請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87382
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊偉勛 | zh_TW |
dc.contributor.advisor | Wei-Shiung Yang | en |
dc.contributor.author | 李貞慧 | zh_TW |
dc.contributor.author | Chen-Hui Lee | en |
dc.date.accessioned | 2023-05-19T08:45:37Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-03-31 | - |
dc.identifier.citation | 1. Furlan, A., et al., Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science, 2017. 357(6346).
2. Kameneva, P., et al., Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet, 2021. 53(5): p. 694-706. 3. Mete, O., et al., Overview of the 2022 WHO Classification of Paragangliomas and Pheochromocytomas. Endocr Pathol, 2022. 33(1): p. 90-114. 4. Lenders, J.W., et al., Phaeochromocytoma. Lancet, 2005. 366(9486): p. 665-75. 5. Favier, J., L. Amar, and A.P. Gimenez-Roqueplo, Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol, 2015. 11(2): p. 101-11. 6. Dahia, P.L., Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer, 2014. 14(2): p. 108-19. 7. Piccini, V., et al., Head and neck paragangliomas: genetic spectrum and clinical variability in 79 consecutive patients. Endocr Relat Cancer, 2012. 19(2): p. 149-55. 8. Lloyd RV, O.R., Klöppel G, Rosai J, WHO Classification of Tumours, 4th Edition, Volume 10. WHO Classification of Tumours of Endocrine Organs, 2017. 9. Krijger, R.R.d., Tumours of the adrenal medulla and extra-adrenal paraganglia. Endocrine and Neuroendocrine Tumours (5th ed.), 2022. 10. Jimenez, C., et al., Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr Oncol Rep, 2013. 15(4): p. 356-71. 11. Bravo, E.L. and R. Tagle, Pheochromocytoma: state-of-the-art and future prospects. Endocr Rev, 2003. 24(4): p. 539-53. 12. Bílek, R., et al., Chromogranin A, a member of neuroendocrine secretory proteins as a selective marker for laboratory diagnosis of pheochromocytoma. Physiol Res, 2008. 57 Suppl 1: p. S171-s179. 13. Choi Jdo, W., et al., Hereditary paraganglioma-pheochromocytoma syndromes associated with SDHD and RET mutations. Head Neck, 2014. 36(10): p. E99-e102. 14. Thompson, L.D.R., et al., Data set for the reporting of pheochromocytoma and paraganglioma: explanations and recommendations of the guidelines from the International Collaboration on Cancer Reporting. Hum Pathol, 2021. 110: p. 83-97. 15. Nölting, S., A. Grossman, and K. Pacak, Metastatic Phaeochromocytoma: Spinning Towards More Promising Treatment Options. Exp Clin Endocrinol Diabetes, 2019. 127(2-03): p. 117-128. 16. Aygun, N. and M. Uludag, Pheochromocytoma and Paraganglioma: From Epidemiology to Clinical Findings. Sisli Etfal Hastan Tip Bul, 2020. 54(2): p. 159-168. 17. Crona, J., D. Taïeb, and K. Pacak, New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification. Endocr Rev, 2017. 38(6): p. 489-515. 18. Lee, J.A., et al., Adrenal incidentaloma, borderline elevations of urine or plasma metanephrine levels, and the "subclinical" pheochromocytoma. Arch Surg, 2007. 142(9): p. 870-3; discussion 73-4. 19. Havekes, B., et al., Update on pediatric pheochromocytoma. Pediatr Nephrol, 2009. 24(5): p. 943-50. 20. Khorram-Manesh, A., et al., Mortality associated with pheochromocytoma in a large Swedish cohort. Eur J Surg Oncol, 2004. 30(5): p. 556-9. 21. Prejbisz, A., et al., Cardiovascular manifestations of phaeochromocytoma. J Hypertens, 2011. 29(11): p. 2049-60. 22. Zelinka, T., et al., High incidence of cardiovascular complications in pheochromocytoma. Horm Metab Res, 2012. 44(5): p. 379-84. 23. Stolk, R.F., et al., Is the excess cardiovascular morbidity in pheochromocytoma related to blood pressure or to catecholamines? J Clin Endocrinol Metab, 2013. 98(3): p. 1100-6. 24. Plouin, P.F., et al., Factors associated with perioperative morbidity and mortality in patients with pheochromocytoma: analysis of 165 operations at a single center. J Clin Endocrinol Metab, 2001. 86(4): p. 1480-6. 25. Eisenhofer, G., et al., Pheochromocytoma: rediscovery as a catecholamine-metabolizing tumor. Endocr Pathol, 2003. 14(3): p. 193-212. 26. Timmers, H.J., et al., Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene. J Clin Endocrinol Metab, 2008. 93(12): p. 4826-32. 27. Constantinescu, G., et al., Silent pheochromocytoma and paraganglioma: Systematic review and proposed definitions for standardized terminology. Front Endocrinol (Lausanne), 2022. 13: p. 1021420. 28. Chen, H., et al., The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas, 2010. 39(6): p. 775-83. 29. Kiernan, C.M. and C.C. Solórzano, Pheochromocytoma and Paraganglioma: Diagnosis, Genetics, and Treatment. Surg Oncol Clin N Am, 2016. 25(1): p. 119-38. 30. Omura, M., et al., Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res, 2004. 27(3): p. 193-202. 31. Kantorovich, V. and K. Pacak, Pheochromocytoma and paraganglioma. Prog Brain Res, 2010. 182: p. 343-73. 32. Bholah, R. and T.E. Bunchman, Review of Pediatric Pheochromocytoma and Paraganglioma. Front Pediatr, 2017. 5: p. 155. 33. Ebbehoj, A., et al., Incidence and Clinical Presentation of Pheochromocytoma and Sympathetic Paraganglioma: A Population-based Study. J Clin Endocrinol Metab, 2021. 106(5): p. e2251-e2261. 34. Kopetschke, R., et al., Frequent incidental discovery of phaeochromocytoma: data from a German cohort of 201 phaeochromocytoma. Eur J Endocrinol, 2009. 161(2): p. 355-61. 35. Berends, A.M.A., et al., Incidence of pheochromocytoma and sympathetic paraganglioma in the Netherlands: A nationwide study and systematic review. Eur J Intern Med, 2018. 51: p. 68-73. 36. Lenders, J.W., et al., Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab, 2014. 99(6): p. 1915-42. 37. Katabathina, V.S., et al., Genetics and imaging of pheochromocytomas and paragangliomas: current update. Abdom Radiol (NY), 2020. 45(4): p. 928-944. 38. Gimenez-Roqueplo, A.P., P.L. Dahia, and M. Robledo, An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res, 2012. 44(5): p. 328-33. 39. Neumann, H.P., et al., Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med, 2002. 346(19): p. 1459-66. 40. Weinhäusel, A., et al., Long-term follow up of a "sporadic" unilateral pheochromocytoma revealing multiple endocrine neoplasia MEN2A-2 in an elderly woman. Endocr Pathol, 2003. 14(4): p. 375-82. 41. William F Young, J., MD, MSc, Pheochromocytoma in genetic disorders. UpToDate, 2020. 