of mice and human subjects. Master thesis, Department of Life Science, National Taiwan University, Taipei, [Online]. Available: https://hdl.handle.net/11296/q998nk
Zhou, B., Lu, Y., Hajifathalian, K., Bentham, J., Di Cesare, M., Danaei, G., Bixby, H., Cowan, M. J., Ali, M. K., & Taddei, C. (2016). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4· 4 million participants. The lancet, 387(10027), 1513-1530.
Ziegler, D., Papanas, N., Zhivov, A., Allgeier, S., Winter, K., Ziegler, I., Brüggemann, J., Strom, A., Peschel, S., & Köhler, B. (2014). Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes, 63(7), 2454-2463.
Ziegler, D., Strom, A., Lobmann, R., Reiners, K., Rett, K., & Schnell, O. (2015). High prevalence of diagnosed and undiagnosed polyneuropathy in subjects with and without diabetes participating in a nationwide educational initiative (PROTECT study). Journal of Diabetes and its Complications, 29(8), 998-1002.
Zipfel, W. R., Williams, R. M., Christie, R., Nikitin, A. Y., Hyman, B. T., & Webb, W. W. (2003). Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proceedings of the National Academy of Sciences, 100(12), 7075-7080.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87420-
dc.description.abstract周邊神經病變是臨床上常見的神經纖維受損相關疾病,它會導致周邊神經纖維的麻木、刺痛及慢性疼痛,並隨著時間推移而惡化,若未能及早診斷病因並正確治療,病情惡化可能導致死亡。周邊神經病變在初期極易被忽略,目前已知病因有數百種之多,正確診斷方式以了解病因極為重要。
臨床上,糖尿病周邊神經病變為大宗,超過60 %糖尿病患者之神經系統會由表皮神經末梢開始退化(degeneration)而併發周邊神經病變,未及早治療將引起嚴重的足部問題,例如畸形、感染、潰瘍,更嚴重的患者須進行截肢。其中以小纖維感覺神經系統受損為主,常以皮膚切片(俗稱皮膚神經活檢)作為小神經疾病診斷及嚴重程度的準則,也是目前臨床上能觀測皮膚游離神經末梢纖維(free intraepidermal nerve endings,簡稱FINEs)結構的唯一方法。此觀測神經末梢纖維結構至關重要,目的在定量腳踝表皮神經纖維密度(intra-epidermal nerve density,簡稱IENFD),並以此關鍵資訊從事臨床決斷。由於腳踝皮膚的神經活檢技術門檻相當高,臨床上只有大型教學醫院才有能力從事皮膚神經活檢,並無可非侵入式觀察皮膚神經末梢的臨床工具。此外,皮膚切片為侵入性方法,不建議用於糖尿病等凝血功能異常病患,且同時存在取樣錯誤及組織處理過程錯誤而造成的偽影,導致誤診等問題。目前非侵入式方式只能在人體和動物皮膚內對髓鞘大神經纖維進行成像,但無法用於小神經纖維結構影像。基於周邊神經病變之龐大病患數,在美國單一國家即超過4000萬人以上,一項能夠不需要切除組織,不造成皮膚傷害,但卻能夠獲取皮膚下末梢神經結構影像且提供高穿透度、高解析度、量化的病理級臨床神經影像是目前亟需的。
本研究將基於三倍頻顯微術開發出全球唯一能在無需取出皮膚與染色的情況下,能成功非侵入式於人體皮膚中取得關鍵無髓鞘之表皮游離神經末梢影像之技術。影像之正確性透過成功從事ex vivo與皮膚神經活檢之比對,即在同一離體皮膚組織切片中完成與PGP 9.5化學免疫病理染色得到證實。此體外研究結果表明此影像技術具有無需外加染劑在人體皮膚中直接觀測表皮神經末梢纖維結構之能力。透過在不同小鼠的腳趾中進一步注射神經染劑-亞甲基藍(methylene blue)及縱向追蹤神經受損動物模型,再次驗證此影像技術中的信號來自表皮游離神經末梢纖維,並同時確立活體應用之可行性。
在臨床試驗中,本研究同時建立了對表皮內神經纖維進行量化之操作型定義,即表皮神經纖維指數(IENF index)。經由臨床試驗分析,健康受試者及糖尿病神經病變患者的表皮神經纖維指數具有顯著差異,並與皮膚神經活檢技術才能提供之關鍵表皮神經纖維密度(IENF density)具有相關性。研究結果表明,三倍頻顯微術即為目前亟需的無創、可逆、定量和微觀神經測定臨床影像技術,以作為未來神經內外科之診斷與治療評估之有效追蹤工具。
zh_TW
dc.description.abstractPeripheral neuropathy (PN) represents a spectrum of neurological diseases that damage the peripheral nervous system of human body, for which hundreds of etiologies have been identified. One of the leading causes for the development of PN is diabetes. Diabetic peripheral neuropathy (DPN) also was a major complication of diabetes and a frequent cause of foot ulcers and amputations. Most of the studies indicated DPN has a predilection for small sensory nerve fibers, suggesting small fiber neuropathy (SFN) as an early stage of DPN, and terminal small nerve fibers of lower distal extremities are the early targets for screening and diagnosis.
