Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87343
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇zh_TW
dc.contributor.advisorHung-Yu Weien
dc.contributor.author劉和軒zh_TW
dc.contributor.authorHe-Hsuan Liuen
dc.date.accessioned2023-05-18T17:10:54Z-
dc.date.available2026-01-01-
dc.date.copyright2023-06-13-
dc.date.issued2023-
dc.date.submitted2023-02-05-
dc.identifier.citation[1] Cisco. Cisco Annual Internet Report (2018–2023) White Paper. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
[2] F. Qi, Q. Liu, W. Li, P. Yu, and X. Qiu, “Enhanced 5G Mobile Broadcasting Service With Shape-Adaptive RIS,” IEEE Transactions on Broadcasting, vol. 68, no. 3, pp. 704–711, 2022.
[3] 3GPP, “Architectural Enhancements for 5G Multicast-Broadcast Services,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 23.247, 9 2022, version 17.4.0.
[4] 社團法人台灣數位電視協會. 5G廣播白皮書. [Online]. Available: https://www.taics.org.tw/userfiles/file/20200601/TC04-20-0005-00-00_5G%20Broadcast%20WhitePaper-20200529-V1.0.pdf
[5] R. Kaliski, C.-C. Chou, and H.-Y. Wei, “Further Enhanced Multimedia Broadcast/Multicast Service in LTE-Advanced Pro,” IEEE Communications Standards Magazine, vol. 3, no. 3, pp. 44–51, 2019.
[6] Qualcomm, “Interim Report from Email Discussion on 5G Broadcast Evolution,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) RP-180499, 3 2018.
[7] 3GPP, “Study on Architectural Enhancements for 5G Multicast-Broadcast Services,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 23.757, 3 2021, version 17.0.0.
[8] ——, “NR; Overall Description; Stage-2,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.300, 4 2020, version 16.1.0.
[9] ——, “NR; Physical Layer Procedures for Control,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.213, 10 2020, version 16.3.0.
[10] ——, “NR; Radio Resource Control (RRC); Protocol Specification,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.331, 3 2021, version 16.4.0.
[11] ——, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.300, 9 2022, version 17.2.0.
[12] ——, “Multimedia Broadcast/Multicast Service (MBMS); Selection and Characterisation of Application Layer Forward Error Correction (FEC),” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 26.947, 3 2017, version 14.0.0.
[13] ——, “Study on LTE-based 5G Terrestrial Broadcast,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.776, 3 2019, version 16.0.0.
[14] Huawei, “New Work Item on NR Support of Multicast and Broadcast Services,” 3GPP TSG RAN Meeting #86, Technical Contribution RP-193248, 12 2019.
[15] J. Zhou, G. Feng, T.-S. P. Yum, M. Yan, and S. Qin, “Online Learning-Based Discontinuous Reception (DRX) for Machine-Type Communications,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5550–5561, 2019.
[16] A. Huang, K.-H. Lin, and H.-Y. Wei, “Thermal Performance Enhancement With DRX in 5G Millimeter Wave Communication System,” IEEE Access, vol. 9, pp. 34 692–34 707, 2021.
[17] K.-H. Lin, H.-H. Liu, K.-H. Hu, A. Huang, and H.-Y. Wei, “A Survey on DRX Mechanism: Device Power Saving from LTE and 5G New Radio to 6G Communication Systems,” IEEE Communications Surveys & Tutorials, pp. 1–1, 2022.
[18] 3GPP, “NR; Medium Access Control (MAC) Protocol Specification,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.321, 10 2022, version 17.2.0.
[19] D. Striccoli, G. Piro, and G. Boggia, “Multicast and Broadcast Services Over Mobile Networks: A Survey on Standardized Approaches and Scientific Outcomes,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1020–1063, 2019.
[20] C. Jiang, W. Wu, and Z. Ding, “LTE Multimedia Broadcast Multicast Service Provisioning Based on Robust Header Compression,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), 2017, pp. 1–6.
[21] M. Crussière, C. Douillard, C. Gallard, M. Le Bot, B. Ros, A. Bouttier, and A. Untersee, “A Unified Broadcast Layer for Horizon 2020 Delivery of Multimedia Services,” IEEE Transactions on Broadcasting, vol. 60, no. 2, pp. 193–207, 2014.
