Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87409
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻zh_TW
dc.contributor.advisorCheng-Hung Wuen
dc.contributor.author邱郁雯zh_TW
dc.contributor.authorYu-Wen Chiuen
dc.date.accessioned2023-05-19T08:55:29Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-04-24-
dc.identifier.citationAmaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2017). Simulation optimization: A review of algorithms and applications. https://doi.org/10.48550/ARXIV.1706.08591
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Botev, Z. I., Kroese, D. P., Rubinstein, R. Y., & L’Ecuyer, P. (2013). The Cross-Entropy Method for Optimization. In Handbook of Statistics (Vol. 31, pp. 35–59). Elsevier. https://doi.org/10.1016/B978-0-444-53859-8.00003-5
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/BF00058655
Breiman, L. (2001). Random Forests-breiman. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Carson, Y., & Maria, A. (1997). Simulation optimization: Methods and applications. Proceedings of the 29th Conference on Winter Simulation - WSC ’97, 118–126. https://doi.org/10.1145/268437.268460
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. https://doi.org/10.48550/ARXIV.1603.02754
Chun-Hung Chen. (1995). An effective approach to smartly allocate computing budget for discrete event simulation. Proceedings of 1995 34th IEEE Conference on Decision and Control, 3, 2598–2603. https://doi.org/10.1109/CDC.1995.478499
Dash, M., Liu, H., & Yao, J. (1997). Dimensionality reduction of unsupervised data. 532–539. https://doi.org/10.1109/TAI.1997.632300
de Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A Tutorial on the Cross-Entropy Method. Annals of Operations Research, 134(1), 19–67. https://doi.org/10.1007/s10479-005-5724-z
Deng, G., & Ferris, M. C. (2007). Extension of the direct optimization algorithm for noisy functions. 2007 Winter Simulation Conference, 497–504. https://doi.org/10.1109/WSC.2007.4419640
Deng, X., Li, Y., Weng, J., & Zhang, J. (2019). Feature selection for text classification: A review. Multimedia Tools and Applications, 78(3), 3797–3816. https://doi.org/10.1007/s11042-018-6083-5
Devakumari, D., & Thangavel, K. (2010). Unsupervised adaptive floating search feature selection based on Contribution Entropy.
Dotoli, M., Fay, A., Miśkowicz, M., & Seatzu, C. (2017). Advanced control in factory automation: A survey. International Journal of Production Research, 55(5), 1243–1259. https://doi.org/10.1080/00207543.2016.1173259
Dutta, D., Dutta, P., & Sil, J. (2013). Simultaneous feature selection and clustering with mixed features by multi objective genetic algorithm. International Journal of Hybrid Intelligent Systems, 11(1), 41–54. https://doi.org/10.3233/HIS-130182
Et. al., J. A. (2021). Prediction of House Price Using XGBoost Regression Algorithm. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2). https://doi.org/10.17762/turcomat.v12i2.1870
Haber, R. E., del Toro, R. M., & Gajate, A. (2010). Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process. Information Sciences, 180(14), 2777–2792. https://doi.org/10.1016/j.ins.2010.03.030
Hanchuan Peng, Fuhui Long, & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159
He, B., & Bai, K.-J. (2021). Digital twin-based sustainable intelligent manufacturing: A review. Advances in Manufacturing, 9(1), 1–21. https://doi.org/10.1007/s40436-020-00302-5
He, X., Cai, D., & Niyogi, P. (2005). Laplacian score for feature selection. Advances in Neural Information Processing Systems, 18.
