請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87295完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹恒偉 | zh_TW |
| dc.contributor.advisor | Hen-Wai Tsao | en |
| dc.contributor.author | 伍勝騰 | zh_TW |
| dc.contributor.author | Sheng-Teng Wu | en |
| dc.date.accessioned | 2023-05-18T16:54:02Z | - |
| dc.date.available | 2023-10-05 | - |
| dc.date.copyright | 2023-05-14 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] R. Wang, B. Chen, N. Zheng, and J. C. Principe, “A variable step-size adaptive algorithm under maximum correntropy criterion,” in 2015 International joint conference on neural networks (IJCNN). IEEE, 2015, pp. 1–5. [2] A. Singh and J. C. Principe, “Kernel width adaptation in information theoretic cost functions,” in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010, pp. 2062–2065. [3] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition letters, vol. 27, no. 8, pp. 861–874, 2006. [4] “Cisco global cloud index: Forecast and methodology, 2016–2021 white paper, ”https://www.cisco.com/c/en/us/solutions/collateral/service-provider/globalcloud-index-gci/white-paper-c11-738085.html, accessed: 2022-08-21. [5] D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: The evolution of data to life-critical,” Don't Focus on Big Data, vol. 2, 2017. [6] K. Wang, Y. Shao, L. Xie, J. Wu, and S. Guo, “Adaptive and fault-tolerant data processing in healthcare iot based on fog computing,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 1, pp. 263–273, 2020.[7] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Adam: An adaptive monitoring framework for sampling and filtering on iot devices,” in 2015 IEEE International Conference on Big Data (Big Data), 2015, pp. 717–726. [8] Y. Fathy, P. Barnaghi, and R. Tafazolli, “An online adaptive algorithm for change detection in streaming sensory data,” IEEE Systems Journal, vol. 13, no. 3, pp. 2688–2699, 2018. [9] V. Ingle, S. Kogon, and D. Manolakis, Statisical and adaptive signal processing. Artech, 2005. [10] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON Convention Record, pp. 96–104, 1960, reprinted in Neurocomputing MIT Press, 1988 . [11] S. Haykin and B. Widrow, “Least-mean-square adaptive filters,” 2003. [12] J. C. Principe, Information theoretic learning: Renyi’s entropy and kernel perspectives. Springer Science & Business Media, 2010. [13] W. Liu, P. P. Pokharel, and J. C. Principe, “Correntropy: Properties and applications in non-gaussian signal processing,” IEEE Transactions on signal processing, vol. 55, no. 11, pp. 5286–5298, 2007. [14] J. C. Principe, D. Xu, J. Fisher, and S. Haykin, “Information theoretic learning,” Unsupervised adaptive filtering, vol. 1, pp. 265–319, 2000. [15] D.-Y. Yeung and C. Chow, “Parzen-window network intrusion detectors,” in Object recognition supported by user interaction for service robots, vol. 4. IEEE, 2002, pp. 385–388.[16] W. Liu, P. P. Pokharel, and J. C. Principe, “Correntropy: A localized similarity measure,” in The 2006 IEEE international joint conference on neural network proceedings. IEEE, 2006, pp. 4919–4924. [17] B. Chen and J. C. Príncipe, “Maximum correntropy estimation is a smoothed map estimation,” IEEE Signal Processing Letters, vol. 19, no. 8, pp. 491–494, 2012. [18] B. Chen, L. Xing, J. Liang, N. Zheng, and J. C. Príncipe, “Steady-state meansquare error analysis for adaptive filtering under the maximum correntropy criterion,” IEEE Signal Processing Letters, vol. 21, no. 7, pp. 880–884, 2014. [19] R. H. Kwong and E. W. Johnston, “A variable step size LMS algorithm,” IEEE Transactions on signal processing, vol. 40, no. 7, pp. 1633–1642, 1992. [20] Y.