42. Buffet, A., et al., An overview of 20 years of genetic studies in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab, 2020. 34(2): p. 101416. 43. Burnichon, N., et al., Risk assessment of maternally inherited SDHD paraganglioma and phaeochromocytoma. J Med Genet, 2017. 54(2): p. 125-133. 44. Neumann, H.P.H., W.F. Young, Jr., and C. Eng, Pheochromocytoma and Paraganglioma. N Engl J Med, 2019. 381(6): p. 552-565. 45. Abecasis, G.R., et al., An integrated map of genetic variation from 1,092 human genomes. Nature, 2012. 491(7422): p. 56-65. 46. Abecasis, G.R., et al., A map of human genome variation from population-scale sequencing. Nature, 2010. 467(7319): p. 1061-73. 47. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921. 48. Finishing the euchromatic sequence of the human genome. Nature, 2004. 431(7011): p. 931-45. 49. Aganezov, S., et al., A complete reference genome improves analysis of human genetic variation. Science, 2022. 376(6588): p. eabl3533. 50. West, H.J., Novel Precision Medicine Trial Designs: Umbrellas and Baskets. JAMA Oncol, 2017. 3(3): p. 423. 51. Castro-Vega, L.J., et al., Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene, 2016. 35(9): p. 1080-9. 52. Laitman, Y., et al., Germline variant in REXO2 is a novel candidate gene in familial pheochromocytoma. Genet Res (Camb), 2020. 102: p. e3. 53. Fishbein, L., et al., Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 2017. 31(2): p. 181-193. 54. Remacha, L., et al., Recurrent Germline DLST Mutations in Individuals with Multiple Pheochromocytomas and Paragangliomas. Am J Hum Genet, 2019. 104(4): p. 651-664. 55. Buffet, A., et al., Germline DLST Variants Promote Epigenetic Modifications in Pheochromocytoma-Paraganglioma. J Clin Endocrinol Metab, 2021. 106(2): p. 459-471. 56. Asa, S.L., S. Ezzat, and O. Mete, The Diagnosis and Clinical Significance of Paragangliomas in Unusual Locations. J Clin Med, 2018. 7(9). 57. Björklund, P. and S. Backman, Epigenetics of pheochromocytoma and paraganglioma. Mol Cell Endocrinol, 2018. 469: p. 92-97. 58. Hernandez, K.G., et al., Familial pheochromocytoma and renal cell carcinoma syndrome: TMEM127 as a novel candidate gene for the association. Virchows Arch, 2015. 466(6): p. 727-32. 59. Chou, Y.-T., Identifying Causative Genetic Variants of Pheochromocytoma and Paraganglioma by Next-Generation Sequencing (NGS) in Taiwan. 2019. 60. Oldfield, L.E., et al., VHL mosaicism: the added value of multi-tissue analysis. NPJ Genom Med, 2022. 7(1): p. 21. 61. Coppin, L., et al., VHL mosaicism can be detected by clinical next-generation sequencing and is not restricted to patients with a mild phenotype. Eur J Hum Genet, 2014. 22(9): p. 1149-52. 62. Cardot-Bauters, C., et al., A Full Phenotype of Paraganglioma Linked to a Germline SDHB Mosaic Mutation. J Clin Endocrinol Metab, 2019. 104(8): p. 3362-3366. 63. Dou, Y., et al., Detecting Somatic Mutations in Normal Cells. Trends Genet, 2018. 34(7): p. 545-557. 64. Aluri, J. and M.A. Cooper, Genetic Mosaicism as a Cause of Inborn Errors of Immunity. J Clin Immunol, 2021. 41(4): p. 718-728. 65. MedlinePlus, https://medlineplus.gov/ency/article/001317.htm. 66. De Rycke, M. and V. Berckmoes, Preimplantation Genetic Testing for Monogenic Disorders. Genes (Basel), 2020. 11(8). 67. 賴建亦、李妮鍾, 為什麼要做基因定序?. 臺大醫院健康電子報, 2022(177). 68. Rehm, H.L., et al., ACMG clinical laboratory standards for next-generation sequencing. Genet Med, 2013. 15(9): p. 733-47. 69. Information, N.C.f.B., https://www.ncbi.nlm.nih.gov/gene/. 70. Buffet, A., et al., Germline Mutations in the Mitochondrial 2-Oxoglutarate/Malate Carrier SLC25A11 Gene Confer a Predisposition to Metastatic Paragangliomas. Cancer Res, 2018. 78(8): p. 1914-1922. 71. Remacha, L., et al., Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genet Med, 2018. 20(12): p. 1644-1651. 72. Seymour, C., FDA Approves First IHC Companion Diagnostic for Mirvetuximab Soravtansine in Ovarian Cancer. 2022. 73. Papathomas, T.G., et al., SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol, 2015. 28(6): p. 807-21. 74. Pitsava, G., et al., Carney Triad, Carney-Stratakis Syndrome, 3PAS and Other Tumors Due to SDH Deficiency. Front Endocrinol (Lausanne), 2021. 12: p. 680609. 75. Team, G., Mutect2. https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2, December 05, 2019. 76. physician-scientists, t.c.e.o.M.S.K.M.p.a., OncoKB®, the first somatic tumor mutation database to be recognized by the FDA. https://www.oncokb.org/. 77. Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med, 2015. 17(5): p. 405-24. 78. P., M., Immunohistochemistry--Basic Science Techniques in Clinical Practice. Springer London,, 2007: p. 18-30. 79. Immunohistochemistry guide. https://www.creative-diagnostics.com/Immunohistochemistry-guide.htm. 80. Thorson, J.A. and S.S. Murray, Library Preparation Using FFPE-Derived Tumor DNA for High-Throughput Hybridization-Based Targeted or Exome Sequencing. Methods Mol Biol, 2019. 1908: p. 19-36. 81. 博士後研究員, 吳., 淺談低濃度樣本之次世代定序選擇. 共 同 研 究 室 電 子 報 2019. 82. Potluri, K., et al., Genomic DNA extraction methods using formalin-fixed paraffin-embedded tissue. Anal Biochem, 2015. 486: p. 17-23. 83. 吳侑靜博士/陳家怡研究助理, Covaris聲能聚焦技術之運用. 共 同 研 究 室 電 子 報 2018. 51. 84. Beads, t.F.t.N.t.P.K.-M., Adaptive Focused Acoustics® (AFA® )-based Sequential RNA and DNA Extraction from FFPE Tissues using Magnetic Bead-based Purification. Part Number: 010451 Rev F, November 2019. 85. 威建生技, 日本病理學會NGS QC標準化系列 - FFPE 樣品選擇與定序靈敏度. https://welgene.blogspot.com/2020/10/ngs-qc-ffpe.html. 86. Sheet, T.D., KAPA Hyperprep Kit. KAPABIOSYSTEMS, KR0961 – v7.19. 87. Sheet, T.D., KAPA HyperPlus Kit. KAPABIOSYSTEMS, KR1145 – v8.21. 88. Sun, S. and S.S. Murray, Bioinformatics Basics for High-Throughput Hybridization-Based Targeted DNA Sequencing from FFPE-Derived Tumor Specimens: From Reads to Variants. Methods Mol Biol, 2019. 1908: p. 37-48. 89. Sun, S., J.A. Thorson, and S.S. Murray, Annotation of Variant Data from High-Throughput DNA Sequencing from Tumor Specimens: Filtering Strategies to Identify Driver Mutations. Methods Mol Biol, 2019. 1908: p. 49-60. 90. https://www.youtube.com/watch?v=_2BUKi96PTk https://www.illumina.com/. 91. Cibulskis, K., et al., Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol, 2013. 31(3): p. 213-9. 92. DePristo, M.A., et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet, 2011. 43(5): p. 491-8. 