[22] S. Roger, D. Martín-Sacristán, D. Garcia-Roger, J. F. Monserrat, P. Spapis, A. Kousaridas, S. Ayaz, and A. Kaloxylos, “Low-Latency Layer-2-Based Multicast Scheme for Localized V2X Communications,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 8, pp. 2962–2975, 2019.
[23] J. F. Monserrat, J. Calabuig, A. Fernandez-Aguilella, and D. Gomez-Barquero, “Joint Delivery of Unicast and E-MBMS Services in LTE Networks,” IEEE Transactions on Broadcasting, vol. 58, no. 2, pp. 157–167, 2012.
[24] L. Zhang, Y. Wu, G. K. Walker, W. Li, K. Salehian, and A. Florea, “Improving LTE 𝑒 MBMS With Extended OFDM Parameters and Layered-Division-Multiplexing,” IEEE Transactions on Broadcasting, vol. 63, no. 1, pp. 32–47, 2017.
[25] C.-H. Chen and W.-H. Chung, “Dual Diversity Space-Time Coding for Multimedia Broadcast/Multicast Service in MIMO Systems,” IEEE Transactions on Communications, vol. 60, no. 11, pp. 3286–3297, 2012.
[26] L. Tan, Y. Li, A. Khisti, and E. Soljanin, “Successive Segmentation-Based Coding for Broadcasting Over Erasure Channels,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3026–3038, 2016.
[27] T. Mladenov, S. Nooshabadi, and K. Kim, “Efficient Incremental Raptor Decoding Over BEC for 3GPP MBMS and DVB IP-Datacast Services,” IEEE Transactions on Broadcasting, vol. 57, no. 2, pp. 313–318, 2011.
[28] P. Cataldi, M. Grangetto, T. Tillo, E. Magli, and G. Olmo, “Sliding-Window Raptor Codes for Efficient Scalable Wireless Video Broadcasting With Unequal Loss Protection,” IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1491–1503, 2010.
[29] C.-H. Ko, C.-C. Chou, H.-Y. Meng, and H.-Y. Wei, “Strategy-Proof Resource Allocation Mechanism for Multi-Flow Wireless Multicast,” IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 3143–3156, 2015.
[30] L. Chen, “Efficient Multicast Resource Allocation Algorithm with Limited Feedback Scheme in Single-Frequency Networks,” IET Communications, vol. 9, 10 2015.
[31] J. Montalbán, L. Zhang, U. Gil, Y. Wu, I. Angulo, K. Salehian, S.-I. Park, B. Rong, W. Li, H. M. Kim, P. Angueira, and M. Vélez, “Cloud Transmission: System Performance and Application Scenarios,” IEEE Transactions on Broadcasting, vol. 60, no. 2, pp. 170–184, 2014.
[32] D. Kim, T. Fujii, and K. Lee, “A Power Allocation Algorithm for Maximizing Total Utility over an MBSFN,” IEEE Wireless Communications Letters, vol. 2, no. 3, pp. 283–286, 2013.
[33] R. Kaliski, C.-C. Chou, H.-Y. Meng, and H.-Y. Wei, “Dynamic Resource Allocation Framework for MooD (MBMS Operation On-Demand),” IEEE Transactions on Broadcasting, vol. 62, no. 4, pp. 903–917, 2016.
[34] J. Guo, X. Gong, J. Liang, W. Wang, and X. Que, “An Optimized Hybrid Unicast/Multicast Adaptive Video Streaming Scheme Over MBMS-Enabled Wireless Networks,” IEEE Transactions on Broadcasting, vol. 64, no. 4, pp. 791–802, 2018.
[35] D. Lee, J. So, and S. R. Lee, “Power Allocation and Subcarrier Assignment for Joint Delivery of Unicast and Broadcast Transmissions in OFDM Systems,” Journal of Communications and Networks, vol. 18, no. 3, pp. 375–386, 2016.
[36] D.-P. Vuong, M.-Q. Dao, and D.-K. Le, “Resource Allocation With Minimum Outage Probability in Multicarrier Multicast Systems,” IEEE Access, vol. 6, pp. 31 191–31 202, 2018.
[37] S. Schwarz and M. Rupp, “Transmit Optimization for the MISO Multicast Interference Channel,” IEEE Transactions on Communications, vol. 63, no. 12, pp. 4936–4949, 2015.