Jiang, M., Liu, J., Zhang, L., & Liu, C. (2020). An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Physica A: Statistical Mechanics and Its Applications, 541, 122272. https://doi.org/10.1016/j.physa.2019.122272
Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002
Kolda, T. G., Lewis, R. M., & Torczon, V. (2003). Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Review, 45(3), 385–482. https://doi.org/10.1137/S003614450242889
Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474
Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38–41. https://doi.org/10.1016/j.mfglet.2013.09.005
Li, Y., Zou, C., Berecibar, M., Nanini-Maury, E., Chan, J. C.-W., van den Bossche, P., Van Mierlo, J., & Omar, N. (2018). Random forest regression for online capacity estimation of lithium-ion batteries. Applied Energy, 232, 197–210. https://doi.org/10.1016/j.apenergy.2018.09.182
Liu, R., Yang, N., Ding, X., & Ma, L. (2009). An Unsupervised Feature Selection Algorithm: Laplacian Score Combined with Distance-Based Entropy Measure. 2009 Third International Symposium on Intelligent Information Technology Application, 65–68. https://doi.org/10.1109/IITA.2009.390
Lu, Y., Liu, C., Wang, K. I.-K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837. https://doi.org/10.1016/j.rcim.2019.101837
Mirzaei, A., Mohsenzadeh, Y., & Sheikhzadeh, H. (2017). Variational Relevant Sample-Feature Machine: A fully Bayesian approach for embedded feature selection. Neurocomputing, 241, 181–190. https://doi.org/10.1016/j.neucom.2017.02.057
Mitra, P., Murthy, C. A., & Pal, S. K. (2002). Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 301–312. https://doi.org/10.1109/34.990133
Motamedi, F., Pérez-Sánchez, H., Mehridehnavi, A., Fassihi, A., & Ghasemi, F. (2022). Accelerating Big Data Analysis through LASSO-Random Forest Algorithm in QSAR Studies. Bioinformatics, 38(2), 469–475. https://doi.org/10.1093/bioinformatics/btab659
Ogunleye, A., & Wang, Q.-G. (2020). XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(6), 2131–2140. https://doi.org/10.1109/TCBB.2019.2911071
Osorio, C., & Bierlaire, M. (2013). A Simulation-Based Optimization Framework for Urban Transportation Problems. Operations Research, 61(6), 1333–1345. https://doi.org/10.1287/opre.2013.1226
Pan, B. (2018). Application of XGBoost algorithm in hourly PM2.5 concentration prediction. IOP Conference Series: Earth and Environmental Science, 113, 012127. https://doi.org/10.1088/1755-1315/113/1/012127
Pavlyuk, D. (2019). Feature selection and extraction in spatiotemporal traffic forecasting: A systematic literature review. European Transport Research Review, 11(1), 6. https://doi.org/10.1186/s12544-019-0345-9
Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O’Sullivan, J. M. (2022). A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Frontiers in Bioinformatics, 2, 927312. https://doi.org/10.3389/fbinf.2022.927312
Qi, M., Wang, T., Liu, F., Zhang, B., Wang, J., & Yi, Y. (2018). Unsupervised feature selection by regularized matrix factorization. Neurocomputing, 273, 593–610. https://doi.org/10.1016/j.neucom.2017.08.047
Ribeiro, M. H. D. M., & dos Santos Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Applied Soft Computing, 86, 105837. https://doi.org/10.1016/j.asoc.2019.105837
Rosen, R., von Wichert, G., Lo, G., & Bettenhausen, K. D. (2015). About The Importance of Autonomy and Digital Twins for the Future of Manufacturing. IFAC-PapersOnLine, 48(3), 567–572. https://doi.org/10.1016/j.ifacol.2015.06.141
Sancibrian, R., Viadero, F., Garcı́a, P., & Fernández, A. (2004). Gradient-based optimization of path synthesis problems in planar mechanisms. Mechanism and Machine Theory, 39(8), 839–856. https://doi.org/10.1016/j.mechmachtheory.2004.02.012
Semeraro, C., Lezoche, M., Panetto, H., & Dassisti, M. (2021). Digital twin paradigm: A systematic literature review. Computers in Industry, 130, 103469. https://doi.org/10.1016/j.compind.2021.103469
Shehadeh, A., Alshboul, O., Al Mamlook, R. E., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827. https://doi.org/10.1016/j.autcon.2021.103827
Shin, K.-S., & Lee, Y.-J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321–328. https://doi.org/10.1016/S0957-4174(02)00051-9
Solorio-Fernández, S., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. Fco. (2016). A new hybrid filter–wrapper feature selection method for clustering based on ranking. Neurocomputing, 214, 866–880. https://doi.org/10.1016/j.neucom.2016.07.026
Solorio-Fernández, S., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. Fco. (2020). A review of unsupervised feature selection methods. Artificial Intelligence Review, 53(2), 907–948. https://doi.org/10.1007/s10462-019-09682-y
Suzuki, Y., Suzuki, A., Nakamura, S., Ishikawa, T., & Kinoshita, A. (2020). Machine learning model estimating number of COVID-19 infection cases over coming 24 days in every province of South Korea (XGBoost and MultiOutputRegressor) [Preprint]. Infectious Diseases (except HIV/AIDS). https://doi.org/10.1101/2020.05.10.20097527
Tabakhi, S., Moradi, P., & Akhlaghian, F. (2014). An unsupervised feature selection algorithm based on ant colony optimization. Engineering Applications of Artificial Intelligence, 32, 112–123. https://doi.org/10.1016/j.engappai.2014.03.007
Tuegel, E. J., Ingraffea, A. R., Eason, T. G., & Spottswood, S. M. (2011). Reengineering Aircraft Structural Life Prediction Using a Digital Twin. International Journal of Aerospace Engineering, 2011, 1–14. https://doi.org/10.1155/2011/154798
Varshavsky, R., Gottlieb, A., Linial, M., & Horn, D. (2006). Novel Unsupervised Feature Filtering of Biological Data. Bioinformatics, 22(14), e507–e513. https://doi.org/10.1093/bioinformatics/btl214
Venkatesh, B., & Anuradha, J. (2019). A Review of Feature Selection and Its Methods. Cybernetics and Information Technologies, 19(1), 3–26. https://doi.org/10.2478/cait-2019-0001
Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests. Journal of Manufacturing Science and Engineering, 139(7), 071018. https://doi.org/10.1115/1.4036350
Xu, J., Huang, E., Hsieh, L., Lee, L. H., Jia, Q.-S., & Chen, C.-H. (2016). Simulation optimization in the era of Industrial 4.0 and the Industrial Internet. Journal of Simulation, 10(4), 310–320. https://doi.org/10.1057/s41273-016-0037-6
Yu, K., Lu, Z., & Stander, J. (2003). Quantile regression: Applications and current research areas. Journal of the Royal Statistical Society: Series D (The Statistician), 52(3), 331–350. https://doi.org/10.1111/1467-9884.00363
Zechao Li, Jing Liu, Yi Yang, Xiaofang Zhou, & Hanqing Lu. (2014). Clustering-Guided Sparse Structural Learning for Unsupervised Feature Selection. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2138–2150. https://doi.org/10.1109/TKDE.2013.65
廖心平(Hsin-Ping Liao). (2022). 利用循環神經網路之製程預測控制最佳化. 國立台灣大學學位論文.
沈子暄. (2020). 機器學習與模擬最佳化之製程控制-以鋼鐵業為例. 國立台灣大學學位論文.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87409-
dc.description.abstract本研究以數位孿生為基礎結合模擬最佳化模型,利用實際系統所收集之資料建立一虛擬軋機。由於影響軋延製程因子過於複雜,無法以物理或數學模型所建構,因此本研究以機器學習模型模擬軋延製程之方式。運用模擬系統之結果,結合模擬最佳化模型計算最佳參數。
目前軋延製程之目標板形設定多由經驗法則所訂定,尚未有一系統性的方式設定。而且,目前製程之控制參數變動幅度較大,與最適控制參數差距變化大,使油壓輥作動幅度大。為能夠以數值方式解決上述問題,本研究提供一結構化的模型計算最佳目標設定參數。以虛擬軋機結合模擬最佳化之模型,模擬不同目標設定參數計算目標板形後,使得最佳控制參數與最適控制參數差距最小,以提升整體製程品質。
本研究將整體架構分為四個模組,首先,以一目標設定參數計算目標板形,模組一建立XGBoost模型預測在不同目標時其出口板形分位數,了解冷軋機在目標板形與出口板形之關係。模組二接續模組一之輸出,利用結合LASSO與Random Forest之模型,透過前一道次出口板形之分位數預測下一道次入口板形之分位數,精準地預測出口和入口關係。模組三接續模組二之輸出,以代表性入口板形和其他機台參數輸入至虛擬軋機,此虛擬軋機為XGBoost模型建立,可以精準地模擬軋延結果,結合模擬最佳化模型,以Cross-Entropy演算法計算在軋延限制下最佳之控制參數,使得出口板形貼近目標板形。模組四結合模組一至模組三,建立一模擬最佳化模型,以Cross-Entropy演算法最佳化目標設定參數,透過模組三所計算之最佳控制參數與最適之控制參數差距,不斷地調整目標設定參數,放入模組一繼續後續實驗,直到找到最佳目標設定參數。利用本研究之四個模組能夠最佳化控制方法,改善整體製程品質並實現智慧製造。
zh_TW
dc.description.abstractThis research combines the concept of Digital Twin and Simulation Optimization. We build a virtual rolling mill system with data collected from an actual system. Due to the complexity of factors affecting the rolling process, it is too hard to simulate a virtual rolling machine by a physical or a mathematical model. Therefore, we establish a machine learning model to simulate the process of rolling mill in this research.
The predicted results from virtual rolling machine are combined with the simulation optimization model to calculate the optimal control parameters.
Currently, the target shape setting in the rolling process is mostly based on empirical rules, and there is no systematic way to set it. In addition, the difference between control parameters in the process and suitable control parameters is significant, leading to large fluctuations in the rolling process. To solve these problems above, we establish a structured model to calculate the optimal target setting.
The study divides the overall structure into four modules. The first module calculates the target shape using target setting parameters. After simulating target shape, we build XGBoost model to predict exit shapezone quantile with different target shapes. The second module predicts the entry shapezone quantile based on the output of the first module using a model that combines LASSO and Random Forest model. The third module simulates the rolling process using a virtual rolling mill constructed by an XGBoost model and combines a simulation optimization model to calculate the optimal control parameters. The fourth module combines the three modules above to establish a simulation optimization model and optimize the target setting parameters using the Cross-Entropy algorithm until the optimal target setting parameters are found. By using these four modules, this study optimizes the target setting method, improves the process quality and realizes smart manufacturing.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-19T08:55:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-19T08:55:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
Chapter 1 前言 1
1.1 研究背景與動機 2
1.2 研究目的 6
1.3 研究方法與流程 7
Chapter 2 文獻回顧 13
2.1 特徵選取方式與應用 13
2.2 數位孿生於製程應用 18
2.3 模擬最佳化製程 19
2.4 集成學習方法與應用 23
2.5 小結 26
Chapter 3 模組一:目標板形與出口板形分位數預測 27
3.1 資料整理與模型之數學符號定義 28
3.2 模組建立 34
Chapter 4 模組二:前一道次出口板形與下一道次入口板形之關係 39
4.1 資料整理與模型之數學符號定義 40
4.2 模組建立 41
Chapter 5 模組三:模擬最佳化控制參數 50
5.1 資料整理與模型輸入參數 51
5.2 模組建立 55
Chapter 6 模組四:模擬最佳化目標板形設定參數 62
6.1 目標板形設定方式 63
6.2 模組建立 64
Chapter 7 結論與未來研究方向 70
7.1 結論 70
7.2 未來研究方向 71
參考文獻 72
附錄 82
-
dc.language.isozh_TW-
dc.title製程目標之數位孿生最佳化初探zh_TW
dc.titlePreliminary Study on Process Target Control by Digital Twin Optimizationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳文智;莊雅棠;張浩元zh_TW
dc.contributor.oralexamcommitteeWen-Chih Chen;Ya-Tang Chuang;Hao-Yuan Changen
dc.subject.keyword數位孿生,模擬最佳化,特徵選取,集成學習,zh_TW
dc.subject.keywordDigital Twin,Simulation Optimization,Feature Selection,Ensemble Learning,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202300736-
dc.rights.note未授權-
dc.date.accepted2023-04-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
4.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved