請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87282完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任 | zh_TW |
| dc.contributor.advisor | Yuh-Renn Wu | en |
| dc.contributor.author | 蔡宗印 | zh_TW |
| dc.contributor.author | TSUNG-YIN TSAI | en |
| dc.date.accessioned | 2023-05-18T16:49:15Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-19 | - |
| dc.identifier.citation | [1] D. N. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche. Effective con- fining potential of quantum states in disordered media. Physical review letters, 116(5):056602, 2016.
[2] C.Ataca,H.Sahin,E.Akturk,andS.Ciraci.Mechanicalandelectronicpropertiesof mos2 nanoribbons and their defects. Journal of Physical Chemistry C, 115(10):3934– 3941, 2011. [3] F. Bloch. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik, 52(7):555–600, 1929. [4] P. E. Blöchl. Projector augmented-wave method. Physical review B, 50(24):17953, 1994. [5] D. Bohm. A suggested interpretation of the quantum theory in terms of” hidden” variables. I. Physical review, 85(2):166, 1952. [6] P. Bolshakov, A. Khosravi, P. Zhao, P. K. Hurley, C. L. Hinkle, R. M. Wallace, and C. D. Young. Dual-gate mos2 transistors with sub-10 nm top-gate high-k dielectrics. Applied Physics Letters, 112(25):253502, 2018. [7] C. Chen, M. Hargis, J. Woodall, M. Melloch, J. Reynolds, E. Yablonovitch, and W. Wang. Ghz bandwidth gaas light-emitting diodes. Applied physics letters, 74(21):3140–3142, 1999. [8] K.-T. Chen, R.-Y. He, C.-F. Lee, M.-T. Wu, and S.-T. Chang. Compact conduction band model for transition-metal dichalcogenide alloys. Microelectronics Reliability, 83:223–229, 2018. [9] S. Chen, S. Kim, W. Chen, J. Yuan, R. Bashir, J. Lou, A. M. van der Zande, and W. P. King. Monolayer mos2 nanoribbon transistors fabricated by scanning probe lithography. Nano Letters, 19(3):2092–2098, 2019. [10] S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, et al. Inas/gaas quantum-dot superluminescent light- emitting diode monolithically grown on a si substrate. Acs Photonics, 1(7):638–642, 2014. [11] S.-F. Chen and Y.-R. Wu. A design of intermediate band solar cell for photon ratchet with multi-layer mos2 nanoribbons. Applied Physics Letters, 110(20):201109, 2017. [12] S.-F.ChenandY.-R.Wu.Electronicpropertiesofmos2nanoribbonwithstrainusing tight-binding method. Physica Status Solidi (b), 254(2):1600565, 2017. [13] T. Chen, Y. Sheng, Y. Zhou, R.-J. Chang, X. Wang, H. Huang, Q. Zhang, L. Hou, and J. H. Warner. High photoresponsivity in ultrathin 2d lateral graphene: Ws2: graphene photodetectors using direct cvd growth. ACS Applied Materials & Interfaces, 11(6):6421–6430, 2019. [14] Y.Chen,J.Xi,D.O.Dumcenco,Z.Liu,K.Suenaga,D.Wang,Z.Shuai,Y.-S.Huang, and L. Xie. Tunable band gap photoluminescence from atomically thin transition- metal dichalcogenide alloys. ACS Nano, 7(5):4610–4616, 2013. [15] Z. Cheng, Y. Yu, S. Singh, K. Price, S. G. Noyce, Y.-C. Lin, L. Cao, and A. D. Franklin. Immunity to contact scaling in mos2 transistors using in situ edge contacts. Nano Letters, 19(8):5077–5085, 2019. [16] W. Choi, D. Yin, S. Choo, S.-H. Jeong, H.