[38] J. Chen, M. Chiang, J. Erman, G. Li, K. Ramakrishnan, and R. K. Sinha, “Fair and Optimal Resource Allocation for LTE Multicast (eMBMS): Group Partitioning and Dynamics,” in 2015 IEEE Conference on Computer Communications (INFOCOM), 2015, pp. 1266–1274.
[39] D. Plets, W. Joseph, P. Angueira, J. A. Jose Antonio Arenas, L. Verloock, and L. Martens, “On the Methodology for Calculating SFN Gain in Digital Broadcast Systems,” IEEE Transactions on Broadcasting, vol. 56, no. 3, pp. 331–339, 2010.
[40] J. López-Sánchez, J. Zöllner, S. Atungsiri, E. Stare, and D. Gómez-Barquero, “Technical Solutions for Local Service Insertion in DVB-NGH Single Frequency Networks,” IEEE Transactions on Broadcasting, vol. 60, no. 2, pp. 293–301, 2014.
[41] W. Li, Y. Wu, L. Zhang, K. Salehian, S. Laflèche, D. He, Y. Wang, Y. Guan, W. Zhang, J. Montalban, P. Angueira, M. Velez, S.-I. Park, J.-Y. Lee, and H.-M. Kim, “Using LDM to Achieve Seamless Local Service Insertion and Local Program Coverage in SFN Environment,” IEEE Transactions on Broadcasting, vol. 63, no. 1, pp. 250–259, 2017.
[42] C. Li, S. Telemi, X. Zhang, R. Brugger, I. Angulo, and P. Angueira, “Planning Large Single Frequency Networks for DVB-T2,” IEEE Transactions on Broadcasting, vol. 61, no. 3, pp. 376–387, 2015.
[43] M. Lanza, L. Gutiérrez, J. R. Pérez, J. Morgade, M. Domingo, L. Valle, P. Angueira, and J. Basterrechea, “Coverage Optimization and Power Reduction in SFN Using Simulated Annealing,” IEEE Transactions on Broadcasting, vol. 60, no. 3, pp. 474–485, 2014.
[44] R. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity of computer computations. Springer, 1972, pp. 85–103.
[45] 3GPP, “Study on Channel Model for Frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.901, 3 2022, version 17.0.0.
[46] ——, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.213, 1 2022, version 16.8.0.
[47] K. Mohammad T., H. Nafiz Imtiaz Bin, H. Md. Nayeemul, A. M. Shah, and R. M. Musfiqur, “Downlink SNR to CQI Mapping for Different Multiple Antenna Techniques in LTE,” International Journal of Information and Electronics Engineering, 9 2012.
[48] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Further Advancements for E-UTRA Physical Layer Aspects,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.814, 3 2017, version 9.2.0.
[49] D. Kim, “Adaptive Handover Scheme for Evolved Multimedia Broadcast Multicast Services in Long-term Evolution Networks,” IET Communications, vol. 8, no. 16, pp. 2933–2942, 2014.
[50] C. Christophorou, A. Pitsillides, and N. Binucci, “Handover Control in MBMS Enabled 3G Mobile Cellular Networks,” in 2007 16th IST Mobile and Wireless Communications Summit, 2007, pp. 1–5.
[51] Y. Ren, J.-C. Chen, and J.-C. Chin, “Impacts of S1 and X2 Interfaces on eMBMS Handover Failure: Solution and Performance Analysis,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6599–6614, 2018.
[52] I. G. Fraimis, V. D. Papoutsis, K. Ioannou, and S. A. Kotsopoulos, “Power Efficient Radio Bearer Selection for MBMS Users in Soft Handover Status,” in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2009, pp. 2571–2575.
[53] M. Säily, C. B. Estevan, J. J. Gimenez, F. Tesema, W. Guo, D. Gomez-Barquero, and D. Mi, “5G Radio Access Network Architecture for Terrestrial Broadcast Services,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 404–415, 2020.
[54] A. Samuylov, D. Moltchanov, R. Kovalchukov, R. Pirmagomedov, Y. Gaidamaka, S. Andreev, Y. Koucheryavy, and K. Samouylov, “Characterizing Resource Allocation Trade-Offs in 5G NR Serving Multicast and Unicast Traffic,” IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3421–3434, 2020.