-R. Chien, “Variable regularization affine projection sign algorithm in impulsive noisy environment,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 102, no. 5, pp. 725–728, 2019. [21] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural networks, vol. 6, no. 4, pp. 525–533, 1993. [22] W. Wang, J. Zhao, H. Qu, B. Chen, and J. C. Principe, “A switch kernel width method of correntropy for channel estimation,” in 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015, pp. 1–7. [23] B. W. Silverman,Density estimation for statistics and data analysis. Routledge, 2018. [24] F. Huang, J. Zhang, and S. Zhang, “Adaptive filtering under a variable kernel width maximum correntropy criterion,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 10, pp. 1247–1251, 2017. [25] L. Shi, H. Zhao, and Y. Zakharov, “An improved variable kernel width for maximum correntropy criterion algorithm,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 7, pp. 1339–1343, 2018. [26] L. Shi and Y. Lin, “Convex combination of adaptive filters under the maximum correntropy criterion in impulsive interference,” IEEE Signal Processing Letters, vol. 21, no. 11, pp. 1385–1388, 2014. [27] J. Arenas-García, A. R. Figueiras-Vidal, and A. H. Sayed, “Steady state performance of convex combinations of adaptive filters,” in Proceedings.(ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., vol. 4. IEEE, 2005, pp. iv–33. [28] C. Lu, W. Feng, Y. Zhang, and Z. Li, “Maximum mixture correntropy based outlier-robust nonlinear filter and smoother,” Signal Processing, vol. 188, nov 2021. [29] R. R. Davis and O. Clavier, “Impulsive noise: A brief review,” Hearing research, vol. 349, pp. 34–36, 2017. [30] 國家教育研究院雙語詞彙、學術名詞暨辭書資訊網, “Impulsive noise - 脈衝性噪音,” 2002. [Online]. Available: https://terms.naer.edu.tw/detail/1318529/ (Accessd on: 2022/06/01). [31] T. Shongwe, A. J. H. Vinck, and H. C. Ferreira, “A study on impulse noise and its models,” SAIEE Africa Research Journal, vol. 106, no. 3, pp. 119–131, 2015. [32] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in broad-band powerline communications,” IEEE Transactions on Electromagnetic compatibility, vol. 44, no. 1, pp. 249–258, 2002. [33] O. H. Clavier, A. J. Dietz, J. C. Wilbur, E. L. Zechmann, and W. J. Murphy,“Measurements of bone-conducted impulse noise from weapons using a head simulator,” The Journal of the Acoustical Society of America, vol. 132, no. 3, pp. 2014–2014, 2012. [34] P. Li and X. Yu, “Active noise cancellation algorithms for impulsive noise,”Mechanical systems and signal processing, vol. 36, no. 2, pp. 630–635, 2013. [35] T. Shao, Y. R. Zheng, and J. Benesty, “An affine projection sign algorithm robust against impulsive interferences,” IEEE Signal Processing Letters, vol. 17, no. 4, pp. 327–330, 2010. [36] P. G. Georgiou, P. Tsakalides, and C. Kyriakakis, “Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise,”IEEE Trans. Multimedia, vol. 1, no. 3, pp. 291–301, Sep. 1999. [37] S. R. Kim and A. Efron, “Adaptive robust impulse noise filtering,” IEEE Transactions on Signal Processing, vol. 43, no. 8, pp. 1855–1866, 1995. [38] P. S. R. Diniz, “On data-selective adaptive filtering,” IEEE Transactions on Signal Processing, vol. 66, no. 16, pp. 4239–4252, 2018. [39] J. J. Shynk, Probability, random variables, and random processes: theory and signal processing applications. John Wiley & Sons, 2012.[40] M. V. S. Lima and P. S. R. Diniz, “Steady-state mse performance of the setmembership affine projection algorithm,” Circuits Syst. Signal Process., vol. 32, no. 4, pp. 1811–1837, Aug. 2013. [41] S. Gollamudi, S. Nagaraj, S. Kapoor, and Y.-F. Huang, “Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size,” IEEE Signal Processing Letters, vol. 5, no. 5, pp. 111–114, 1998. [42] P. S. Diniz and S. Werner, “Set-membership binormalized data-reusing LMSalgorithms, ” IEEE Transactions on Signal Processing, vol. 51, no. 1, pp. 124–134, 2003. [43] D. Berberidis, V. Kekatos, and G. B. Giannakis, “Online censoring for largescale regressions with application to streaming big data,” IEEE Transactions on Signal Processing, vol. 64, no. 15, pp. 3854–3867, 2016. [44] D. Romero, D. Berberidis, and G. B. Giannakis, “Quickest convergence of online algorithms via data selection,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 6185–6189.