-J. Kwon, Y. Yoon, and S. Kim. Low- temperature behaviors of multilayer mos2 transistors with ohmic and schottky con- tacts. Applied Physics Letters, 115(3):033501, 2019. [17] J. Del Alamo and M. Somerville. Breakdown in millimeter-wave power inp hemts: a comparison with gaas phemt’s. IEEE Journal of Solid-State Circuits, 34(9):1204– 1211, 1999. [18] G.Dennis,M.A.deGosson,andB.J.Hiley.Bohm’squantumpotentialasaninternal energy. Physics Letters A, 379(18-19):1224–1227, 2015. [19] M. A. Der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo. Efficiency drop in green ingan/gan light emitting diodes: The role of random alloy fluctuations. Physical review letters, 116(2):027401, 2016. [20] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, et al. Mos2 transistors with 1-nanometer gate lengths. Science, 354(6308):99–102, 2016. [21] P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, et al. 282-nm algan-based deep ultraviolet light-emitting diodes with im- proved performance on nano-patterned sapphire substrates. Applied Physics Letters, 102(24):241113, 2013. [22] M. Filoche and S. Mayboroda. Universal mechanism for anderson and weak localization. Proceedings of the National Academy of Sciences, 109(37):14761–14766, 2012. [23] M. Filoche, M. Piccardo, Y.-R. Wu, C.-K. Li, C. Weisbuch, and S. Mayboroda. Lo- calization landscape theory of disorder in semiconductors. i. theory and modeling. Physical Review B, 95(14):144204, 2017. [24] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. International journal for numerical methods in engineering, 79(11):1309–1331, 2009. [25] J. Gusakova, V. Gusakov, and B. K. Tay. Dft study of structural and electronic properties of mos2 (1- x) se2x alloy (x= 0.25). Journal of Applied Physics, 123(16):161594, 2018. [26] J.Gusakova,X.Wang,L.L.Shiau,A.Krivosheeva,V.Shaposhnikov,V.Borisenko, V. Gusakov, and B. K. Tay. Electronic properties of bulk and monolayer tmds: Theoretical study within dft framework (gvj-2e method). Physica Status Solidi (a), 214(12):1700218, 2017. [27] J. Harrison and J. Hauser. Theoretical calculations of electron mobility in ternary iii-v compounds. Journal of Applied Physics, 47(1):292–300, 1976. [28] M. R. Hasan, A. Motayed, M. S. Fahad, and M. V. Rao. Fabrication and comparative study of dc and low frequency noise characterization of gan/al- gan based mos-hemt and hemt. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 35(5):052202, 2017. [29] M.Hassan,L.E.Larson,V.W.Leung,D.F.Kimball,andP.M.Asbeck.Awideband cmos/gaas hbt envelope tracking power amplifier for 4g lte mobile terminal applica- tions. IEEE Transactions on Microwave Theory and Techniques, 60(5):1321–1330, 2012. [30] X. He, H. Li, Z. Zhu, Z. Dai, Y. Yang, P. Yang, Q. Zhang, P. Li, U. Schwingen- schlogl, and X. Zhang. Strain engineering in monolayer ws2, mos2, and the ws2/ mos2 heterostructure. Applied Physics Letters, 109(17):173105, 2016. [31] H. Hirayama, S. Fujikawa, and N. Kamata. Recent progress in algan-based deep-uv leds. Electronics and Communications in Japan, 98(5):1–8, 2015. [32] P. Kent and A. Zunger. Evolution of iii-v nitride alloy electronic structure: the lo- calized to delocalized transition. Physical review letters, 86(12):2613, 2001. [33] G.-S. Kim, S.-H. Kim, J. Park, K. H. Han, J. Kim, and H.-Y. Yu. Schottky bar- rier height engineering for electrical contacts of multilayered mos2 transistors with reduction of metal-induced gap states. ACS Nano, 12(6):6292–6300, 2018. [34] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16):11169, 1996. [35] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16):11169, 1996. [36] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1):558, 1993. [37] N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semen- ova, M. Maximov, Y. M. Shernyakov, N. Kryzhanovskaya, et al. High performance quantum dot lasers on gaas substrates operating in 1.5 μm range. Electronics Letters, 39(15):1126–1128, 2003. [38] T. Lenka and A. Panda. Characteristics study of 2deg transport properties of algan/ gan and algaas/gaas-based hemt. Semiconductors, 45(5):650–656, 2011. [39] C.-K. Li, M. Piccardo, L.-S. Lu, S. Mayboroda, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch, M. Filoche, and Y.-R. Wu. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. Physical Review B, 95(14):144206, 2017. [40] G. Li, W. Wang, W. Yang, Y. Lin, H. Wang, Z. Lin, and S. Zhou. Gan-based light- emitting diodes on various substrates: a critical review. Reports on Progress in Physics, 79(5):056501, 2016. [41] S. Li, X. Chen, F. Liu, Y. Chen, B. Liu, W. Deng, B. An, F. Chu, G. Zhang, S. Li, et al. Enhanced performance of a cvd mos2 photodetector by chemical in situ n-type doping. ACS Applied Materials & Interfaces, 11(12):11636–11644, 2019. [42] Y. Li, Z. Zhou, S. Zhang, and Z. Chen. Mos2 nanoribbons: high stability and un- usual electronic and magnetic properties. Journal of the American Chemical Society, 130(49):16739–16744, 2008. [43] G.-B.Liu,W.-Y.Shan,Y.Yao,W.Yao,andD.Xiao.Three-bandtight-bindingmodel for monolayers of group-vib transition metal dichalcogenides. Physical Review B, 88(8):085433, 2013. [44] J. Liu, X. Chen, Q. Wang, M. Xiao, D. Zhong, W. Sun, G. Zhang, and Z. Zhang. Ultrasensitive monolayer mos2 field-effect transistor based dna sensors for screening of down syndrome. Nano Letters, 19(3):1437–1444, 2019. [45] T.S.Loudon.LanczosApproximationofJointSpectralQuantitiesandApplications. PhD thesis, University of Minnesota, 2021. [46] M. C. Lucking, K. Beach, and H. Terrones. Large second harmonic generation in alloyed tmds and boron nitride nanostructures. Scientific Reports, 8(1):1–13, 2018. [47] G. Ludwig and R. Watters. Drift and conductivity mobility in silicon. Physical Review, 101(6):1699, 1956. [48] J. Marsh. Effects of compositional clustering on electron transport in in0. 53ga0. 47as. Applied Physics Letters, 41(8):732–734, 1982. [49] M. G. Menezes and R. B. Capaz. Tight binding parametrization of few-layer black phosphorus from first-principles calculations. Computational Materials Science, 143:411–417, 2018. [50] R. Menozzi. Hot electron effects and degradation of gaas and inp hemts for mi- crowave and millimetre-wave applications. Semiconductor science and technology, 13(10):1053, 1998. [51] U. K. Mishra, P. Parikh, and Y.-F. Wu. Algan/gan hemts-an overview of device operation and applications. Proceedings of the IEEE, 90(6):1022–1031, 2002. [52] M. Nestoklon, R. Benchamekh, and P. Voisin. Virtual crystal description of iii–v semiconductor alloys in the tight binding approach. Journal of Physics: Condensed Matter, 28(30):305801, 2016. [53] D.-P. Nguyen, N. Regnault, R. Ferreira, and G. Bastard. Alloy effects in ga1- xinxn/ gan heterostructures. Solid state communications, 130(11):751–754, 2004. [54] T. Nishida, H. Saito, and N. Kobayashi. Efficient and high-power algan-based ultra- violet light-emitting diode grown on bulk gan. Applied Physics Letters, 79(6):711– 712, 2001. [55] F. Ouyang, X. Ni, Z. Yang, Y. Chen, X. Zheng, and X. Xiong. Effects of edge hydro- genation on structural stability, electronic, and magnetic properties of ws2 nanorib- bons. Journal of Applied Physics, 114(21):213701, 2013. [56] Ü. Ozgur, H. Liu, X. Li, X. Ni, and H. Morkoc. Gan-based light-emitting diodes: Efficiency at high injection levels. Proceedings of the IEEE, 98(7):1180–1196, 2010. [57] P.Paletti,S.Fathipour,M.Remškar,andA.Seabaugh.Quantitative,experimentally- validated, model of mos2 nanoribbon schottky field-effect transistors from sub- threshold to saturation. Journal of Applied Physics, 127(6):065705, 2020. [58] J. Piprek. Efficiency models for gan-based light-emitting diodes: Status and chal- lenges. Materials, 13(22):5174, 2020. [59] E. Ridolfi, L. R. Lima, E. R. Mucciolo, and C. H. Lewenkopf. Electronic transport in disordered mos 2 nanoribbons. Physical Review B, 95(3):035430, 2017. [60] D. Seo, D. Y. Lee, J. Kwon, J. J. Lee, T. Taniguchi, K. Watanabe, G.-H. Lee, K. S. Kim, J. Hone, Y. D. Kim, et al. High-performance monolayer mos2 field-effect transistor with large-scale nitrogen-doped graphene electrodes for ohmic contact. Applied Physics Letters, 115(1):012104, 2019. [61] M. Seo, M. Urteaga, J. Hacker, A. Young, Z. Griffith, V. Jain, R. Pierson, P. Rowell, A. Skalare, A. Peralta, et al. Inp hbt ic technology for terahertz frequencies: Funda- mental oscillators up to 0.57 thz. IEEE Journal of Solid-State Circuits, 46(10):2203– 2214, 2011. [62] J. C. Slater and G. F. Koster. Simplified lcao method for the periodic potential prob- lem. Physical Review, 94(6):1498, 1954. [63] P. Smith, P. Chao, P. Ho, K. Duh, S. Liu, C. Creamer, W. Kopp, J. Komiak, J. Ballingall, and A. Swanson. Application of gaas and inp-based hemt technology to milsatcom systems. In Proceedings of MILCOM’95, volume 2, pages 731–736. IEEE, 1995. [64] P. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry, et al. Advances in inp hemt technology for high frequency applications. In Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM (Cat. No. 01CH37198), pages 9–14. IEEE, 2001. [65] H. Sugawara, M. Ishikawa, and G. Hatakoshi. High-efficiency ingaalp/gaas visible light-emitting diodes. Applied physics letters, 58(10):1010–1012, 1991. [66] C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson. Monolithic gaas/ingap nanowire light emitting diodes on silicon. Nanotechnology, 19(30):305201, 2008. [67] K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui. Gaas/algaas core mul- tishell nanowire-based light-emitting diodes on si. Nano letters, 10(5):1639–1644, 2010. [68] D. J. Trainer, A. V. Putilov, B. Wang, C. Lane, T. Saari, T.-R. Chang, H.-T. Jeng, H. Lin, X. Xi, J. Nieminen, et al. Moiré superlattices and 2d electronic proper- ties of graphite/mos2 heterostructures. Journal of Physics and Chemistry of Solids, 128:325–330, 2019. [69] T.-Y. Tsai, K. Michalczewski, P. Martyniuk, C.-H. Wu, and Y.-R. Wu. Application of localization landscape theory and the kꞏ p model for direct modeling of carrier transport in a type ii superlattice inas/inassb photoconductor system. Journal of Applied Physics, 127(3):033104, 2020. [70] M. Urteaga, Z. Griffith, M. Seo, J. Hacker, and M. J. Rodwell. Inp hbt technologies for thz integrated circuits. Proceedings of the IEEE, 105(6):1051–1067, 2017. [71] V. Ustinov and A. Zhukov. Gaas-based long-wavelength lasers. Semiconductor science and technology, 15(8):R41, 2000. [72] R. Wang, X. Zhou, X. Xu, J. Hu, and J. Pan. The indirect–direct band gap tuning in armchair mos2 nanoribbon by edge passivation. Journal of Physics D: Applied Physics, 50(9):095102, 2017. [73] C. Weisbuch, S. Nakamura, Y.-R. Wu, and J. S. Speck. Disorder effects in ni- tride semiconductors: impact on fundamental and device properties. Nanophotonics, 10(1):3–21, 2021. [74] W. Yan, H.-R. Fuh, Y. Lv, K.-Q. Chen, T.-Y. Tsai, Y.-R. Wu, T.-H. Shieh, K.-M. Hung, J. Li, D. Zhang, et al. Giant gauge factor of van der waals material based strain sensors. Nature communications, 12(1):1–9, 2021. [75] K. Yang, X. Wang, H. Li, B. Chen, X. Zhang, S. Li, N. Wang, H. Zhang, X. Huang, and W. Huang. Composition-and phase-controlled synthesis and applications of al- loyed phase heterostructures of transition metal disulphides. Nanoscale, 9(16):5102– 5109, 2017. [76] F. Zahid, L. Liu, Y. Zhu, J. Wang, and H. Guo. A generic tight-binding model for monolayer, bilayer and bulk mos2. AIP Advances, 3(5):052111, 2013. [77] N. Zhang, A. Surrente, M. Baranowski, D. Dumcenco, Y.-C. Kung, D. K. Maude, A. Kis, and P. Plochocka. Impact of photodoping on inter-and intralayer exci- ton emission in a mos2/mose2/mos2 heterostructure. Applied Physics Letters, 113(6):062107, 2018. [78] Y. Zhao, T.-Y. Tsai, G. Wu, C. Ó Coileáin, Y.-F. Zhao, D. Zhang, K.-M. Hung, C.- R. Chang, Y.-R. Wu, and H.-C. Wu. Graphene/sns2 van der waals photodetector with high photoresponsivity and high photodetectivity for broadband 365–2240 nm detection. ACS Applied Materials & Interfaces, 13(39):47198–47207, 2021. [79] Y. Zhou, W. Xu, Y. Sheng, H. Huang, Q. Zhang, L. Hou, V. Shautsova, and J. H. Warner. Symmetry-controlled reversible photovoltaic current flow in ultrathin all 2d vertically stacked graphene/mos2/ws2/graphene devices. ACS Applied Materials & Interfaces, 11(2):2234–2242, 2019. [80] J. Zou, L. Wang, and F. Chen. Improved performance of top-gated multilayer mos2 transistors with channel fully encapsulated by al2o3 dielectric. AIP Advances, 9(9):095061, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87282 | - |
| dc.description.abstract | 三五族半導體擁有直接能隙與高電子遷移率,所以它們被廣泛的應用在不同的領域,例如發光二極體、雷射與高電子遷移率電晶體。三族氮化物合金具有較寬的能隙,因此它們能被應用在可見光與紫外光波段的發光二極體與高電壓電子元件。然而過去的文獻指出合金擾動會影響三族氮化物合金的電子特性,但對常見的三五族半導體合金影響卻不高,例如砷化銦鎵、砷化鋁鎵與磷化銦鎵。因此這個論文會探討為什麼合金擾動的影響在三族氮化物合金比常見的三五族半導體重要很多。為了去研究合金擾動在三五族半導體合金的影響,三維的隨機擾動合金地圖被採用在我們的模型中,並且使用了Localization landscape理論與薛丁格模型來探討載子在三五族半導體合金的行為。我們藉由了Localization landscape模型計算出載子實際看到的等效的量子位能分佈。等效的量子位能分佈在常見的三五族半導體合金中看起來非常平坦,而在三族氮化物合金位能的擾動卻很明顯。為了進一步研究合金擾動,我們挑選了氮化銦鎵與砷化銦鎵分別作為三族氮化物與三五族常見半導體合金的代表。為了量化位能擾動的程度,我們計算了不同銦比例的位能分佈標準差,其結果顯示導電帶、價電帶與等效量子位能分佈的標準差隨著銦比例變化都是非對稱的,且它們的峰值都落在約三十百分比的銦比例。這個結果是由兩個因素組合造成的。第一是氮化銦鎵的能隙斜率最大值在銦比例最小的時候。第二是合金比例的擾動分佈在銦比例為五十個百分比時,其標準差最大。為了探討由於合金擾動造成載子被束縛的程度,我們利用了薛丁格模型來計算波函數的分佈。電子與電洞基態的機率密度分佈顯示了在銦比例為三十個百分比的砷化銦鎵看起來分佈非常均勻,而在相同銦比例的氮化銦鎵則看起來被侷限在一些特定的區域。特別是氮化銦鎵的電洞基態被幾乎完全地束縛在一個小區域。為了量化束縛的程度,我們計算了氮化銦鎵的電洞的參與比例(participation ratio)與侷限長度(localization length)隨著銦比例不同的變化。其結果顯示當銦的比例靠近三十個百分比時,氮化銦鎵有更多的電洞被束縛,這個結果與位能分佈的標準差趨勢一致。再來我們定義當侷限長度小於一半的飽和侷限長度時為束縛態,並計算電子與電洞在氮化銦鎵的束縛態狀態密度。因此這個研究顯示出了合金為擾在氮化物合金中的重要性。