[55] N. Chukhno, O. Chukhno, D. Moltchanov, A. Molinaro, Y. Gaidamaka, K. Samouylov, Y. Koucheryavy, and G. Araniti, “Optimal Multicasting in Millimeter Wave 5G NR with Multi-beam Directional Antennas,” IEEE Transactions on Mobile Computing, pp. 1–1, 2021.
[56] F. Rinaldi, H.-L. Määttänen, J. Torsner, S. Pizzi, S. Andreev, A. Iera, Y. Koucheryavy, and G. Araniti, “Broadcasting Services Over 5G NR Enabled Multi-Beam Non-Terrestrial Networks,” IEEE Transactions on Broadcasting, vol. 67, no. 1, pp. 33–45, 2021.
[57] M. Säily and C. Barjau, “RAN Logical Architecture and Interfaces for 5G-Xcast Deliverable D3.3,” 5G-PPP, 2019.
[58] W.-Y. Yang, K.-H. Lin, and H.-Y. Wei, “5G On-Demand SI Acquisition Framework and Performance Evaluation,” IEEE Access, vol. 7, pp. 163 245–163 261, 2019.
[59] 3GPP, “Study on Scenarios and Requirements for Next Generation Access Technologies,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.913, 4 2022, version 17.0.0.
[60] ——, “Radio Frequency (RF) System Scenarios,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 25.942, 7 2020, version 16.0.0.
[61] Z.-T. Chou and Y.-H. Lin, “Energy-Efficient Scalable Video Multicasting for Overlapping Groups in a Mobile WiMAX Network,” IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6403–6416, 2016.
[62] S. He, H. Tian, X. Lyu, G. Nie, and S. Fan, “Distributed Cache Placement and User Association in Multicast-Aided Heterogeneous Networks,” IEEE Access, vol. 5, pp. 25 365–25 376, 2017.
[63] L. Yang, Q. Ni, L. Lv, J. Chen, X. Xue, H. Zhang, and H. Jiang, “Cooperative Non-Orthogonal Layered Multicast Multiple Access for Heterogeneous Networks,” IEEE Transactions on Communications, vol. 67, no. 2, pp. 1148–1165, 2019.
[64] L. Zhong, C. Xu, J. Chen, W. Yan, S. Yang, and G.-M. Muntean, “Joint Optimal Multicast Scheduling and Caching for Improved Performance and Energy Saving in Wireless Heterogeneous Networks,” IEEE Transactions on Broadcasting, vol. 67, no. 1, pp. 119–130, 2021.
[65] Y. Hu, R. Liu, A. Kaushik, and J. Thompson, “Performance Analysis of NOMA Multicast Systems Based on Rateless Codes With Delay Constraints,” IEEE Transactions on Wireless Communications, vol. 20, no. 8, pp. 5003–5017, 2021.
[66] S. Xu, Y. Liu, and W. Zhang, “Grouping-Based Discontinuous Reception for Massive Narrowband Internet of Things Systems,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1561–1571, 2018.
[67] X.-N. Fan, Q.-S. Hu, and G.-J. Cao, “Grouping-Based Extended Discontinuous Reception with Adjustable eDRX Cycles for Smart Grid,” in 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2019, pp. 1–5.
[68] J.-M. Liang, P.-C. Hsieh, J.-J. Chen, and Y.-C. Tseng, “Energy-Efficient DRX Scheduling for Multicast Transmissions in 3GPP LTE-Advanced Wireless Networks,” in 2013 IEEE Wireless Communications and Networking Conference (WCNC), 2013, pp. 551–556.
[69] J.-M. Liang, J.-J. Chen, P.-C. Hsieh, and Y.-C. Tseng, “Two-Phase Multicast DRX Scheduling for 3GPP LTE-Advanced Networks,” IEEE Transactions on Mobile Computing, vol. 15, no. 7, pp. 1839–1849, 2016.
[70] G. Tsoukaneri and M. K. Marina, “On Device Grouping for Efficient Multicast Communications in Narrowband-IoT,” in 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), 2018, pp. 1442–1447.
[71] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.331, 10 2022, version 17.2.0.
[72] H.-H. Liu and H.-Y. Wei, “Towards NR MBMS: A Flexible Partitioning Method for SFN Areas,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 416–427, 2020.
[73] H.-H. Liu, K.-H. Lin, and H.-Y. Wei, “DCP DRX: An Enhanced Power Saving Mechanism in NR,” in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6.
[74] 3GPP, “Report of 3GPP TSG RAN WG2 Meeting #116bis-e,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) R2-2202102, 1 2022.
[75] J. Fan, Q. Yin, G. Y. Li, B. Peng, and X. Zhu, “MCS Selection for Throughput Improvement in Downlink LTE Systems,” in 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), 2011, pp. 1–5.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87343-
dc.description.abstract隨著近年通訊技術的發展,許多新穎的服務與應用逐一興起並為日常生活帶來諸多便利,然而巨量的服務也成為無線資源的重擔。為了緩解有限資源下傳輸巨量服務的壓力,廣播與群播技術成為未來無線通訊的熱門議題,透過廣播與群播技術,基地台可以用同一群無線資源將資料封包傳輸至使用者裝置,進而達到節省無線資源並提升資源使用效率的效果,另外,資源使用效率亦隨著接收廣播與群播服務的使用者裝置數量而顯著提升。本論文以提升次世代通訊的廣播與群播技術為目的,以新無線電技術中制定的廣播群播服務為基礎,本論文提出現有標準中可能面臨的問題,並從中選取三個設計方向做進一步詳細的研究及設計提升。

第一個設計方向為資源管理,對於廣域多細胞的網路布建場景,本研究提出透過將細胞網路劃分組成單頻網的方式以提升整體系統效能。本研究針對此議題制定一最佳化問題並設計圖論貪婪分割演算法尋找該最佳化問題的解答,透過模擬結果,本研究所提出之演算法可彈性適用於不同網路狀況並有效率地找到合適的細胞網路劃分配置。

第二個設計方向為服務連續性,本研究提出基於提示信息的服務連續性機制可以有效應用於廣播群播系統,且不需要於目標基地台額外保留無線資源,另外,透過與按需傳輸的系統資訊塊之概念結合,本研究進一步顯示若機制選擇及參數配置得宜,服務中斷時間之要求可以被滿足。因此,本研究提出一動態服務連續性框架,此框架可以彈性配置服務連續性機制以及相關參數,且模擬結果顯示此框架適用於不同網路狀況及不同服務需求狀況。

第三個設計方向為節電機制,基於目前新無線電技術下廣播群播服務的不連續接收標準,本研究指出該標準可能產生的缺失,進而造成節電效益下降。因此,本研究提出兩個可進行改善的方向,其一為對齊不連續接收的參數,透過最大化兩組不連續接收運作的重疊休眠時間達成較高的省電效益;其二為透過點對單點的傳輸,以避免額外的不連續接收運作造成多餘的啟動時間。基於以上兩個改善方向,本研究提出偏移及循環長度對齊之多群點對多點之機制,透過模擬顯示,本研究提出之機制有效且有效率的提升省電效益並確保延遲的需求。

於各研究議題中,本論文對於提出的機制、演算法、以及架構皆進行模擬驗證其效能以及其運作複雜度,驗證結果皆顯示本論文之各項議題中的設計皆可以有效率的在大量使用者裝置情境下運作並找出最佳或次佳解。另外,本論文亦針對各項研究議題,根據模擬結果提出觀察解釋以及未來可能可以進一步研究之方向。

總結而言,本論文針對新無線電技術中之廣播群播服務提出三個設計方向的改善方案:資源管理、服務連續性、以及節電技術。透過本論文提出的各項改善設計,可進一步提升廣播群播服務的效能,達到更高的效率、更能彈性處理各種網路狀況、以及更具擴展性。
zh_TW
dc.description.abstractThroughout the years, the burst of emerging fancy services and applications facilitates our daily life, while putting a heavy burden on radio resources. To address the overwhelming pressure on limited radio resources, multicast and broadcast technology is regarded as a promising solution. With multicast and broadcast technology, a base station delivers service packets to multiple user devices, which could reduce radio resource usage. The efficiency gain even increases as the number of user devices grows. In this dissertation, we aim at the enhancement of the next-generation multicast and broadcast technology. Taking New Radio (NR) Multicast and Broadcast Service (MBS) for example, we point out some problems that the current standardized mechanisms could confront. Among the enhancements, we select three design aspects for detailed research and enhancement.