93. Vohra, S. and P.C. Biggin, Mutationmapper: a tool to aid the mapping of protein mutation data. PLoS One, 2013. 8(8): p. e71711. 94. MutationMapper, cBioPortal for Cancer Genomics. https://www.cbioportal.org/mutation_mapper. 95. Toledo, R.A., et al., Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat Rev Endocrinol, 2017. 13(4): p. 233-247. 96. Bourgon, R., et al., High-throughput detection of clinically relevant mutations in archived tumor samples by multiplexed PCR and next-generation sequencing. Clin Cancer Res, 2014. 20(8): p. 2080-91. 97. Do, H. and A. Dobrovic, Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase. Oncotarget, 2012. 3(5): p. 546-58. 98. Chen, G., et al., Cytosine deamination is a major cause of baseline noise in next-generation sequencing. Mol Diagn Ther, 2014. 18(5): p. 587-93. 99. Chen, L., et al., DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science, 2017. 355(6326): p. 752-756. 100. Serizawa, M., et al., The efficacy of uracil DNA glycosylase pretreatment in amplicon-based massively parallel sequencing with DNA extracted from archived formalin-fixed paraffin-embedded esophageal cancer tissues. Cancer Genet, 2015. 208(9): p. 415-27. 101. Do, H. and A. Dobrovic, Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem, 2015. 61(1): p. 64-71. 102. Kim, S., et al., Deamination Effects in Formalin-Fixed, Paraffin-Embedded Tissue Samples in the Era of Precision Medicine. J Mol Diagn, 2017. 19(1): p. 137-146. 103. Do, H., et al., Reducing sequence artifacts in amplicon-based massively parallel sequencing of formalin-fixed paraffin-embedded DNA by enzymatic depletion of uracil-containing templates. Clin Chem, 2013. 59(9): p. 1376-83. 104. Kanai, Y., et al., The Japanese Society of Pathology Guidelines on the handling of pathological tissue samples for genomic research: Standard operating procedures based on empirical analyses. Pathol Int, 2018. 68(2): p. 63-90. 105. Marcus Gassmann Agilent Technologies, W., Germany and I.E. Barry McHoull Agilent Technologies, UK, DNA Integrity Number (DIN) with the Agilent 2200 TapeStation System and the Agilent Genomic DNA ScreenTape Assay. Agilent Technologies. 106. Grizzle, W.E., et al., Effects of Cold Ischemia on Gene Expression: A Review and Commentary. Biopreserv Biobank, 2016. 14(6): p. 548-558. 107. Guo, D., et al., Effects of ex vivo ischemia time and delayed processing on quality of specimens in tissue biobank. Mol Med Rep, 2020. 22(5): p. 4278-4288. 108. Brown., T.A., Chapter 1The Human Genome. Genomes, 2002. NCBI. 109. Provenzano, A., et al., Novel Germline PHD2 Variant in a Metastatic Pheochromocytoma and Chronic Myeloid Leukemia, but in the Absence of Polycythemia. Medicina (Kaunas), 2022. 58(8). 110. Singh, R.R., Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology. Diagnostics (Basel), 2022. 12(7). 111. Funke, S.S.A.a.B., Targeted Hybrid Capture for Inherited Disease Panels. Clinical Genomics, 2015. Chapter 16. 112. Platt, C.D., et al., Efficacy and economics of targeted panel versus whole-exome sequencing in 878 patients with suspected primary immunodeficiency. J Allergy Clin Immunol, 2021. 147(2): p. 723-726. 113. Majewski, J., et al., What can exome sequencing do for you? J Med Genet, 2011. 48(9): p. 580-9. 114. LaDuca, H., et al., Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels. PLoS One, 2017. 12(2): p. e0170843. 115. Institute, N.C., NCI dictionary of genetics terms. https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/somatic-variant. 116. Martincorena, I. and P.J. Campbell, Somatic mutation in cancer and normal cells. Science, 2015. 349(6255): p. 1483-9. 117. Pujol, P., et al., Clinical practice guidelines for BRCA1 and BRCA2 genetic testing. Eur J Cancer, 2021. 146: p. 30-47. 118. Luckett, W.P., Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat, 1978. 152(1): p. 59-97. 119. Kehrer-Sawatzki, H. and D.N. Cooper, Mosaicism in sporadic neurofibromatosis type 1: variations on a theme common to other hereditary cancer syndromes? J Med Genet, 2008. 45(10): p. 622-31. 120. Ronald J Trent PhD, B.M., MBBS (Sydney), DPhil (Oxon), FRACP, FRCPA, FFSc, FTSE, Chapter 2 - Genes, Environment and Inheritance. Molecular Medicine 2012. Fourth Edition: p. 20 (mosaicism). 121. Solís-Moruno, M., et al., Somatic genetic variation in healthy tissue and non-cancer diseases. Eur J Hum Genet, 2023. 31(1): p. 48-54. 122. Muyas, F., et al., The rate and spectrum of mosaic mutations during embryogenesis revealed by RNA sequencing of 49 tissues. Genome Med, 2020. 12(1): p. 49. 123. Jonsson, H., et al., Differences between germline genomes of monozygotic twins. Nat Genet, 2021. 53(1): p. 27-34. 124. Verhoef, S., et al., High rate of mosaicism in tuberous sclerosis complex. Am J Hum Genet, 1999. 64(6): p. 1632-7. 125. Pareja, F., et al., Cancer-Causative Mutations Occurring in Early Embryogenesis. Cancer Discov, 2022. 12(4): p. 949-957. 126. Jaber, N., Embryos in the Womb Can Get Gene Mutations That Lead to Cancer in Adulthood. https://www.cancer.gov/news-events/cancer-currents-blog/2022/cancer-mosaic-mutations-embryo, 2022. 127. Buffet, A., et al., Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome. J Clin Endocrinol Metab, 2014. 99(2): p. E369-73. 128. Beijers, H., et al., Germline and somatic mosaicism in a family with multiple endocrine neoplasia type 1 (MEN1) syndrome. Eur J Endocrinol, 2019. 180(2): p. K15-k19. 129. Flores, S.K., et al., Insights into Mechanisms of Pheochromocytomas and Paragangliomas Driven by Known or New Genetic Drivers. Cancers (Basel), 2021. 13(18). 130. Toledo, R.A., et al., Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res, 2016. 22(9): p. 2301-10. 131. Casey, R., H.P.H. Neumann, and E.R. Maher, Genetic stratification of inherited and sporadic phaeochromocytoma and paraganglioma: implications for precision medicine. Hum Mol Genet, 2020. 29(R2): p. R128-r137. 132. Ladroue, C., et al., PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med, 2008. 359(25): p. 2685-92. 133. Yeh, I.T., et al., A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet, 2008. 124(3): p. 279-85. 134. Nezu, M., et al., A case of juvenile-onset pheochromocytoma with KIF1B p.V1529M germline mutation. Endocr J, 2022. 69(6): p. 705-716. 135. Toledo, R.A., Genetics of Pheochromocytomas and Paragangliomas: An Overview on the Recently Implicated Genes MERTK, MET, Fibroblast Growth Factor Receptor 1, and H3F3A. Endocrinol Metab Clin North Am, 2017. 