除此之外這個論文還使用了全s、p與d軌域的緊密束縛模型來計算單層與扶手椅邊緣的奈米帶的二硫化鉬鎢合金。使用全s、p與d軌域的緊密束縛模型可以精準地抓到能帶的特性。為了取出二硫化鉬鎢合金的緊密束縛模型參數,我們利用密度泛函理論計算了單層二硫化鉬、二硫化鎢與二硫化鉬鎢的條紋結構的能帶。並藉由這些密度泛函理論能帶結果取出所需的緊密束縛模型參數。此外我們採用了隨機合金地圖在緊密束縛模型中。因此我們探討了隨機合金地圖的大小與考慮的隨機地圖數目對結果影響。再者我們分析了二硫化鉬鎢合金單層與扶手椅邊緣的奈米帶的電子特性,例如狀態密度、軌域分佈、等效質量與能隙等等。 | zh_TW |
| dc.description.abstract | III-V semiconductor alloys have been widely used in various fields. Due to their wide bandgap range, III-nitride alloys have been used in visible and ultraviolet light-emitting diodes and high-power electronic devices. This thesis studied why the effects of alloy disorder are much more significant in III-nitrides than in conventional III-V semiconductor alloys. To study the effects of alloy disorder in III-V alloys, the three-dimensional random alloy map was utilized in simulation models in this work. The localization landscape theory and Schrodinger solver were used to investigate the carrier behavior in III-V alloys. First, the localization landscape theory was used to calculate the effective quantum potential, which is the actual potential seen by carriers. The two-dimensional cross-section maps of landscape potentials are much flatter in conventional III-V semiconductor alloys than in III-nitrides alloys. To further study the effects of alloy disorder in III-nitrides and conventional III-V semiconductor alloys, the InGaN and InGaAs were selected to be references for III-nitrides and conventional III-V semiconductor alloys, respectively. To quantify the scale of potential fluctuations, standard deviations of the conduction band, valence band, and landscape potentials were calculated. The standard deviations of potentials are asymmetric with Indium (In) composition variation. In addition, peaks of standard deviations for potentials of InxGa1-xN and InxGa1-xAs are around 30% In composition. This implies that the effects of alloy disorder would be significant for InGaN-based green and red light-emitting diodes. The combination of two factors leads to the peaks at 30% In compositions. The first is the maximum slope of the bandgap at low In composition. The other reason is that In composition fluctuation is largest at 50% In composition. To study the localization degree of electrons and holes in InGaN and InGaAs, the Schrodinger solver was used to calculate electron and hole wavefunctions for InGaN and InGaAs. The probability densities of electron and hole ground states are much more uniform in In0.3Ga0.7As than in In0.3Ga0.7N. In addition, the hole ground state of In0.3Ga0.7N is almost fully localized. To quantify the localization degree, the participation ratio and localization length was calculated. Participation ratios and localization lengths of hole for InxGa1-xN in the range of 3% to 97% In composition showed that the number of localization states increases when the In composition is close to 30%. Half of the saturated localization length was selected to distinguish the localized and delocalized states and count the density of states of localized states for electron and hole of InGaN. Thus, this study demonstrated the importance of considering the effects of alloy disorder in III-nitrides alloys compared to conventional III-V semiconductor alloys.