[45] Z. Wang, Z. Yu, Q. Ling, D. Berberidis, and G. B. Giannakis, “Distributed recursive least-squares with data-adaptive censoring,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 5860–5864. [46] P. S. Diniz, “Data-selective adaptive filtering,” in Adaptive Filtering. Springer, 2013, pp. 249–304. [47] Y.-R. Chien and C.-H. Yu, “Impulse-noise-tolerant data-selective lms algorithm,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 105, no. 2, pp. 114–117, 2022. [48] H. Sira-Ramírez, Sliding mode control: the delta-sigma modulation approach. Birkhäuser, 2015. [49] J. Benesty, H. Rey, L. R. Vega, and S. Tressens, “A nonparametric VSS NLMS algorithm,” IEEE Signal Processing Letters, vol. 13, no. 10, pp. 581–584, 2006. [50] J. J. Jeong, “A robust affine projection algorithm against impulsive noise,” IEEE Signal Processing Letters, vol. 27, pp. 1530–1534, 2020. [51] W. Ma, B. Chen, J. Duan, and H. Zhao, “Diffusion maximum correntropy criterion algorithms for robust distributed estimation,” Digital Signal Processing, vol. 58, pp. 10–19, 2016. [52] F. Huang, J. Zhang, and S. Zhang, “NLMS algorithm based on a variable parameter cost function robust against impulsive interferences,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 5, pp. 600–604, 2016. [53] W. Wang, J. Zhao, H. Qu, B. Chen, and J. C. Principe, “An adaptive kernel width update method of correntropy for channel estimation,” in 2015 IEEE international conference on digital signal processing (DSP). IEEE, 2015, pp.916–920. [54] S. Zhou and H. Zhao, “Statistics variable kernel width for maximum correntropy criterion algorithm,” Signal Processing, vol. 176, p. 107589, 2020.[55] G. Gui, W. Peng, and F. Adachi, “Improved adaptive sparse channel estimation based on the least mean square algorithm,” in 2013 IEEE Wireless Communications and Networking Conference (WCNC), 2013, pp. 3105–3109. [56] ——, “Improved adaptive sparse channel estimation based on the least mean square algorithm,” in 2013 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2013, pp. 3105–3109. [57] T. Park, M. Lee, M. Kim, and P. Park, “A filtered-x VSS-NLMS active noise control algorithm robust against impulsive noise and noisy inputs.” in 2019 12th Asian Control Conference (ASCC). IEEE, 2019, pp. 789–792. [58] D. Guicking, “On the invention of active noise control by paul lueg,” The Journal of the Acoustical Society of America, vol. 87, no. 5, pp. 2251–2254, 1990. [59] J. C. Burgess, “Active adaptive sound control in a duct: A computer simulation,” The Journal of the Acoustical Society of America, vol. 70, no. 3, pp. 715–726, 1981. [60] S. Kuo and D. Morgan, “Active noise control: a tutorial review,” Proceedings of the IEEE, vol. 87, no. 6, pp. 943–973, 1999. [61] S. M. Kuo and D. R. Morgan, Active noise control systems. Wiley, New York, 1996, vol. 4. [62] C. H. Gerhold, “Active control of fan-generated tone noise,” AIAA journal, vol. 35, no. 1, pp. 17–22, 1997. [63] S. M. Kuo and D. Vijayan, “A secondary path modeling technique for active noise control systems,” IEEE Transactions on Speech and Audio rocessing, vol. 5, no. 4, pp. 374–377, 1997. [64] X. Sun, S. M. Kuo, and G. Meng, “Adaptive algorithm for active control of impulsive noise,” Journal of sound and vibration, vol. 291, no. 1-2, pp. 516–522, 2006. [65] M. T. Akhtar and W. Mitsuhashi, “A modified normalized FxLMS algorithm for active control of impulsive noise,” in 2010 18th European Signal Processing Conference, 2010, pp. 1–5. [66] ——, “Improved adaptive algorithm for active noise control of impulsive noise,”in 2008 51st Midwest Symposium on Circuits and Systems, 2008, pp. 330–333. [67] D. W. Kim, M. Lee, and P. Park, “A robust active noise control system with stepsize scaler in impulsive noise environments,” in 2019 Chinese Control Conference (CCC). IEEE, 2019, pp. 3358–3362. [68] D. W. Kim, J. Lee, H.-W. Na, C. Park, and P. Park, “Novel active noise control based on a robust filtered-x normalized least mean square sign algorithm against large measurement and impulsive noises,” in 2020 20th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2020, pp. 617–621. [69] M. T. Akhtar, “Binormalized data-reusing adaptive filtering algorithm for active control of impulsive sources,” Digital Signal Processing, vol. 49, pp. 56–64, 2016. [70] X. Wu, J. Liu, and B. Fan, “An improved hybrid active noise control system,”in 2018 International Conference on Network, Communication, Computer Engineering (NCCE 2018). Atlantis Press, 2018, pp. 275–280. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87295 | - |