46(2): p. 459-489. 136. Sarkadi, B., et al., Genetics of Pheochromocytomas and Paragangliomas Determine the Therapeutical Approach. Int J Mol Sci, 2022. 23(3). 137. Suh, Y.J., J.Y. Choe, and H.J. Park, Malignancy in Pheochromocytoma or Paraganglioma: Integrative Analysis of 176 Cases in TCGA. Endocr Pathol, 2017. 28(2): p. 159-164. 138. Ben Aim, L., et al., Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J Med Genet, 2019. 56(8): p. 513-520. 139. Gniado, E., C.P. Carracher, and S. Sharma, Simultaneous Occurrence of Germline Mutations of SDHB and TP53 in a Patient with Metastatic Pheochromocytoma. J Clin Endocrinol Metab, 2020. 105(4). 140. Alzofon, N., et al., Mastermind Like Transcriptional Coactivator 3 (MAML3) Drives Neuroendocrine Tumor Progression. Mol Cancer Res, 2021. 19(9): p. 1476-1485. 141. Fishbein, L., et al., Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat Commun, 2015. 6: p. 6140. 142. Job, S., et al., Telomerase Activation and ATRX Mutations Are Independent Risk Factors for Metastatic Pheochromocytoma and Paraganglioma. Clin Cancer Res, 2019. 25(2): p. 760-770. 143. Scheffzek, K., et al., The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science, 1997. 277(5324): p. 333-8. 144. OncoKB, An FDA-Recognized Human Genetic Variant Database Memorial Sloan Kettering Cancer Center. 145. Luchetti, A., et al., Profiling of somatic mutations in phaeochromocytoma and paraganglioma by targeted next generation sequencing analysis. Int J Endocrinol, 2015. 2015: p. 138573. 146. Nölting, S., et al., Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev, 2022. 43(2): p. 199-239. 147. Settas, N., F.R. Faucz, and C.A. Stratakis, Succinate dehydrogenase (SDH) deficiency, Carney triad and the epigenome. Mol Cell Endocrinol, 2018. 469: p. 107-111. 148. Ward, P.S., et al., The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell, 2010. 17(3): p. 225-34. 149. Comino-Méndez, I., et al., Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet, 2013. 22(11): p. 2169-76. 150. Eng, C., et al., The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. Jama, 1996. 276(19): p. 1575-9. 151. Moline, J. and C. Eng, Multiple endocrine neoplasia type 2: an overview. Genet Med, 2011. 13(9): p. 755-64. 152. Mercedes Robledo, M.C.-F., Alberto Cascón, Molecular Genetics of Pheochromocytoma and Paraganglioma. Book_Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors, 2017. 153. Dvorakova, S., et al., Exon 5 of the RET proto-oncogene: a newly detected risk exon for familial medullary thyroid carcinoma, a novel germ-line mutation Gly321Arg. J Endocrinol Invest, 2005. 28(10): p. 905-9. 154. Castellone, M.D., et al., A novel de novo germ-line V292M mutation in the extracellular region of RET in a patient with phaeochromocytoma and medullary thyroid carcinoma: functional characterization. Clin Endocrinol (Oxf), 2010. 73(4): p. 529-34. 155. Brandi, M.L., et al., Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab, 2001. 86(12): p. 5658-71. 156. Wells, S.A., Jr., et al., Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid, 2015. 25(6): p. 567-610. 157. Yang, Z., et al., The synergy of germline C634Y and V292M RET mutations in a northern Chinese family with multiple endocrine neoplasia type 2A. J Cell Mol Med, 2020. 24(22): p. 13163-13170. 158. Whitworth, J., et al., Multilocus Inherited Neoplasia Alleles Syndrome: A Case Series and Review. JAMA Oncol, 2016. 2(3): p. 373-9. 159. McGuigan, A., et al., Multilocus Inherited Neoplasia Allele Syndrome (MINAS): an update. Eur J Hum Genet, 2022. 30(3): p. 265-270. 160. Juhlin, C.C., et al., Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes Cancer, 2015. 54(9): p. 542-54. 161. Guo, C., et al., KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget, 2013. 4(11): p. 2144-53. 162. Kim, J.H., et al., UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res, 2014. 74(6): p. 1705-17. 163. Badenhop, R.F., et al., Novel mutations in the SDHD gene in pedigrees with familial carotid body paraganglioma and sensorineural hearing loss. Genes Chromosomes Cancer, 2001. 31(3): p. 255-63. 164. Bender, B.U., et al., Differential genetic alterations in von Hippel-Lindau syndrome-associated and sporadic pheochromocytomas. J Clin Endocrinol Metab, 2000. 85(12): p. 4568-74. 165. Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 1971. 68(4): p. 820-3. 166. Takahashi, K.K. and H. Innan, Frequent somatic gene conversion as a mechanism for loss of heterozygosity in tumor suppressor genes. Genome Res, 2022. 32(6): p. 1017-1025. 167. Anno, M., et al., Retroperitoneal paraganglioma with loss of heterozygosity of the von Hippel-Lindau gene: a case report and review of the literature. Endocr J, 2022. 69(9): p. 1137-1147. 168. Remacha, L., et al., Targeted Exome Sequencing of Krebs Cycle Genes Reveals Candidate Cancer-Predisposing Mutations in Pheochromocytomas and Paragangliomas. Clin Cancer Res, 2017. 23(20): p. 6315-6324. 169. Sun, F., et al., Crystal structure of mitochondrial respiratory membrane protein complex II. Cell, 2005. 121(7): p. 1043-57. 170. Papathomas, T.G., et al., Telomerase reverse transcriptase promoter mutations in tumors originating from the adrenal gland and extra-adrenal paraganglia. Endocr Relat Cancer, 2014. 21(4): p. 653-61. 171. Peczkowska, M., et al., Impact of screening kindreds for SDHD p.Cys11X as a common mutation associated with paraganglioma syndrome type 1. J Clin Endocrinol Metab, 2008. 93(12): p. 4818-25. 172. Cascón, A., et al., Genetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab, 2009. 94(5): p. 1701-5. 173. Gordon, D.M., et al., Dutch founder SDHB exon 3 deletion in patients with pheochromocytoma-paraganglioma in South Africa. Endocr Connect, 2022. 11(1). 174. Zeegers, M.P., et al., Founder mutations among the Dutch. Eur J Hum Genet, 2004. 12(7): p. 591-600. 175. Prontera, P., et al., A novel mutation in the SDHD gene responsible for familial paraganglioma. Medical and psychological implications. Genet Couns, 2008. 19(4): p. 413-8. 176. Neumann, H.P., et al., Clinical predictors for germline mutations in head and neck paraganglioma patients: cost reduction strategy in genetic diagnostic process as fall-out. Cancer Res, 2009. 69(8): p. 3650-6. 177. van Hulsteijn, L.T., et al., No difference in phenotype of the main Dutch SDHD founder mutations. Clin Endocrinol (Oxf), 2013. 