In addition, this thesis investigated the band structures of MoxW1-xS2 alloy monolayers and armchair nanoribbons using a full sp3d5 tight-binding model (TBM). A full sp3d5 TBM can catch features of band structures of MoxW1-xS2 alloy as much as possible and make the band structure more accurate. To extract TBM parameters required for MoxW1-xS2 alloy, density functional theory (DFT) was applied to calculate band structures of MoS2, WS2, and 2MoS2-2WS2 stripe structure monolayers. Then, TBM parameters required for MoxW1-xS2 alloy were extracted from the results of DFT calculations. Moreover, calculating an alloy system's band structure requires a large computational domain size and significant seeding numbers, which TBM can enable. However, simulated results for alloy systems are enormously dependent on the size of the computational domain and seeding number. This work did different sizes of the computational domain and seeding numbers to check if average results converge. Then, this work analyzed electronic properties by simulations, such as density of state effective mass, bandgap, and band structure. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:49:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T16:49:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract v Contents viii List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Overview of Group III-V and IV, and Two-dimensional Semiconductors 1 1.2 The Effects of Alloy Disorder in III-nitrides and Conventional III-V Semiconductor alloys 4 1.3 Traditionally Theoretical Models of Evaluating Quantum Potential . . 5 1.4 Novel Theoretical Models of Evaluating Effective Quantum Potential 6 1.5 Overview of Band Structure Calculations for Two-dimensional TMDs 7 1.6 Electronic Properties of Two-dimensional TMD Nanoribbons withArmchair or Zigzag Edge 8 1.7 Band Structure Calculations of Two-dimensional TMD alloys 8 1.8 Thesis Overview 9 Chapter 2 Methodology 11 2.1 Overview 11 2.2 Band Theory 12 2.2.1 Density Functional Theory 12 2.2.2 Tight-binding Model 13 2.3 III-nitrides and Conventional III-V Random Alloy Simulations 15 2.3.1 3D finite element-based solvers with random alloy fluctuation 15 2.3.2 Poisson Solver 16 2.3.3 Localization Landscape Theory and Schrödinger Equations 19 2.3.4 Quantifying Localization Properties 20 2.4 TMDs Random Alloy Simulations Based on Tight-binding Model 23 2.4.1 Tight-binding model 23 2.4.2 Electronic property calculation for the MoxW1−xS2 alloy system 32 Chapter 3 III-V Semiconductor Random Alloys 33 3.1 Landscape Potentials for III-nitrides and Conventional III-V Semi-conductor Alloys 33 3.2 Frequency Distribution and Standard Deviations of Potentials for In- GaN and InGaAs 36 3.3 Participation Ratio and Localization Length 45 Chapter 4 MoxW1−xS2 Random Alloys 56 4.1 Electronic properties of MoxW1−xS2 monolayer alloys 56 4.2 Electronic properties of MoxW1−xS2 monolayer alloy nanoribbons with armchair edges 62 Chapter 5 Conclusion 68 References 70 Appendix A — Scientific Contribution in Ph.D. Period 81 | - |
| dc.language.iso | en | - |
| dc.subject | 全 s、p 與 d 軌域的緊密束縛模型 | zh_TW |
| dc.subject | 三族氮化物 | zh_TW |
| dc.subject | 合金紊亂 | zh_TW |
| dc.subject | 侷限 | zh_TW |
| dc.subject | 二硫化鉬鎢合金 | zh_TW |
| dc.subject | MoxW1-xS2 | en |
| dc.subject | Localization | en |
| dc.subject | alloy disorder | en |
| dc.subject | III-nitrides | en |
| dc.subject | full sp3d5 tight-binding model | en |
| dc.title | 三五族合金之侷限效應與二硫化鉬鎢隨機合金之能帶計算 | zh_TW |
| dc.title | Localization Behavior in Group III-V and Band Structure Calculations of MoxW1−xS2 Random Alloys | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 黃建璋;林建中;吳肇欣;賴韋志;黃嘉彥 | zh_TW |
| dc.contributor.oralexamcommittee | JianJang Huang;Chien-Chung Lin;Chao-Hsin Wu;Wei-Chi Lai;Chia-Yen Huang | en |
| dc.subject.keyword | 三族氮化物,合金紊亂,侷限,全 s、p 與 d 軌域的緊密束縛模型,二硫化鉬鎢合金, | zh_TW |
| dc.subject.keyword | III-nitrides,alloy disorder,Localization,full sp3d5 tight-binding model,MoxW1-xS2, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202300634 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-20 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2028-02-19 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 12.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