| dc.description.abstract | 在這個大數據的世代,演算法也必須具有資料選擇的能力。然而,傳統的資料選擇策略會使可適性演算法失去追蹤能力,並在有脈衝干擾的環境無法有效的做出資料選擇。主動噪音控制系統中大多數演算法也同樣在脈衝性量測雜訊的干擾下,噪音消除能力會大幅下降。本研究提出了一個基於相關熵的資料選擇策略,利用傳統資料選擇策略中,因為創新資訊量不足而不對資料進行更新的概念,決定臨界值上界。透過梯度上升法最大化相關熵來推導出最佳的核寬度,藉由相關熵當中指數函數的特性結合可變的核寬度調整相關熵對於判斷脈衝干擾的靈敏度,並使用 ROC 曲線法來決定臨界值下界,再者觀察核寬度的變化量提出一個可改善因系統改變造成追蹤性能降低的機制,最後將本論文提出的資料選擇策略運用在主動噪音控制應用中。本研究是使用數值模擬的方式來驗證演算法的性能,並使用三種不同強度的白努力高斯脈衝雜訊測試不同環境下演算法的穩定性,且應用在系統識別架構及主動式噪音控制中。在系統識別的應用中,主要是以正規化均方偏差做為評量指標,且考慮了白高斯輸入、彩色高斯輸入兩種不同的輸入訊號及稀疏通道環境下的模擬;主動式噪音控制中,主要是以平均噪音消除率來做為評量指標,且考慮了白高斯噪音、彩色高斯噪音、複合正弦噪音混和白高斯雜訊三種類型的信號。模擬結果顯示,本論文提出的資料選擇策略相較於傳統的資料選擇,不僅能夠在具有脈衝干擾的情況下僅用 20% 的資料點即能達到與原演算法相同的系統效能,在追蹤速度方面也有顯著的提升,更新率的表現更是能將最大誤差率維持在 0.15 以內。 | zh_TW |
| dc.description.abstract | In the age of big data, algorithms must also be capable of data selection. However, traditional data selective strategies cause the adaptable algorithms to lose tracking capability, and fail to make effective data selection in environments with impulse noise interference. Most of the algorithms in active noise control systems also suffer from a significant degradation in noise cancellation due to the interference of impulsive noises. This study proposes a data selection strategy based on correntropy: by exploiting the concept of not updating data due to insufficient amount of innovative information as seen in the traditional data selection strategy, an upper limit of the threshold value can be determined.The optimal kernel width is derived by maximizing correntropy through the gradient ascent method. The correntropy sensitivity to determine impulse noise can be adjusted by combining the characteristics of the exponential function in correntropy and variable kernel width. Furthermore, the lower threshold can be determined by using the ROC curve method. Additionally, a mechanism that improves the degradation of tracking performance due to system changes is proposed through kernel width variation observation. Lastly, the data selection strategy proposed in this paper is applied to active noise control applications. This study uses numerical simulations to verify the performance of the algorithm, and the stability of the algorithm is tested under three different Bernoulli Gaussian impulsive noise intensity environments. The algorithm is then further applied to system identification and active noise control. In the system identification application, the normalized mean square deviation is used as the main evaluation metric. This application also considers two different input signals, white Gaussian input and color Gaussian input, in the sparse channel environment. Whereas, in active noise control, the average noise ratio is used as the main evaluation metric; and considers three types of signals: white Gaussian noise, color Gaussian noise, and complex sinusoidal noise mixing white Gaussian noise. Simulation results show, by using merely 20% data points under impulsive noise interference, the data selection strategy proposed in this paper achieves the same system performance as the original algorithm. It also significantly improves in terms of tracking speed and maximum error rate maintenance, keeping the latter within 0.15. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:54:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T16:54:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄 Page 誌謝 i 摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 第二章 可適性演算法 4 2.1 系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 最小均方演算法 (LMS) . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 最小誤差熵演算法 (MEE) . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 相關熵介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 最大相關熵演算法 (MCC) . . . . . . . . . . . . . . . . . . . . . . . 9 2.5.1 可變步階函數 (variable step size) . . . . . . . . . . . . . . . . . 10 2.5.2 時變核寬度 (Variable kernel width) . . . . . . . . . . . . . . . . 13 2.5.3 凸結合濾波器 (convex combine) . . . . . . . . . . . . . . . . . . 14 第三章 傳統資料選擇介紹 18 3.1 系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 脈衝性噪音介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 脈衝雜訊數學模型 . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 傳統資料選擇介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 更新機率與臨界值的選擇 . . . . . . . . . . . . . . . . . . . . . 23 3.3 傳統資料選擇框架下演算法回顧 . . . . . . . . . . . . . . . . . . . . 24 3.3.1 DS-LMS 演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 DS-IN-tolerance LMS 演算法 . . . . . . . . . . . . . . . . . . . 26 3.4 Diniz 框架所面臨之問題 . . . . . . . . . . . . . . . . . . . . . . . . 27 第四章 基於相關熵的資料選擇 29 4.1 基於相關熵的創新度評估 . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 基於相關熵與基於誤差之比較 . . . . . . . . . . . . . . . . . . . 30 4.1.2 臨界值上下限的評估 . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 最佳核寬度設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 強健化的設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.2 追蹤性能的判斷 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 臨界值抉擇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 複雜度分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 第五章 系統模擬結果分析 42 5.1 模擬環境介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1.1 性能判斷指標 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 演算法性能比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2.1 實驗一:白高斯輸入 (White Guassian input) . . . . . . . . . . 47 5.2.2 實驗二:彩色輸入訊號 (Colored input) . . . . . . . . . . . . . . 51 5.2.3 實驗三:稀疏通道環境 (Sparse channel) . . . . . . . . . . . . . 57 5.3 追蹤性能測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.1 既有可變核寬度演算法表現探討 . . . . . . . . . . . . . . . . . . 61 第六章 工程應用: 主動噪音消除 69 6.1 噪音控制介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.1 ANC 系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.2 前饋式 ANC 架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2.1 FxLMS 演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2.2 脈衝環境下 ANC 演算法回顧 . . . . . . . . . . . . . . . . . . . 76 6.3 實驗結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.1 模擬環境介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.2 白高斯程序輸入信號 (White Gaussian process input) . . . . . . 79 6.3.3 彩色高斯程序輸入 (Colored Gaussian process input) . . . . . . 80 6.3.4 複合正弦波(sinusoidal noise)混和白高斯程序噪音 . . . . . . 84 第七章 結論與未來展望 91 7.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 參考文獻 94 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 脈衝式雜訊干擾 | zh_TW |
| dc.subject | 資料選擇 | zh_TW |
| dc.subject | 主動噪音消除 | zh_TW |
| dc.subject | 最小均方演算法 | zh_TW |
| dc.subject | 最大相關熵準則 | zh_TW |
| dc.subject | active noise control (ANC) | en |
| dc.subject | maximum correntropy criterion (MCC) | en |
| dc.subject | impulsive noise | en |
| dc.subject | least mean square (LMS) | en |
| dc.subject | data selective | en |
| dc.title | 以相關熵為基礎之資料選擇可適性濾波演算法設計 | zh_TW |
| dc.title | A Correntropy-Based Data Selective Adaptive Filtering | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 錢膺仁 | zh_TW |
| dc.contributor.coadvisor | Ying-Ren Chen | en |
| dc.contributor.oralexamcommittee | 張大中;劉俊麟 | zh_TW |
| dc.contributor.oralexamcommittee | Dah-Chung Chang;Chun-Lin Liu | en |
| dc.subject.keyword | 資料選擇,最大相關熵準則,脈衝式雜訊干擾,最小均方演算法,主動噪音消除, | zh_TW |
| dc.subject.keyword | data selective,maximum correntropy criterion (MCC),impulsive noise,least mean square (LMS),active noise control (ANC), | en |
| dc.relation.page | 102 | - |
| dc.identifier.doi | 10.6342/NTU202204256 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-10-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2023-10-05 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 5.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