Skin biopsy was the current gold standard to provide structural information to provide free-intraepidermal-nerve-endings (FINEs) structural information for the differential diagnosis of SFN. Its invasive nature was particularly unfavorable for patients with diabetic coagulation abnormalities thus there is an unmet clinical need for a non-invasive FINEs imaging tool. However, the previous study reports that the current in vivo optical imaging tools can only provide contrast through myelin sheath, a clear indication that no techniques are available to in vivo image human fibers without myelin sheath, especially unmyelinated FINEs for human skin.
In this study, we developed the world's first-ever unmyelinated FINEs visualizer for the lower distal extremities of human skin by using a tightly-focused epi-Third-harmonic-generation microscope (TFETM). Its label-free capability was confirmed by PGP9.5 immunohistochemistry staining and a longitudinal spared nerve injury model study. The proposed TFETM was shown to be able to delineate the 3D structure of unmyelinated FINEs that are confirmed by PGP 9.5 immunohistochemistry staining from the same tissue section of human skin. Moreover, through multiple modalities nonlinear microscopy which combined the third-harmonic generation (THG) and two-photon fluorescence (2PF) channels with its clinical capability proved. We take advantage of the far-red emission of nerve-specific methylene blue (MB) stain with a two-photon excitation wavelength of 1260 nm, not only capable to provide the highest optical penetration in skin and to avoid melanin absorption but also capable of simultaneously detecting the epi-THG signals (around 420nm) and 2PF signals of MB (around 685nm). With this character in optics and clinical applications, we first inject the MB solution of consistent concentrations into the third toe of the hind limb of wild-type mice and examined in vivo the correlation between the fluorescence of MB signal and epi-THG signals to double confirm whether the fiber-like signals were generated from nerves fiber.