79(6): p. 824-31. 178. Kapoor, N., et al., Familial carotid body tumors in patients with SDHD mutations: a case series. Endocr Pract, 2012. 18(5): p. e106-10. 179. Lee, S.C., et al., Hereditary paraganglioma due to the SDHD M1I mutation in a second Chinese family: a founder effect? Laryngoscope, 2003. 113(6): p. 1055-8. 180. Zha, Y., et al., Is the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene due to a founder effect in Chinese head and neck paraganglioma patients? Laryngoscope, 2011. 121(8): p. 1760-4. 181. van Hulsteijn, L.T., et al., Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: a systematic review and meta-analysis. J Med Genet, 2012. 49(12): p. 768-76. 182. Ben Aim, L., et al., International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma. J Med Genet, 2022. 59(8): p. 785-792. 183. Muth, A., et al., Genetic testing and surveillance guidelines in hereditary pheochromocytoma and paraganglioma. J Intern Med, 2019. 285(2): p. 187-204. 184. Bayley, J.P., et al., SDHB variant type impacts phenotype and malignancy in pheochromocytoma-paraganglioma. J Med Genet, 2023. 60(1): p. 25-32. 185. Schoenfeld, A., E.J. Davidowitz, and R.D. Burk, A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8817-22. 186. Gossage, L., T. Eisen, and E.R. Maher, VHL, the story of a tumour suppressor gene. Nat Rev Cancer, 2015. 15(1): p. 55-64. 187. Maher, E.R., H.P. Neumann, and S. Richard, von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet, 2011. 19(6): p. 617-23. 188. Lonser, R.R., et al., von Hippel-Lindau disease. Lancet, 2003. 361(9374): p. 2059-67. 189. Erlic, Z., et al., Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin Cancer Res, 2009. 15(20): p. 6378-85. 190. Cassol, C. and O. Mete, Endocrine manifestations of von Hippel-Lindau disease. Arch Pathol Lab Med, 2015. 139(2): p. 263-8. 191. Dong, Y., et al., GIPC2 is an endocrine-specific tumor suppressor gene for both sporadic and hereditary tumors of RET- and SDHB-, but not VHL-associated clusters of pheochromocytoma/paraganglioma. Cell Death Dis, 2021. 12(5): p. 444. 192. Hsu, T., Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene, 2012. 31(18): p. 2247-57. 193. Kaelin, W.G., Jr., Von Hippel-Lindau disease: insights into oxygen sensing, protein degradation, and cancer. J Clin Invest, 2022. 132(18). 194. Kilmartin, D.J., et al., von Hippel-Lindau disease and familial polyposis coli in the same family. Arch Ophthalmol, 1996. 114(10): p. 1294. 195. Tung, M.L., et al., Co-occurrence of VHL and SDHA Pathogenic Variants: A Case Report. Front Oncol, 2022. 12: p. 925582. 196. Tischler, A.S., K. Pacak, and G. Eisenhofer, The adrenal medulla and extra-adrenal paraganglia: then and now. Endocr Pathol, 2014. 25(1): p. 49-58. 197. Duan, K.M.M., Ozgur MD, FRCPC, Hereditary Endocrine Tumor Syndromes_ The Clinical and Predictive Role of Molecular Histopathology. AJSP: Reviews & Reports, 2017. 22(5): p. 246-268. 198. Zhuang, Z., et al., Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med, 2012. 367(10): p. 922-30. 199. Lorenzo, F.R., et al., A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med (Berl), 2013. 91(4): p. 507-12. 200. Calsina, B., et al., Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genet Med, 2018. 20(12): p. 1652-1662. 201. Oudijk, L., J. Gaal, and R.R. de Krijger, The Role of Immunohistochemistry and Molecular Analysis of Succinate Dehydrogenase in the Diagnosis of Endocrine and Non-Endocrine Tumors and Related Syndromes. Endocr Pathol, 2019. 30(1): p. 64-73. 202. da Silva, M.E., et al., Rare vertebral metastasis in a case of Hereditary Paraganglioma. Hered Cancer Clin Pract, 2012. 10(1): p. 12. 203. Hensen, E.F., et al., Mutations in SDHD are the major determinants of the clinical characteristics of Dutch head and neck paraganglioma patients. Clin Endocrinol (Oxf), 2011. 75(5): p. 650-5. 204. Rednam, S.P., et al., Von Hippel-Lindau and Hereditary Pheochromocytoma/Paraganglioma Syndromes: Clinical Features, Genetics, and Surveillance Recommendations in Childhood. Clin Cancer Res, 2017. 23(12): p. e68-e75. 205. Goldblum, J.R., Mesenchymal tumours of the digestive system. The World Health Organization Classification of Tumours, 2019. 5th Edition. 206. Miettinen, M., et al., Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol, 2011. 35(11): p. 1712-21. 207. Gill, A.J., et al., Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types. Am J Surg Pathol, 2010. 34(5): p. 636-44. 208. Facio, F.M., K. Lee, and J.M. O'Daniel, A genetic counselor's guide to using next-generation sequencing in clinical practice. J Genet Couns, 2014. 23(4): p. 455-62. 209. Kunimasa, K., et al., Improvement strategies for successful next-generation sequencing analysis of lung cancer. Future Oncol, 2020. 16(22): p. 1597-1606. 210. Evenepoel, L., et al., KIF1B and NF1 are the most frequently mutated genes in paraganglioma and pheochromocytoma tumors. Endocr Relat Cancer, 2017. 24(8): p. L57-l61. 211. Administration, U.S.F.D., FDA approves belzutifan for cancers associated with von Hippel-Lindau disease. 2021. 212. Toledo, R.A., et al., Hypoxia Inducible factor 2 alpha (HIF2α) inhibitors: targeting genetically driven tumor hypoxia. Endocr Rev, 2022. 213. Walter, W., et al., Next-generation diagnostics for precision oncology: Preanalytical considerations, technical challenges, and available technologies. Semin Cancer Biol, 2022. 84: p. 3-15. 214. Estrada-Zuniga, C.M., et al., A RET::GRB2 fusion in pheochromocytoma defies the classic paradigm of RET oncogenic fusions. Cell Rep Med, 2022. 3(7): p. 100686. 215. Thompson, L.D., Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol, 2002. 26(5): p. 551-66. 216. Kasem, K. and A.K. Lam, Adrenal oncocytic phaeochromocytoma with putative adverse histologic features: a unique case report and review of the literature. Endocr Pathol, 2014. 25(4): p. 416-21. 217. Strong, V.E., et al., Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery, 2008. 143(6): p. 759-68. 218. Korpershoek, E., et al., SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab, 2011. 96(9): p. E1472-6. 219. Gill, A.J., Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology, 2018. 72(1): p. 106-116. 220. Kimura, N., et al., The Diagnostic Dilemma of GATA3 Immunohistochemistry in Pheochromocytoma and Paraganglioma. Endocr Pathol, 2020. 31(2): p. 95-100. 221. Falhammar, H., et al., Presentation, Treatment, Histology, and Outcomes in Adrenal Medullary Hyperplasia Compared With Pheochromocytoma. J Endocr Soc, 2019. 3(8): p. 1518-1530. 222. Romanet, P., et al., Pathological and Genetic Characterization of Bilateral Adrenomedullary Hyperplasia in a Patient with Germline MAX Mutation. Endocr Pathol, 2017. 28(4): p. 302-307. 223. Grogan, R.H., et al., Bilateral adrenal medullary hyperplasia associated with an SDHB mutation. J Clin Oncol, 2011. 29(8): p. e200-2. 224. Wu, D., et al., Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am J Surg Pathol, 2009. 33(4): p. 599-608. 225. Wachtel, H., et al., Predicting Metastatic Potential in Pheochromocytoma and Paraganglioma: A Comparison of PASS and GAPP Scoring Systems. J Clin Endocrinol Metab, 2020. 105(12): p. e4661-70. 226. Parasiliti-Caprino, M., et al., Development and internal validation of a predictive model for the estimation of pheochromocytoma recurrence risk after radical surgery. Eur J Endocrinol, 2022. 186(3): p. 399-406. 227. Kimura, N., et al., Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr Relat Cancer, 2014. 21(3): p. 405-14. 228. Koh, J.M., et al., Validation of pathological grading systems for predicting metastatic potential in pheochromocytoma and paraganglioma. PLoS One, 2017. 12(11): p. e0187398. 229. Eisenhofer, G. and A.S. Tischler, Neuroendocrine cancer. Closing the GAPP on predicting metastases. Nat Rev Endocrinol, 2014. 10(6): p. 315-6. 230. Stenman, A., J. Zedenius, and C.C. Juhlin, The Value of Histological Algorithms to Predict the Malignancy Potential of Pheochromocytomas and Abdominal Paragangliomas-A Meta-Analysis and Systematic Review of the Literature. Cancers (Basel), 2019. 11(2). 231. Crona, J., et al., Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J Clin Endocrinol Metab, 2013. 98(7): p. E1266-71. 232. Welander, J., et al., Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum Mol Genet, 2012. 21(26): p. 5406-16. 233. Burnichon, N., et al., Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet, 2012. 21(26): p. 5397-405. 234. Burnichon, N., et al., Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet, 2011. 20(20): p. 3974-85. 235. Wang, Y., et al., The systems of metastatic potential prediction in pheochromocytoma and paraganglioma. Am J Cancer Res, 2020. 10(3): p. 769-780. 236. Pierre, C., et al., COPPS, a composite score integrating pathological features, PS100 and SDHB losses, predicts the risk of metastasis and progression-free survival in pheochromocytomas/paragangliomas. Virchows Arch, 2019. 474(6): p. 721-734. 237. Sehn, J.K., Somatic Diseases (Cancer): Whole Exome and Whole Genome Sequencing. Clinical Genomics, 2015. Chapter 20. 238. Carlo de Werra, I.D., Mario Perone, Rosa Di Micco & Gianclaudio Orabona Multifocal and Multicentric Tumors. Multiple Primary Malignancies, 2009: p. 129–142. 239. News, A.D., 2022 ASCO ANNUAL MEETING: Experts to Debate the Role of Real-World Data in Clinical Trials. https://dailynews.ascopubs.org/do/experts-debate-role-real-world-data-clinical-trials, 2022. 240. Rose, V.M., et al., Germ-line mosaicism in tuberous sclerosis: how common? Am J Hum Genet, 1999. 64(4): p. 986-92. 241. Torre, M., et al., Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol Commun, 2020. 8(1): p. 107. 242. Choi, Y.M., et al., Mutation Profile of Aggressive Pheochromocytoma and Paraganglioma with Comparison of TCGA Data. Cancers (Basel), 2021. 13(10). 243. Dwight, T., et al., TERT structural rearrangements in metastatic pheochromocytomas. Endocr Relat Cancer, 2018. 25(1): p. 1-9. 244. Castro-Vega, L.J., et al., Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun, 2015. 6: p. 6044. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87382 | - |
dc.description.abstract | 「嗜鉻細胞瘤與副神經結瘤」是罕見惡性之內分泌腫瘤,遺傳學證實兩者為相同之疾病,在最新第五版WHO內分泌和神經內分泌腫瘤已被重新分類為「副神經結瘤」。此腫瘤具有獨特之臨床與生化特徵,其分泌之兒茶酚胺作用於血管系統會造成高血壓危象與危害生命之心臟病變。具有高達40% 之生殖細胞系遺傳之易感性,且與多種遺傳型家族性症候群相關。
自2016年實驗室前輩們建立了「嗜鉻細胞瘤與副神經結瘤」以雜合捕獲為基礎之標的次世代定序基因檢測平台,於臨床確診收案之周邊血液基因檢測已可達到34% 之檢出率。然而,對這三分之二之的家族中首位確診病患的收案檢測結果為「未發現」或「臨床意義尚未確認」會影響基因功能之變異位點之個案,因此無法釐清其真正致病之基因變異、預測疾病進程、特定分子分群相關之預後與遺傳風險。此研究首要是提高致病變異之檢出率,使用福馬林固定石蠟包埋之腫瘤組織,利用聲能聚焦處理的技術來萃取DNA和RNA,將萃取出的DNA以廣泛包含36個基因區域標的嗜鉻細胞瘤與副神經結瘤之基因套組來捕獲和擴增建庫,使用Illumina NovaSeq為主的基因定序平台,再以基因體分析工具包Mutect2執行體細胞變異位點偵測之數據分析。其次,本實驗收案周邊血檢測結果為帶有「確定」或「可能」會影響影響生殖細胞系基因功能之變異位點之個案,一方面可提供使用福馬林固定石蠟包埋之組織檢測方法之確效參考,另一方面一旦有體細胞變異之發現,可能有助於預後之預測與精準醫療之應用。再者,就福馬林固定石蠟包埋之腫瘤組織在目前新建立之檢測方法與次世代定序之平台上,所提供之效能是否優於周邊血加以評估。 研究收案總數有62位是家族中首位確診病患,在有開刀可取得福馬林固定石蠟包埋之腫瘤組織也完成數據分析有26位,當中包含11位周邊血檢測結果為帶有「確定」或「可能」會影響影響生殖細胞系基因功能之變異位點,而且沒有發現鑲嵌現象。有5位在周邊血生殖細胞系為「未發現」或「臨床意義尚未確認」之,但在腫瘤組織被檢測出「可能」會影響基因功能之變異位點,因此為體細胞變異;包含2位HRAS [c.182A>G (p.Q61R)] 以及各1位的IDH2 [c.514A>G (p.R172G)]、EPAS1 [c.1592C>T (p.P531L)]、與TP53 [c.632_672+12del (p.X211_splice)]。在檢測有結果的16位中,有13位在分子分群是屬於假性低氧的分子群。在11位周邊血檢測結果為帶有「確定」或「可能」會影響生殖細胞系基因功能之變異位點,其腫瘤組織中也呈現生殖細胞系之「確定」與「可能」會影響基因功能之變異位點,包含有7位SDHD [c.3G>C (p.0)]、1位SDHB [c.136C>T (p.R46*)]、與3位VHL 呈現各自之變異位點 [c.500G>A (p.R167Q)]、[c.482G>A (p.R161Q)] 與 [c.277G>T (p.G93C)]。在已保存21年的福馬林固定石蠟包埋腫瘤組織,除了檢測出SDHD生殖系變異,也呈現腫瘤變異等位基因頻率為7% 的KMT2D [c.2506C>T (p.Q836*)] 體細胞變異。周邊血的檢出率為42%,福馬林固定石蠟包埋之腫瘤組織檢出率為62%,且此兩種檢體所檢測出之生殖細胞系變異位點是一致的。並且在最低腫瘤比例30% 與最久21年之福馬林固定石蠟包埋之腫瘤組織皆可測到「確定」或「可能」致病變異之存在。 此研究發現這5位罹病個案之體細胞之「可能」致病變異之發現,對於提供進一步遺傳諮詢來闡明致病原因是重要的。當中一位檢測出TP53之體細胞變異之結果,可能是可以解釋其腫瘤對肝臟和骨頭轉移的高侵襲性行為。在11位腫瘤組織呈現與周邊血生殖細胞系之變異一致,這結果確效了使用福馬林固定石蠟包埋之組織與對應之檢測流程。其中7位為SDHD之結果,可能是奠基者效應,導致整體分布呈現16位中有13位為假性缺氧為主的分子群現象。在其中一位生殖細胞系變異SDHD中,腫瘤組織發現有亞群之KMT2D體細胞變異,有可能會影響其臨床表現與預後。由於致病變異位點之檢出率由周邊血的42% 提升至福馬林固定石蠟包埋之腫瘤組織的62%,因此福馬林固定石蠟包埋之腫瘤組織整體效能優於周邊血。此研究之限制在於無法完全排除生殖細胞系鑲嵌現象遺傳給下一代之可能性,遺傳諮詢門診與針對該致病體細胞變異之位點執行試管嬰兒之胚胎著床前基因檢測是可能之解決方案。 使用腫瘤組織之致病變異檢測率優於周邊血,腫瘤組織可測得體細胞和生殖細胞系變異,其中又以假性缺氧分子群為主。次世代定序與腫瘤組織之結合不僅優化了基因驅動之基礎,可作為與特定分子群的預後預測與遺傳諮詢之依據,更可作為在精準醫療之新利基,應用於蓬勃發展的不定腫瘤類型之標靶治療用藥。因此建議在嗜鉻細胞瘤和副神經節瘤之基因檢測,可優先採用腫瘤組織的檢體。 | zh_TW |
dc.description.abstract | Pheochromocytoma and paraganglioma (PPGL), the same disease demonstrated by genetics and reclassified as “paraganglioma” in the latest WHO Endocrine and Neuroendocrine Tumours (5th ed.), are rare malignant endocrine tumors. PPGL manifests unique clinical and biochemical characteristics. Catecholamines secreted by tumors acting on the vascular system can cause hypertensive crisis and life-threatening cardiomyopathy. PPGL has up to 40% genetic predisposition and is associated with multiple hereditary syndromes.
Since 2016, the Hybrid capture-based targeted Next Generation Gene Sequencing (NGS) platform for the genetic test of PPGL established by the laboratory's predecessors has achieved a 34% detection rate for peripheral blood (PB). Nevertheless, the results of the two-thirds of proband enrollment revealed “not found” or “a variant of uncertain significance (VUS)”. Hence, the causal variants of the disease, the prediction of disease progression, the prognosis related to specific molecular clusters, and the risk of inheritance were unable to be determined. First and foremost, to increase the detection rate of causal variants, this study was conducted using formalin-embedded paraffin-embedded (FFPE) tumor tissue, the technology of Adaptive Focused Acoustics for extraction of DNA and RNA, the comprehensive PPGL-targeted gene panel composed of 36 genes for capture and enrichment of DNA for library construction, the Illumina NovaSeq as prime sequencing platform, and the GATK Mutect2 for data analysis of somatic variant calling. Next, the probands that had pathogenic or likely pathogenic variants of PB, for one thing, which could provide references for the validation of the assay using FFPE tissue; for another, which might be beneficial in prognosis prediction and application of precision medicine. Lastly, whether the effectiveness of FFPE tissue was superior to PB on the newly established method and NGS platform would be evaluated. The total number of enrollments is 62 probands. The data analysis was accomplished in 26 probands in which FFPE tumor tissue could be available after surgery. Eleven probands among them showed pathogenic or likely pathogenic variants of PB, and without mosaicism. Five probands, with the results of “not found” or “VUS” of PB, were detected the presence of somatic likely pathogenic variants, including 2 HRAS [c.182A>G (p.Q61R)], 1 IDH2 [c.514A>G (p.R172G)], 1 EPAS1 [c.1592C>T (p.P531L)] and 1 TP53 [c.632_672+12del (p.X211_splice)] in the FFPE tumor tissue. Among 16 probands with "pathogenic" or "likely pathogenic" variants, 13 probands were classified as the pseudohypoxia molecular cluster. Eleven probands, with the germline "pathogenic" or "likely pathogenic" variants of PB, were demonstrated "pathogenic" or "likely pathogenic" variants of germline in the FFPE tumor tissue as well, including 7 SDHD [c.3G>C (p.0)], 1 SDHB [c.136C>T (p.R46*)], and 3 VHL exhibiting different codons, such as [c.500G>A (p.R167Q)]、[c.482G>A (p.R161Q)] and [c.277G>T (p.G93C)]. The KMT2D somatic variation with a 7% frequency of tumor variant allele was identified additionally in the background of germline variation of SDHD from the 21-year-old FFPE tumor tissue. The detection rate of causal variants of PB was 42%, and that of the FFPE tissue was 62%. Moreover, the codons of germline variants in both specimens were identical. The FFPE tumor tissue with a minimum tumor cell content of 30% and a maximum storage time of 21 years, could be demonstrated the presence of "pathogenic" or "likely pathogenic" variants. The findings of somatic "likely pathogenic" variants of these 5 probands are important in genetic consultation to clarify the cause of the disease. The detection of TP53 somatic variant in one proband without germline variant might give an explanation of the highly aggressive behavior of the tumor metastasizing to the liver and bone. In 11 probands, the tumor tissues displayed germline variation consistent with PB, which validated the feasibility of using FFPE tumor tissue and the corresponding assay. Seven probands of SDHD germline variant possessed the founder effect, which contributed to an overall distribution of 13 out of 16 probands with the dominant pseudohypoxia molecular cluster. The presence of the subgroup of KMT2D somatic variant in one proband with the germline variation of SDHD may have affected the clinical behavior and prognosis. The effectiveness of FFPE tumor tissue was superior to that of PB because the detection rate of causal variants increased from 42% in PB to 62% in FFPE tumor tissue. This study was limited by the fact that the possibility of germline mosaicism being passed on to the next generation cannot be completely ruled out. Genetic consultation and preimplantation genetic testing for this causative somatic variant would be the possible solutions. Tumor tissue showed higher detection rates of causal variants than peripheral blood. Among the somatic and germline variants demonstrated by tumor tissue, pseudo-hypoxic is the dominant molecular cluster. The combination of NGS and PPGL tumor tissue not only optimizes the genetic-driven basis for prognostic predictions of specific molecular clusters and genetic counseling but also serves as a new niche in precision medicine for targeted therapy in the burgeoning field of tumor-agnostic drugs. Therefore, it is recommended that genetic testing for PPGL be prioritized with the use of tumor tissue. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-19T08:45:36Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-05-19T08:45:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄 (Table of Contents)
口試委員會審定書 i 誌謝 ii 中文摘要 v Abstract viii 目錄 (Table of Contents) xii 圖表目錄 (List of figures) xxi 表目錄 (List of Tables) xxvi 第1章 研究背景與動機 (Chapter 1: Research Background and Motivation) 1 1.1 疾病簡介 (Disease introduction) 1 1.1.1 整體的介紹 (General introduction) 1 1.1.2 臨床重要性 (The clinical importance) 3 1.1.3 流行病學 (Epidemiology) 5 1.1.4 病因學 (Etiology) 6 1.2 嗜鉻細胞瘤或副神經節瘤 (PPGL) 致病基因的概述 8 1.2.1 時間軸 (timeline) 的基因演進 8 1.2.1 分子的分類 (Molecular Classification) 11 1.2.2 基因型與表現型 (Genotype & Phenotype) 15 1.3 已建構之嗜鉻細胞瘤與副神經節瘤之次世代基因檢測平台 (Targeted NGS platform with Comprehensive PPGL panels) 15 1.4 動機與目的 (Motivation and purpose) 16 1.4.1 動機 16 1.4.2 目的 18 第2章 研究方法 (Chapter 2: Research Methodology) 19 2.1 實驗設計 (Experimental design) 19 2.2 以雜合捕獲為基礎的標的次世代定序之檢測平台(Hybridization-based Targeted Sequencing NGS platform) 20 嗜鉻細胞瘤和副神經節瘤 (PPGL) 基因檢測套組 (PPGL-targeted gene panels;V3.0) 21 2.2.1 DLST 21 2.2.2 GOT2 21 2.2.3 SLC25A11 22 2.2.4 DNMT3A 22 2.2.5 實驗特色 22 2.3 研究對象與檢體 (Research objects & samples) 24 2.3.1 研究對象 (Research objects) 24 2.3.2 研究檢體 (Research samples) 24 2.4 研究方法 (Method) 25 2.4.1 福馬林固定石蠟包埋之腫瘤組織之挑選 (FFPE tissue selection) 25 2.4.2 免疫組織化學染色 (Immuohistochemistry stain) 26 2.4.3 從福馬林固定石蠟包埋的腫瘤組織萃取DNA/RNA (FFPE-derived tumor DNA/RNA) 27 2.4.4 核酸品質檢測 (gDNA quality check) 30 2.4.5 樣本庫製備 (library preparation) 與擴增 (enrichment) 30 2.4.6 NGS 定序反應 (sequencing reaction) 32 2.4.7 數據分析 (data analysis) 32 第3章 結果 (Chapter 3: Results) 35 3.1 結果概述 (overview of results) 35 3.2 在福馬林固定石蠟包埋之腫瘤組織中帶有『確定』會影響/可能影響基因功能之變異位點 (Pathogenic/Likely pathogenic genetic variant identified in FFPE tumor tissue) 40 3.2.1 HRAS NM_005343.4:exon3:c.182A>G (p.Q61R) 40 3.2.2 IDH2 NM_002168.4:exon4:c.514A>G (p.R172G) 41 3.2.3 EPAS1 NM_001430.5:c.1592C>T (p.P531L) 42 3.2.4 TP53 NM_000546.6:c.632_672+12del (p.X211_splice) 43 3.3 在福馬林固定石蠟包埋之腫瘤組織中檢測出與周邊血一致的帶有『確定』會影響/可能影響基因功能之變異位點 (Pathogenic/Likely pathogenic genetic variants of peripheral blood are in accordance with corresponding FFPE tissue) 48 3.3.1 SDHD NM_003002.4:c.3G>C (p.0) 48 3.3.2 Germline (SDHD) & somatic (KMT2D NM_003482.4:c.2506C>T (p.Q836*) 50 3.3.3 SDHB NM_003000.3:c.136C>T (p.R46*) 52 3.3.4 VHL 52 3.3.4.1 VHL NM_000551.4:c.500G>A (p.R167Q) 52 3.3.4.2 VHL NM_000551: exon1:c.277G>T (p.G93C) 53 3.3.4.3 VHL NM_000551.4:c.482G>A (p.R161Q) 54 3.3.4.4 RET NM_020975:c. 874G>A (p.V292M) 55 3.4 在周邊血與福馬林固定石蠟包埋之腫瘤組織中皆帶有『臨床意義尚未確認』會影響基因功能之變異位點 (germline VUS) 有4例 56 3.4.1 SDHA NM_004168:c.550G>A (p.G184R) 56 3.4.2 SDHB NM_003000:c.314T>A (p.I105N) 57 3.4.3 SDHAF2 NM_017841:c.320G>A (p.R107H) 58 3.4.4 KIF1B c.3260A>G (p.Y1087C) 58 3.5 在福馬林固定石蠟包埋之腫瘤組織中帶有『臨床意義尚未確認』會影響基因功能之變異位點 (Somatic VUS) 有2例 59 3.5.1 SDHB c. 745T>C (p.C249R) 59 3.5.2 SETD2 c. 5867C>T (p.A1956V) 61 3.5.3 SETD2 (p.V971I) 61 3.5.4 NGFR (p.L92F) 62 3.5.5 FH c. 691A>T (p.I231F) 62 3.5.6 KMT2D c. 11546G>A (p.G3849E) 63 3.5.7 KMT2D (p.E3718K) 64 3.5.8 ARNT2 (p.S618N) 65 3.6 在周邊血與福馬林固定石蠟包埋之腫瘤組織中皆『未發現』帶有會影響基因功能之變異位點的有6例 66 第4章 討論 (Chapter 4: Discussion) 67 4.1 使用FFPE組織檢體執行次世代定序 (Formalin-fixed, paraffin embedded tissue for NGS) 67 4.1.1 福馬林固定造成的影響 67 4.1.2 蠟塊組織保存時間造成的影響 68 4.1.3 腫瘤佔比造成的影響 68 4.1.4 福馬林固定石蠟包埋 (FFPE) 的腫瘤組織對融合基因 (fusion gen) 造成的影響 70 4.1.5 生物資訊 (Bioinformatics) 造成的影響 71 4.2 次世代基因定序方法之比較 71 4.3 體細胞變異 (Somatic variant) 75 4.3.1 體細胞變異 (Somatic variant) 之定義 75 4.4 鑲嵌現象 (Mosaicism) 78 4.4.1 鑲嵌現象 (Mosaicism) 之定義 78 4.4.2 鑲嵌突變 (Mosaic mutations) 之定義 78 4.4.3 腫瘤組織中發現變異 (variant) 對判定鑲嵌來源之重要性 81 4.4.4 嗜鉻細胞瘤和副神經節瘤 (PPGL) 鑲嵌型基因 82 4.5 嗜鉻細胞瘤和副神經節瘤 (PPGL) 之基因型 (genotype) 84 4.5.1 基因 (genetic factors) 之特性 84 4.5.1.1 文獻上與遺傳性的嗜鉻細胞瘤/副神經節瘤相關之遺傳易感基因 (predisposition genes): 85 4.5.1.2 文獻上嗜鉻細胞瘤/副神經節瘤相關之易感基因鑲嵌現象 (mosaicism) 85 4.5.1.3 文獻上嗜鉻細胞瘤/副神經節瘤相關之易感基因可出現偶發體細胞之變異 (somatic variant) 85 4.5.1.4 文獻上嗜鉻細胞瘤/副神經節瘤相關之易感基因可出現在生殖細胞系或偶發體細胞之變異 (germline or somatic) 86 4.5.1.5 融合基因 (fusion gene) 86 4.5.1.6 與轉移侵襲性相關的基因標誌 86 4.5.2 致癌基因(oncogenes) 86 4.5.2.1 Q61R/HRAS 87 4.5.2.2 R172G /IDH2 89 4.5.2.3 P531L/EPAS1 90 4.5.2.4 V292M/RET 91 4.5.2.5 KMT2D 92 4.5.3 抑癌基因 (tumor-suppressor genes) 94 4.5.3.1 TP53 95 4.5.3.2 SDHx 96 4.5.3.3 SDHD奠基者效應(founder effect) 98 4.5.3.4 SDHB 99 4.5.3.5 VHL 100 4.6 嗜鉻細胞瘤和副神經節瘤之表現型 (phenotype) 103 4.6.1 遺傳性嗜鉻細胞瘤/副神經節瘤症候群 [Hereditary (Familial) Pheochromocytoma/Paraganglioma Syndromes] 103 4.6.2 SDH 缺乏腫瘤症候群 (SDH-deficient tumor syndrome) 104 4.6.3 SDH缺乏之胃腸道基質腫瘤 (SDH-deficient GISTs) 107 4.7 多位點遺傳腫瘤等位基因症候群 (Multilocus Inherited Neoplasia Alleles Syndrome;MINAS) 108 4.8 遺傳諮詢(Genetic counseling) 109 4.9 精準醫療 (Precision medicine) 112 4.10 嗜鉻細胞瘤/副神經節瘤腫瘤之組織病理特徵(Histopathological Features of PPGL) 116 4.10.1 SDHD變異之副神經節瘤之組織病理之特徵 116 4.10.2 與SDHx相關之副神經節瘤之組織病理之特徵 117 4.10.3 VHL 內分泌組織病理之特徵 117 4.10.4 免疫組織化學染色 (Immunohistochemistry staining) 117 4.10.5 腎上腺髓質之增生 (adrenal medullary hyperplasia) 118 4.11 預測嗜鉻細胞瘤/副神經節瘤轉移之風險分級 (risk stratification of PPGL) 119 第5章 結論 (Chapter 5: Conclusion) 123 5.1 本研究在實務上的貢獻 125 5.2 未來努力方向 127 5.2.1 短期目標 127 5.2.2 中期目標 128 5.2.3 長期目標 129 第6章 參考文獻(Chapter 6: References) 130 | - |
dc.language.iso | zh_TW | - |
dc.title | 嗜鉻細胞瘤和副神經節瘤的次世代定序基因檢測 | zh_TW |
dc.title | Next-Generation Sequencing Genetic Test of Pheochromocytoma and Paraganglioma | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 陳沛隆 | zh_TW |
dc.contributor.coadvisor | Pei-Lung Chen | en |
dc.contributor.oralexamcommittee | 吳婉禎 | zh_TW |
dc.contributor.oralexamcommittee | Wan-Chen Wu | en |
dc.subject.keyword | 次世代定序,基因檢測,嗜鉻細胞瘤,副神經結瘤,福馬林固定石蠟包埋,腫瘤組織,體細胞變異,生殖細胞系,遺傳諮詢,鑲嵌現象,奠基者效應,精準醫療, | zh_TW |
dc.subject.keyword | Next Generation Sequencing,genetic test,pheochromocytoma,paraganglioma,FFPE,tissue,somatic variant,germline,genetic counseling,mosaicism,founder effect,precision medicine, | en |
dc.relation.page | 147 | - |
dc.identifier.doi | 10.6342/NTU202300638 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-03-31 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 分子醫學研究所 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 9.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。