The first design aspect is resource management. To enhance the system utility, we propose that a wide-area multi-cell topology is separated into multiple single frequency networks (SFN). We then form an optimization problem and propose a graph-based greedy partitioning algorithm (GGPA) as a solution. Simulation results show that GGPA flexibly adapts itself to different network conditions and efficiently finds a proper partitioning configuration.

The second design aspect is service continuity (SC). To avoid the additional reserved resource during the legacy handover procedure, we propose that a hint-based SC mechanism is adequate for the NR MBS system. Along with the concept of on-demand SIB, we further show that the interruption time requirement can be ensured if the SC mechanism and its parameters are finely chosen. As such, to flexibly and scalably configure the SC mechanism in NR MBS, we propose a dynamic SC configuration framework, whose performance superiority is validated by the simulation results.

The third design aspect is power saving. We point out the potential degradation of the power saving feature for the current NR MBS discontinuous reception (DRX) operation. Then, two enhancement directions are proposed. The first one is to align the DRX parameters for the extension of the dormant period, while the second one is to transmit the MBS packets through the point-to-point leg. Combining the two enhancement directions, we propose the offset and length aligned multi-group PTM (OLAM-PTM). The simulation results show that OLAM-PTM effectively and efficiently increases the power saving factor while guaranteeing the latency requirements.

With the proposed mechanisms, algorithms, and frameworks in the selected design aspects, we conduct simulations to verify their superiority over the baseline methods with low execution complexity. In the meanwhile, we also validate the scalability of the proposals. The proposed methods work efficiently and yield moderately acceptable performance even under a large number of devices, which is the case that exhaustive search is not feasible. Along with the simulation results, we provide observations and insights into each of the design aspects, as well as point out the potential future directions of multicast and broadcast technology.

To sum up, this dissertation addresses three design aspects in the NR MBS system: resource management, service continuity, and power saving. With the designs in this dissertation, the MBS system works in a more efficient, flexible, and scalable manner.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:10:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T17:10:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
Chapter 1. Introduction 1
1.1 Motivation 2
1.2 Dissertation Outline 4
1.3 Contribution of Each Chapter 5
1.3.1 Chapter 3: Dynamic SFN Area Configuration for NR MBS 6
1.3.2 Chapter 4: NR MBS QoS Enhancement with Flexible Service Continuity Framework 7
1.3.3 Chapter 5: DRX Configuration as an Enhanced Power Saving Mechanism for Mixed MBS and Unicast Traffic 8
Chapter 2. Technology Overview 11
2.1 Evolved Multimedia Multicast and Broadcast in Long-term Evolution 11
2.1.1 MBSFN 13
2.1.2 SCPTM 14
2.2 Multicast and Broadcast Services in New Radio 14
2.2.1 L2 Protocol Stacks for NR MBS 16
2.2.2 Resource Management through Group Scheduling 19
2.2.3 Service Continuity 21
2.2.4 Discontinuous Reception for Power Saving 23
2.2.5 Comparison with LTE MBMS 26
Chapter 3. Dynamic SFN Area Configuration for NR MBS 27
3.1 Introduction 27
3.2 Related Work 29
3.2.1 Protocol Stack Modification 29
3.2.2 Coding Scheme 30
3.2.3 Resource Allocation 30
3.2.4 SFN Planning in Other Broadcasting Technologies 31
3.2.5 Comparison with State-of-the-Arts 32
3.3 Configurable MBSFN Areas and the Partition 32
3.4 SFN Partitioning Problem 34
3.4.1 Bottleneck User 34
3.4.2 Sum Log Rate Optimization 36
3.5 Graph-based Greedy Partitioning Algorithm 38
3.5.1 Decomposition Stage 39
3.5.2 Merging Stage 41
3.6 Evaluation and Observation 42
3.6.1 Simulation Methodology 44
3.6.2 Simulation Results 47
3.7 Summary: SFN Partitioning and GGPA 57
Chapter 4. NR MBS QoS Enhancement with Flexible Service Continuity Framework 59
4.1 Introduction 59
4.2 Related Works 62
4.2.1 Novelty of the Work: SC Mechanism for NR MBS 63
4.3 Hint-based SC Mechanisms for NR MBS Leveraging On-demand SIB Transmission 63
4.3.1 Preparation Stage and Hint Block 64
4.3.2 Retrieval Stage and Configuration Block 65
4.3.3 On-demand SIBs 65
4.3.4 Combinations of the Designed Mechanisms 69
4.4 Quantitative Model for SC Mechanisms 69
4.4.1 MSG3-based on-demand SIB Request 70
4.4.2 Preparation Successful Probability (PSP) 74
4.4.3 Conditional Failure Latency (CFL) 76
4.4.4 Expected Interruption Time (EIT) 80
4.4.5 Signalling Overhead (SO) 80
4.5 Parameter Optimization 82
4.5.1 Tradeoff between EIT and SO 83
4.5.2 Optimization of P-HB+P-CB 84
4.5.3 Optimization of OD-HB+P-CB 85
4.5.4 Optimization of P-HB+H-CB 85
4.5.5 Optimization of OD-HB+H-CB 86
4.6 Dynamic MBS SC Configuration Framework 87
4.7 Performance Evaluation 89
4.7.1 Model Verification and Preliminary Analysis 90
4.7.2 Stringent Requirement on Interruption Time 92
4.7.3 Loose Requirement on Interruption Time 92
4.7.4 Dynamic SC in Network with Varying Conditions 95
4.8 Summary: Dynamic SC Configuration Framework 96
Chapter 5. DRX Configuration as an Enhanced Power Saving Mechanism for Mixed MBS and Unicast Traffic 99
5.1 Introduction 99
5.2 Related Work 101
5.2.1 Literature Review 101
5.2.2 Possible Enhancements of DRX Design for NR MBS 103
5.2.3 Novelty of the Work 104
5.3 System Model 105
5.3.1 Configuration of MBS DRX 107
5.3.2 Power Saving Factor (PSF) 108
5.3.3 Resource Usage 109
5.4 PSF Optimization for MBS DRX 110
5.5 MBS DRX Configurations 112
5.5.1 Offset Unaligned Collective Single PTM 112
5.5.2 Offset Aligned Collectively Single PTM 113
5.5.3 All-PTP Transmission 113
5.5.4 Offset and Length Aligned Multi-PTM Group Transmission 115
5.6 Evaluation and Observation 117
5.6.1 Evaluation Methodology 118
5.6.2 Effect of MBS Service Latency Requirement 𝑙𝑀 118
5.6.3 Effect of MBS Packet Arrival Rate 𝜆𝑀 120
5.6.4 Effect of Unicast Packet Arrival Rate Distribution Λ𝑈 121
5.6.5 Resource Usage 123
5.6.6 Complexity and Execution Time 125
5.6.7 Summary of Observations and Cost Analysis 126
5.7 Summary: DRX Design for NR MBS 127
Chapter 6. Conclusions 129
6.1 Summary of Insights and the Proposed Algorithms 129
6.2 Future Work and Design Principles 131
6.3 Summary 133
Bibliography 135
-
dc.language.isoen-
dc.subject不連續接收zh_TW
dc.subject節電技術zh_TW
dc.subject資源管理zh_TW
dc.subject新無線電技術zh_TW
dc.subject廣播群播服務zh_TW
dc.subject服務連續性zh_TW
dc.subjectMulticast and Broadcast Service (MBS)en
dc.subjectService continuityen
dc.subjectPower savingen
dc.subjectResource managementen
dc.subjectNew Radio (NR)en
dc.subjectDiscontinuous reception (DRX)en
dc.title蜂巢式無線網路中廣播群播系統之設計:資源管理、服務連續性及節能方法zh_TW
dc.titleMulticast and Broadcast System in Cellular Network: Resource Management, Service Continuity, and Power Savingen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee王蒞君;張仲儒;謝欣霖;鄭瑞光;徐家俊zh_TW
dc.contributor.oralexamcommitteeLi-Chun Wang;Chung-Ju Chang;Shin-Lin Shieh;Ray-Guang Cheng;Alex Hsuen
dc.subject.keyword新無線電技術,廣播群播服務,資源管理,服務連續性,節電技術,不連續接收,zh_TW
dc.subject.keywordNew Radio (NR),Multicast and Broadcast Service (MBS),Resource management,Service continuity,Power saving,Discontinuous reception (DRX),en
dc.relation.page144-
dc.identifier.doi10.6342/NTU202300110-
dc.rights.note未授權-
dc.date.accepted2023-02-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
3.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved