請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87356完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周玉山 | zh_TW |
| dc.contributor.advisor | Yuh-Shan Jou | en |
| dc.contributor.author | 陳彥劦 | zh_TW |
| dc.contributor.author | Yen-Hsieh Chen | en |
| dc.date.accessioned | 2023-05-18T17:15:16Z | - |
| dc.date.available | 2024-12-31 | - |
| dc.date.copyright | 2023-06-13 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-11-29 | - |
| dc.identifier.citation | Pinho, Salomé S. and Celso A. Reis (2015). “Glycosylation in cancer: mechanisms and clinical implications”. Nature Reviews Cancer 15.9, pp. 540–555.
Stowell, Sean R., Tongzhong Ju, and Richard D. Cummings (2015). “Protein Gly cosylation in Cancer”. Annual Review of Pathology: Mechanisms of Disease 10.1, pp. 473–510. Hakomori, Sen-itiroh and Reiji Kannagi (1983). “Glycosphingolipids as Tumor Associated and Differentiation Markers”. JNCI: Journal of the National Cancer Institute 71.2, pp. 231–251. Zhao, Yanyang et al. (2008). “Branched N-glycans regulate the biological functions of integrins and cadherins: Biological functions of branched N-glycans”. FEBS Jour nal 275.9, pp. 1939–1948. Takahashi, Motoko et al. (2009). “Core fucose and bisecting GlcNAc, the direct mod ifiers of the N-glycan core: their functions and target proteins”. Special issue in Honor of the 65th Birthday of Professor Johannis P. Kamerling 344.12, pp. 1387–1390. Nakano, Miyako et al. (2019). “Bisecting GlcNAc Is a General Suppressor of Ter minal Modification of N-glycan*, [S]”. Molecular & Cellular Proteomics 18.10, pp. 2044–2057. Nairn, Alison V. et al. (2008). “Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes.” Journal of Biological Chemistry 283.25, pp. 17298–17313 Guo, Yanru et al. (2022). “HOTAIR modulates hepatocellular carcinoma progres sion by activating FUT8/core-fucosylated Hsp90/MUC1/STAT3 feedback loop via JAK1/STAT3 cascade”. Digestive and Liver Disease, S1590865822002559. Lau, Eric et al. (2015). “The transcription factor ATF2 promotes melanoma metasta sis by suppressing protein fucosylation”. Science Signaling 8.406. Jiang, Zhi et al. (2016). “Transcription factor c-jun regulates β3Gn-T8 expression in gastric cancer cell line SGC-7901”. Oncology Reports 36.3, pp. 1353–1360. Groth, Theodore, Rudiyanto Gunawan, and Sriram Neelamegham (2021). “A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis”. Beilstein Journal of Organic Chemistry 17, pp. 1712–1724. Kannagi, Reiji et al. (2010). “Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: Clues in the ongoing search for new tumor markers”. Cancer Science 101.3, pp. 586–593. Miyazaki, Keiko et al. (2004). “Loss of Disialyl Lewisa, the Ligand for Lymphocyte Inhibitory Receptor Sialic Acid-Binding Immunoglobulin-Like Lectin-7 (Siglec-7) Associated with Increased Sialyl Lewisa Expression on Human Colon Cancers”. Cancer Research 64.13, pp. 4498–4505. Huang, Hsiang-Chi et al. (2019). “Epigenetic silencing of the synthesis of immuno suppressive Siglec ligand glycans by NF-κB/EZH2/YY1 axis in early-stage colon cancers”. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1862.2, pp. 173–183. Antony, Pia et al. (2014). “Epigenetic inactivation of ST6GAL1 in human bladder cancer”. BMC Cancer 14.1, pp. 901–901. Anugraham, Merrina et al. (2014). “Specific Glycosylation of Membrane Proteins in Epithelial Ovarian Cancer Cell Lines: Glycan Structures Reflect Gene Expression and DNA Methylation Status *”. Molecular & Cellular Proteomics 13.9, pp. 2213–2232. Kawamura, Yuki I. et al. (2008). “DNA Hypermethylation Contributes to Incomplete Synthesis of Carbohydrate Determinants in Gastrointestinal Cancer”. Gastroenterol ogy 135.1, pp. 142–151. Klasić, Marija et al. (2016). “DNA hypomethylation upregulates expression of the MGAT3 gene in HepG2 cells and leads to changes in N-glycosylation of secreted glycoproteins”. Scientific Reports 6.1, p. 24363. Neelamegham, Sriram and Lara K. Mahal (2016). “Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure”. Current Opinion in Structural Biology 40, pp. 145–152. Pothukuchi, Prathyush et al. (2019). “Translation of genome to glycome: role of the Golgi apparatus”. FEBS Letters 593.17, pp. 2390–2411. Doubet, Scott et al. (1989). “The complex carbohydrate structure database”. Trends in Biochemical Sciences 14.12, pp. 475–477. Raman, Rahul et al. (2006). “Advancing glycomics: Implementation strategies at the Consortium for Functional Glycomics”. Glycobiology 16.5, 82R–90R. Hashimoto, Kosuke et al. (2006). “KEGG as a glycome informatics resource”. Gly cobiology 16.5, 63R–70R. Narimatsu, Hisashi (2004). “Construction of a human glycogene library and compre hensive functional analysis”. Glycoconjugate Journal 21.1/2, pp. 17–24. Togayachi, Akira et al. (2008). “A Database System for Glycogenes (GGDB)”. Ex perimental Glycoscience. Ed. by Naoyuki Taniguchi et al. Tokyo: Springer Japan, pp. 423–425. ISBN: 978-4-431-77921-6 978-4-431-77922-3. Huang, Yi-Fan et al. (2021). “Global mapping of glycosylation pathways in human derived cells”. Developmental Cell 56.8, 1195–1209.e7. Potapenko, Ivan O. et al. (2010). “Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression”. Molecular On cology 4.2, pp. 98–118. Maupin, Kevin A. et al. (2010). “Glycogene Expression Alterations Associated with Pancreatic Cancer Epithelial-Mesenchymal Transition in Complementary Model Systems”. PLOS ONE 5.9, e13002. Venkitachalam, Srividya et al. (2016). “Biochemical and functional characterization of glycosylation-associated mutational landscapes in colon cancer”. Scientific Re ports 6.1, p. 23642. Akella, Neha M., Lorela Ciraku, and Mauricio J. Reginato (2019). “Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer”. BMC Biology 17.1, p. 52. Yotsukura, Sohiya and Hiroshi Mamitsuka (2015). “Evaluation of serum-based can cer biomarkers: A brief review from a clinical and computational viewpoint”. Critical Reviews in Oncology/Hematology 93.2, pp. 103–115. Sato, Yoshiaki et al. (1993). “Early Recognition of Hepatocellular Carcinoma Based on Altered Profiles of Alpha-Fetoprotein”. New England Journal of Medicine 328.25, pp. 1802–1806. Henderson, Meredith C. et al. (2016). “Integration of Serum Protein Biomarker and Tumor Associated Autoantibody Expression Data Increases the Ability of a Blood Based Proteomic Assay to Identify Breast Cancer”. PLOS ONE 11.8. Ed. by William B. Coleman, e0157692. Thomas, Divya, Ashok Kumar Rathinavel, and Prakash Radhakrishnan (2021). “Al tered glycosylation in cancer: A promising target for biomarkers and therapeutics”. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1875.1, p. 188464. Zhao, Lan et al. (2019). “Molecular subtyping of cancer: current status and moving toward clinical applications”. Briefings in Bioinformatics 20.2, pp. 572–584. Golub, Todd R. et al. (1999). “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.” Science 286.5439, pp. 531–537. Noushmehr, Houtan et al. (2010). “Identification of a CpG Island Methylator Pheno type that Defines a Distinct Subgroup of Glioma”. Cancer Cell 17.5, pp. 510–522. Cooper, Lee AD et al. (2018). “PanCancer insights from The Cancer Genome Atlas: the pathologist’s perspective: Insights from TCGA: PanCancer and digital pathology analyses”. The Journal of Pathology 244.5, pp. 512–524. Ramaswamy, S. et al. (2001). “Multiclass cancer diagnosis using tumor gene expres sion signatures”. Proceedings of the National Academy of Sciences 98.26, pp. 15149–15154. Hoadley, Katherine A. et al. (2018). “Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer”. Cell 173.2, 291–304.e6. The Cancer Genome Atlas Research Network et al. (2013). “The Cancer Genome Atlas Pan-Cancer analysis project”. Nature Genetics 45.10, pp. 1113–1120. Chen, Fengju et al. (2018). “Pan-Cancer Molecular Classes Transcending Tumor Lin eage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases”. Clinical Cancer Research 24.9, pp. 2182–2193. Chiu, Yu-Chiao et al. (2019). “Predicting drug response of tumors from integrated genomic profiles by deep neural networks”. BMC Medical Genomics 12.S1, p. 18. Wheeler, David A. et al. (2021). “Molecular Features of Cancers Exhibiting Excep tional Responses to Treatment”. Cancer Cell 39.1, 38–53.e7. Shen, Ronglai, Adam B. Olshen, and Marc Ladanyi (2009). “Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis”. Bioinformatics 25.22, pp. 2906–2912. Consortium of Functional Glycomics. http://www.functionalglycomics.org/glycomics/. KEGG GLYCAN Database. https://www.genome.jp/kegg/glycan/. GlycoMaple. https://glycosmos.org/glycomaple/index. Goldman, Mary J. et al. (2020). “Visualizing and interpreting cancer genomics data via the Xena platform”. Nature Biotechnology 38.6, pp. 675–678. Yu, Guangchuang et al. (2010). “GOSemSim: an R package for measuring semantic similarity among GO terms and gene products”. Bioinformatics (Oxford, England) 26.7, pp. 976–978. Wu, Tianzhi et al. (2021). “clusterProfiler 4.0: A universal enrichment tool for inter preting omics data”. The Innovation 2.3, p. 100141. Supek, Fran et al. (2011). “REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms”. PLOS ONE 6.7, e21800. Merico, Daniele et al. (2010). “Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation”. PLOS ONE 5.11, e13984. Stoney, Ruth Alexandra et al. (2018). “Using set theory to reduce redundancy in pathway sets”. BMC Bioinformatics 19.1, p. 386. Foroutan, Momeneh et al. (2018). “Single sample scoring of molecular phenotypes”. BMC Bioinformatics 19.1, p. 404. Ishwaran, Hemant et al. (2008). “Random survival forests”. The Annals of Applied Statistics 2.3. McInnes, Leland, John Healy, and James Melville (2018). “Umap: Uniform manifold approximation and projection for dimension reduction”. arXiv preprint arXiv:1802.03426. Ester, Martin et al. (1996). “A density-based algorithm for discovering clusters in large spatial databases with noise.” kdd. Vol. 96, pp. 226–231. McInnes, Leland, John Healy, and Steve Astels (2017). “hdbscan: Hierarchical den sity based clustering.” J. Open Source Softw. 2.11, p. 205. Lundberg, Scott M and Su-In Lee (2017). “A unified approach to interpreting model predictions”. Advances in neural information processing systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc. Aran, Dvir et al. (2017). “Comprehensive analysis of normal adjacent to tumor tran scriptomes”. Nature Communications 8.1, p. 1077. Raphael, Benjamin J. et al. (2017). “Integrated Genomic Characterization of Pancre atic Ductal Adenocarcinoma”. Cancer Cell 32.2, 185–203.e13. Bellazzi, Riccardo (2020). “Integrated Multi-Omics Analyses in Oncology: A Re view of Machine Learning Methods and Tools”. Frontiers in Oncology 10, p. 11. Menyhárt, Otília and Balázs Gyo (2021). “Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis”. Computational and Structural Biotechnology Journal, p. 12. Yang, Hai et al. (2021). “Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data”. Bioinformatics 37.16. Ed. by Peter Robinson, pp. 2231–2237. Vaske, Charles J. et al. (2010). “Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM”. Bioinformatics 26.12, pp. i237–i245. Yoshihara, Kosuke et al. (2013). “Inferring tumour purity and stromal and immune cell admixture from expression data”. Nature Communications 4.1, p. 2612. Lundberg, Arian et al. (2017). “Gene Expression Signatures and Immunohistochemi cal Subtypes Add Prognostic Value to Each Other in Breast Cancer Cohorts”. Clinical Cancer Research 23.24, pp. 7512–7520. Wang, Hao, Xiaosheng Wu, and Yiming Chen (2019). “Stromal-Immune Score-Based Gene Signature: A Prognosis Stratification Tool in Gastric Cancer”. Frontiers in Oncology 9, p. 1212. Zhu, Vivian F. et al. (2012). “Understanding the role of cytokines in Glioblastoma Multiforme pathogenesis”. Cancer Letters 316.2, pp. 139–150. Jiang, Peng et al. (2015). “Network analysis of gene essentiality in functional ge nomics experiments”. Genome Biology 16.1, p. 239. Nijaguna, Mamatha B. et al. (2015). “An Eighteen Serum Cytokine Signature for Dis criminating Glioma from Normal Healthy Individuals”. PLOS ONE 10.9, e0137524. Hashimoto, Shigeru et al. (2004). “Requirement for Arf6 in breast cancer invasive activities”. Proceedings of the National Academy of Sciences 101.17, pp. 6647–6652. Sabe, Hisataka et al. (2009). “The EGFR-GEP100-Arf6-AMAP1 Signaling Pathway Specific to Breast Cancer Invasion and Metastasis†”. Traffic 10.8, pp. 982–993. Lambert, Jérôme and Sylvie Chevret (2016). “Summary measure of discrimination in survival models based on cumulative/dynamic time-dependent ROC curves”. Sta tistical Methods in Medical Research 25.5, pp. 2088–2102. Yu, Chun-Nam et al. (2011). “Learning patient-specific cancer survival distributions as a sequence of dependent regressors”. Proceedings of the 24th international con ference on neural information processing systems. NIPS’11. Red Hook, NY, USA: Curran Associates Inc., pp. 1845–1853. ISBN: 978-1-61839-599-3. Kalbfleisch, John D. and Ross L. Prentice (2002). “Failure Time Models”. The Statis tical Analysis of Failure Time Data. Wiley Series in Probability and Statistics, pp. 31–51. ISBN: 978-1-118-03298-5. Haider, Humza et al. (2020). “Effective ways to build and evaluate individual survival distributions.” Journal of Machine Learning Research 21.85, pp. 1–63. Fotso, Stephane (2018). “Deep neural networks for survival analysis based on a multi task framework”. arXiv preprint arXiv:1801.05512. Kumar, Luke and Russell Greiner (2019). “Gene expression based survival prediction for cancer patients—A topic modeling approach”. PLOS ONE 14.11. Ed. by Paweł Pławiak, e0224446. Zhang, Xiaolu et al. (2021a). “A novel glycolysis-related four-mRNA signature for predicting the survival of patients with breast cancer”. Frontiers in Genetics 12. Zhang, Yan et al. (2021b). “Glycolysis-Related Genes Serve as Potential Prognostic Biomarkers in Clear Cell Renal Cell Carcinoma”. Oxidative Medicine and Cellular Longevity 2021. Ed. by Shahnawaz Rehman, p. 6699808. Cui, Hao et al. (2020). “Identification of the key genes and pathways involved in the tumorigenesis and prognosis of kidney renal clear cell carcinoma”. Scientific Reports 10.1, p. 4271. Ashkani, Jahanshah and Kevin J. Naidoo (2016). “Glycosyltransferase Gene Expres sion Profiles Classify Cancer Types and Propose Prognostic Subtypes”. Scientific Reports 6.1, p. 26451. Li, Yin et al. (2022). “An integrative pan‐cancer analysis of the molecular and bio logical features of glycosyltransferases”. Clinical and Translational Medicine 12.7. Rodriguez, Ernesto et al. (2022). “The transcriptional landscape of glycosylation related genes in cancer”. bioRxiv, p. 2022.09.28.509853. Wang, Bo et al. (2014). “Similarity network fusion for aggregating data types on a genomic scale”. Nature Methods 11.3, pp. 333–337. Chen, Rui et al. (2012). “Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes”. Cell 148.6, pp. 1293–1307. Su, Kenong et al. (2021). “Pan-cancer analysis of pathway-based gene expression pattern at the individual level reveals biomarkers of clinical prognosis”. Cell Reports Methods 1.4, p. 100050. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87356 | - |
| dc.description.abstract | 在腫瘤生成與轉移的各個階段皆有醣基化與腫瘤之間的交互作用,並且其臨床潛力亦有大量證據加以證實。藉由次世代定序的腫瘤數據及多體學的整合分析,我們了解到此關係不僅僅是展現於全基因體或蛋白體,醣基化在腫瘤間也有不同之處。隨著剖析醣基化與腫瘤關係的需求增長,我們系統性地識別出三千多個醣基化相關基因 (醣基因),並整合基因體與表關基因體證明其在多癌症分類的臨床潛力。藉由將高維度的多體學資料進行低維度映射後,更進一步彰顯醣基因以及醣基化相關生物路徑皆具有揭示與組織起源相關的可能癌症簇的能力,並且與全基因組的結果相當。另外不同癌症簇亦呈現相異的分子概況、免疫特徵、細胞週期活動和存活分佈。最後我們進一步通過機器學習(XGBoost 和隨機生存森林)和 XAI(可解釋人工智能)的進階整合,描繪跨越各種癌症類型的潛在診斷和預後標誌物,為每個癌症簇構建了五年生存預測模型。更重要的是,我們亦使用此方法建立個人化的生存預測模型。盼能以此醣基化為基底的機器學習模型用於個人化醫療與治療方針等臨床應用。 | zh_TW |
| dc.description.abstract | Crosstalk between glycosylation and tumor already poses its clinical potential regarding the comprehensive involvement during tumorigenesis and downsteam metastasis. Also, bulk sequencing and the cutting-edged approaches are manifesting the relationship through omic integration instead of transcriptome or proteome alone but the framework of such glycosylation differs. With the emerging need of deciphering the interaction insightfully and comprehensively, we systematically identified over 3,000 glycogenes and subsequent omic integration further certified their potential in multi-cancer classification through low-dimension mapping. Such mapping also revealed the latent embedding of glycome, either in gene or pathway level. Similar with whole genome-based profile, this specialized geneset also disclose possible cancer clusters correlated to tissue-origin whilst presenting distinct molecular profile, immune signature, cell cycle activities, and survival distributions. With the advanced integration of machine learning (XGBoost and Random Survival Forest) and XAI (eXplainable artificial intelligence), we depicted the potential diagnostic and prognostic markers crossing various cancer types, constructed five-year survival prediction models for each cancer cluster, and also had individualized survival predictions for further clinical implementations including personalized medicine and treatment guideline. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:15:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T17:15:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xi 1. Introduction 1 1.1 Glycosylation in tumor development 2 1.2 Regulator of glycosylation 3 1.3 Current status for glycogene 5 1.4 Glycosylation in cancer clinics 7 1.5 Pan-cancer multi-omics 8 2. Materials and Methods 11 2.1 Data collection and preparation 12 2.1.1 known glycogene 12 2.1.2 omic data 12 2.1.3 data preprocess 12 2.2 Identification of glycogene 13 2.2.1 knowledge-based material collection 13 2.2.2 text retrieval and optimization 13 2.3 Pathway enrichment 14 2.3.1 removal of redundant pathway set 14 2.3.2 identification of glycosylation-associated pathway 14 2.3.3 sample-level pathway enrichment of individual omics 15 2.4 Feature engineering and selection 15 2.4.1 removal of highly-correlated variables 15 2.4.2 removal by feature importance 15 2.5 Model preparation and fitting 16 2.5.1 data splitting and oversampling 16 2.5.2 multi-classification 16 2.5.3 individual survival distribution 17 2.6 Unsupervised clustering and cancer cluster discovery 18 2.6.1 dimension reduction 18 2.6.2 cluster discovery 18 2.7 Explainable feature importance 19 3. Results 21 3.1 Glycosylation-associated gene identification and overview 22 3.1.1 discovery of glycogene/glycopathway 22 3.1.2 ontology enrichment and comparison with known glycogene sources 23 3.1.3 glycogene/glycopathway in cancers 24 3.2 Glycosylation-assisting cancer classification 26 3.2.1 non-linear relationship of glycosylation in multiple cancer types 26 3.2.2 discriminating feasibility of glycosylation in multiple cancer types 27 3.3 Cancer cluster recognition and biological difference 28 3.3.1 identification of cancer clusters 28 3.3.2 comparison of identified cancer clusters 30 3.3.3 distinct molecular profile of cancer clusters 31 3.4 XAI-assisting diagnostic marker discovery 32 3.4.1 essential variables for cancer cluster classification 32 3.4.2 diagnostic features identification 33 3.5 Personalized survival trait 35 3.5.1 general performance of survival models 35 3.5.2 dynamic performance of survival models 36 3.5.3 individual survival distribution 36 3.6 XAI-assisting prognostic marker discovery 37 3.6.1 prognostic features identification 37 4. Conclusion and Discussion 39 4.1 Glycosylation framework and genomic overview 40 4.2 Glycosylation-based multi-omic cancer clustering 41 4.3 Diagnostic/prognostic marker discovery by XAI 43 5. Figures 45 6. Tables 87 References 91 | - |
| dc.language.iso | en | - |
| dc.subject | 醣基化基因 | zh_TW |
| dc.subject | 整合多體學 | zh_TW |
| dc.subject | 可解釋人工智慧 | zh_TW |
| dc.subject | XAI | en |
| dc.subject | glycogene | en |
| dc.subject | integrative omic | en |
| dc.title | 整合多體學與可解釋人工智慧應用於醣基化之癌症臨床研究及個人醫療 | zh_TW |
| dc.title | Glycosylation-assisting cancer clinics and personal medicine: an integrative omic and XAI approach | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 邱繼輝;蔡懷寬;林文昌;楊瑞彬 | zh_TW |
| dc.contributor.oralexamcommittee | Kay-Hooi Khoo;Huai-Kuang Tsai;Wen-chang Lin;Ruey-Bing Yang | en |
| dc.subject.keyword | 醣基化基因,整合多體學,可解釋人工智慧, | zh_TW |
| dc.subject.keyword | glycogene,integrative omic,XAI, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202210082 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-11-29 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | - |
| 顯示於系所單位: | 基因體與系統生物學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 48.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