Moreover, through proposing a dot-connecting algorithm, we established the operational protocol to count three-dimensionally the intraepidermal nerve fibers (IENF) and define the quantitative IENF index. Our clinical trial showed that the label-free IENF index can differentially identify SFN (P-value=0.0102) and was well correlated with IENF density of skin biopsy (Pearson’s correlation, R-value= 0.98) in the DPN group. Our study suggested that the unstained dot-connecting TFETM imaging can noninvasively provide FINEs structure information assisting in diagnosing SFN. This unprecedented non-invasive imaging system would meet the unmet clinical need for the FINEs imaging tool not only to assist in the screening and differential diagnosis of DPN but also for surgical evaluation and efficacy assessment of radiculopathy treatment and therapy in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-26T16:06:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-26T16:06:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
誌謝 II
摘要 IV
ABSTRACT VI
CONTENTS IX
LIST OF FIGURES XI
LIST OF TABLES XXXI
LIST OF ABBREVIATIONS XXXII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis scope and organization 3
Chapter 2 Background Knowledge 6
2.1 Peripheral neuropathy (PN) 6
2.2 Diabetic peripheral neuropathy (DPN) 7
2.3 Free intraepidermal nerve endings (FINEs) 9
2.4 Diagnostic methods for small fiber neuropathy (SFN) 14
2.5 Corneal confocal microscopy (CCM) in SFN 17
2.6 Other techniques for imaging nerve fibers in human Skin 20
2.7 Third harmonic generation (THG) in neuroscience 24
Chapter 3 Basic Principle and Experimental Setup 27
3.1 Nonlinear optical microscopy 27
3.2 Two-photon fluorescence microscopy (2PF) 29
3.3 Second and Third harmonic generation microscopy (SHG and THG) 30
3.4 Tightly-focused epi-THG microscopy (TFETM) 33
3.5 Protective assembly for TFETM system 37
3.6 Imaging procedure 40
Chapter 4 Ex vivo Histology Validation 42
4.1 Ex vivo TFETM imaging in human skin sections of lower distal extremities 42
4.2 Immunocytochemistry (IHC) staining 43
4.3 Skin innervation of lower distal extremities tissue 44
4.4 Skin degeneration with post-fixed IHC staining 46
4.5 Ex vivo tightly-focused epi-THG microscopy (TFETM) imaging of human skin tissue 49
4.6 Ex vivo histology validation of human skin sections in lower distal extremities 52
Chapter 5 In vivo Small Animal Study 57
5.1 Spared nerve injury (SNI) small animal model 57
5.2 In vivo TFETM observation of nerve degeneration in wild-type mice following SNI 58
5.3 Methylene blue (MB) small animal model 61
5.4 In vivo TFETM observation in MB mice 63
Chapter 6 In vivo TFETM Imaging in Human Distal Skin and IENF Index 67
6.1 DPN patients and control subjects 67
6.2 Imaging acquisition area selection for clinical in vivo TFETM imaging 67
6.3 In vivo TFETM of lower distal extremities 71
6.4 Dot-connecting algorithm 72
6.5 Quantification analysis of IENF index 77
6.6 Calibration of IENF index 78
6.7 Statistical analysis 78
6.8 In vivo TFETM imaging in human distal skin and IENF index 79
Chapter 7 Summary 85
Reference 87
Appendix A 111
Appendix B 117
Appendix C 126
-
dc.language.isoen-
dc.subject神經受損動物模型zh_TW
dc.subject糖尿病周邊神經病變zh_TW
dc.subject周邊神經病變zh_TW
dc.subject非侵入式zh_TW
dc.subject三倍頻顯微術zh_TW
dc.subject皮膚神經活檢zh_TW
dc.subject表皮游離神經末梢纖維zh_TW
dc.subject亞甲基藍zh_TW
dc.subjectskin biopsyen
dc.subjectfree intraepidermal nerve endingsen
dc.subjectspared nerve injuryen
dc.subjectmethylene blueen
dc.subjectThird harmonic generationen
dc.subjectperipheral neuropathyen
dc.subjectdiabetic peripheral neuropathyen
dc.subjectnoninvasiveen
dc.title臨床三倍頻顯微術: 表皮游離神經末梢之光學虛擬切片zh_TW
dc.titleRealtime and Noninvasive Biopsy of Intraepidermal Free Nerve Endings via Tightly-focused Epi-THG Microscopical Imagingen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee孫維仁;廖怡華;謝松蒼;謝達斌zh_TW
dc.contributor.oralexamcommitteeWei-Zen Sun;Yi-Hua Liao;Sung-Tsang Hsieh;Dar-Bin Shiehen
dc.subject.keyword三倍頻顯微術,非侵入式,周邊神經病變,糖尿病周邊神經病變,皮膚神經活檢,亞甲基藍,神經受損動物模型,表皮游離神經末梢纖維,zh_TW
dc.subject.keywordThird harmonic generation,noninvasive,diabetic peripheral neuropathy,peripheral neuropathy,skin biopsy,methylene blue,spared nerve injury,free intraepidermal nerve endings,en
dc.relation.page129-
dc.identifier.doi10.6342/NTU202300204-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-02-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved