請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87276完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張煥宗 | zh_TW |
| dc.contributor.advisor | Huan-Tsung Chang | en |
| dc.contributor.author | 林裕軒 | zh_TW |
| dc.contributor.author | Yu-Syuan Lin | en |
| dc.date.accessioned | 2023-05-18T16:47:03Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-16 | - |
| dc.identifier.citation | Chapter 1:
[1] J. L. Manzoori, H. Abdolmohammad-Zadeh, M. Amjadi, Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology, J. Hazard. Mater. 144 (2007) 458–463. [2] A. Stefansson, I. Gunnarsson, N. Giroud, New methods for the direct determination of dissolved inorganic, organic and total carbon in natural waters by Reagent-Free™ Ion Chromatography and inductively coupled plasma atomic emission spectrometry, Anal. Chim. Acta. 582 (2007) 69–74. [3] G. Hartmetz, J. Slemrova, Detection of volatile nitrosamines in waste water from chemical plants by combined capillary gas chromatography-mass spectrometry, Bull. Environ. Contam. Toxicol. 25 (1980) 106–112. [4] G. Tripathi, V. K. Yadav, J. Singh, V. Mishra, Analytical Methods of Water Pollutants Detection. In: D. Pooja, P. Kumar, P. Singh, S. Patil, (Eds.) Sensors in water pollutants monitoring: role of material. (2020) Advanced Functional Materials and Sensors. Springer, Singapore. [5] J. Chen, A. Zheng, Y. Gao, C. He, G. Wu, Y. Chen, et al., Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution, Spectrochim. Acta A Mol. Biomol. Spectrosc. 69 (2008) 1044–1052. [6] M. Annadhasan, T. Muthukumarasamyvel, V.R. Sankar Babu, N. Rajendiran, Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium, ACS Sustainable Chem. Eng. 2 (2014) 887–896. [7] P. Devi, P. Rajput, A. Thakur, K.-H. Kim, P. Kumar, Recent advances in carbon quantum dot-based sensing of heavy metals in water, TrAC-Trend. Anal. Chem. 114 (2019) 171–195. [8] H.-W. Chu, B. Unnikrishnan, A. Anand, Y.-W. Lin, C.-C. Huang, Carbon quantum dots for the detection of antibiotics and pesticides, Journal of Food and Drug Analysis 28 (2020) 5. [9] Y. He, C.-Y. Wen, Z.-J. Guo, Y.-F. Huang, Noble metal nanomaterial-based aptasensors for microbial toxin detection, Journal of Food and Drug Analysis 28 (2020) 508–520. [10] T. Rasheed, C. Li, F. Nabeel, W. Huang, Y. Zhou, Self-assembly of alternating copolymer vesicles for the highly selective, sensitive and visual detection and quantification of aqueous Hg2+, Chem. Eng. J. 358 (2019) 101–109. [11] S. Madhupriya, K.P. Elango, Highly selective colorimetric sensing of Cu (II) ions in aqueous solution via modulation of intramolecular charge transfer transition of aminonaphthoquinone chemosensor, Spectrochim. Acta A 97 (2012) 100–104. [12] C. Wang, C. Yu, Detection of chemical pollutants in water using gold nanoparticles as sensors: a review, Rev. Anal. Chem. 32 (2013) 1–14. [13] H. Aldewachi, T. Chalati, M. N. Woodroofe, N. Bricklebank, B. Sharrackc, P. Gardiner, Gold nanoparticle-based colorimetric biosensors, Nanoscale 10 (2018) 18–33. [14] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments J. Am. Chem. Soc., 126 (2004) 12736–12737 [15] S. Ross, R.-S. Wu, S.-C. Wei, G.M. Ross, H.-T. Chang, The analytical and biomedical applications of carbon dots and their future theranostic potential: A review. J. Food Drug Anal. 28 2020, 677–695. [16] P.-C. Hsu, Z.-Y. Shih, C.-H. Lee, H.-T. Chang, Synthesis and analytical applications of photoluminescent carbon nanodots, Green Chem. 14 (2012) 917. [17] P.-C. Hsu, H.-T. Chang, Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups, Chem. Commun. 48 (2012) 3984–3986. [18] P. Roy, P.-C. Chen, A.P. Periasamy, Y.-N. Chen, H.-T. Chang, Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications, Mater. Today 18 (2015) 447–458. [19] K.W. Chu, S.L. Lee, C.J. Chang, L. Liu, Recent progress of carbon dot precursors and photocatalysis applications, Polymers 11 (2019) 689. [20] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8 (2015) 355–381. [21] Y. Park, J. Yoo, B. Lim, W. Kwon, S.-W. Rhee, Improving the functionality of carbon nanodots: doping and surface functionalization. J. Mater. Chem. A, 4 (2016) 11582–11603. [22] F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, X. Zhou, The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Mikrochim Acta 184 (2017) 1899–1914. [23] Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 84 (2012) 6220–6224. [24] G. Ren, Y. Meng, Q. Zhang, M. Tang, B. Zhu, F. Chai, C. Wang, Z. Su, Nitrogen-doped carbon dots for the detection of mercury ions in living cells and visualization of latent fingerprints. New J. Chem 42 (2018) 6824–6830. [25] M. Yang, Q. Tang, Y. Meng, J. Liu, T. Feng, X. Zhao, S. Zhu, W. Yu, B. Yang, Reversible "off-on" fluorescence of Zn2+-passivated carbon dots: mechanism and potential for the detection of EDTA and Zn2+. Langmuir 34 (2018) 7767–7775. [26] Y. Chen, X. Sun, W. Pan, G. Yu, J. Wang, Fe3+-sensitive carbon dots for detection of Fe3+ in aqueous solution and intracellular imaging of Fe3+ inside fungal cells. Front. Chem. 7 (2020) 911. [27] Z. Wei, H. Li, S. Liu, W. Wang, H. Chen, L. Xiao, C. Ren, X. Chen. Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid. Anal. Chem. 91 (2019) 15477–15483. [28] Q.-L. Wen, Z.-F. Pu, Y.-J. Yang, J. Wang, B.-C. Wu, Y.-L. Hu, P. Liu, J. Ling, Q. Cao, Hyaluronic acid as a material for the synthesis of fluorescent carbon dots and its application for selective detection of Fe3+ ion and folic acid. Microchem. J. 159 (2020) 105364. [29] M. Vedamalai, A.P. Periasamy, C.-W. Wang, Y.-T. Tseng, L.C. Ho, C.-C. Shih, H.-T. Chang, Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6 (2014) 13119–13125. [30] X. Yuan, Z. Luo, Y. Yu, Q. Yao, J. Xie, Luminescent noble metal nanoclusters as an emerging optical probe for sensor development, Chem. Asian J. 8 (2013) 858–871. [31] J. Zheng, P.R. Nicovich, R.M. Dickson, Highly fluorescent noble-metal quantum dots, Annu. Rev. Phys. Chem. 58 (2007) 409–431. [32] R. Jin, C. Zeng, M. Zhou, Y. Chen, Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities, Chem. Rev. 116 (2016) 10346–10413. [33] X. Kang, M. Zhu, Tailoring the photoluminescence of atomically precise nanoclusters, Chem. Soc. Rev. 48 (2019) 2422–2457. [34] Y. Zhang, C. Zhang, C. Xu, X. Wang, C. Liu, G.I.N. Waterhouse, Y. Wang, H. Yin, Ultrasmall Au nanoclusters for biomedical and biosensing applications: A mini-review, Talanta 200 (2019) 432–442. [35] G. Pramanik, J. Humpolickova, J. Valenta, P. Kundu, S. Bals, P. Bour, M. Dracinsky, P. Cigler, Gold nanoclusters with bright near-infrared photoluminescence, Nanoscale 10 (2018) 3792–3798. [36] Q. Li, M. Zhou, W.Y. So, J. Huang, M. Li, D.R. Kauffman, M. Cotlet, T. Higaki, L.A. Peteanu, Z. Shao, R. Jin, A mono-cuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure-property correlation, J. Am. Chem. Soc. 141 (2019) 5314–5325. [37] K. Chaudhari, P.L. Xavier, T. Pradeep, Understanding the evolution of luminescent gold quantum clusters in protein templates, ACS Nano 5 (2011) 8816–8827. [38] H. Kawasaki, K. Hamaguchi, I. Osaka, R. Arakawa, pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission, Adv. Funct. Mater. 21 (2011) 3508–3515. [39] Y. Lu and W. Chen, Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries, Chem. Soc. Rev. 41 (2012) 3594. [40] A. P. Alivisatos, Science, semiconductor clusters, nanocrystals, and quantum dots, 271 (1996) 933–937. [41] J. Zheng, C. Zhang and R. M. Dickson, Highly fluorescent, water-soluble, size-tunable gold quantum dots, Phys. Rev. Lett. 93 (2004) 077402. [42] Q. Yu, P. Gao, K.Y. Zhang, X. Tong, H. Yang, S. Liu, J. Du, Q. Zhao, W. Huang, Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference, Light Sci. Appl. 6 (2017) e17107. [43] X.S. Han, X. Luan, H.F. Su, J.J. Li, S.F. Yuan, Z. Lei, Y. Pei, Q.M. Wang, Structure determination of alkynyl-protected gold nanocluster Au22 (tBuC≡C)18 and its thermochromic luminescence, Angew. Chem. Int. Ed. 59 (2020) 2309–2312. [44] L. Naldini, F. Cariati, G. Simonetta, L. Malatesta, Gold–tertiary phosphine derivatives with intermetallic bonds. Chem. Commun. 1966, 647–648. [45] S. Zhu, X. Wang, Y. Cong, L. Li, Regulating the optical properties of gold nanoclusters for biological applications. ACS Omega 5 (2020) 22702–22707. [46] C.-C. Huang, Z. Yang, K.-H. Lee and H.-T. Chang, Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II), Angew. Chem. 119 (2007) 6948– 6952. [47] M. Yu, C. Zhou, J. Liu, J. D. Hankins and J. Zheng, Luminescent gold nanoparticles with pH-dependent membrane adsorption, J. Am. Chem. Soc. 133 (2011) 11014–11017. [48] H. Chang, H. Chang, Y. Hung, T. Hsiung, Y. Lin and C. Huang, Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples, RSC Adv., 3 (2013) 4588. [49] J. Li, J.-J. Zhu, K. Xu, Fluorescent metal nanoclusters: From synthesis to applications, TrAC-Trend. Anal. Chem. 58 (2014) 90–98. [50] G. Zhang, Y. Li, J. Xu, C. Zhang, S. Shuang, C. Dong, M.M.F. Choi, Glutathione-protected fluorescent gold nanoclusters for sensitive and selective detection of Cu2+. Sens Actuators B. 183 (2013) 583–588 [51] P. Nath, M. Chatterjee, N. Chanda, Dithiothreitol-facilitated synthesis of bovine serum albumin–gold nanoclusters for Pb(II) ion detection on paper substrates and in live cells. ACS. Appl. Nano. Mater. 1 (2018) 5108−5118. [52] T. Zhang, H. Xu, S. Xu, B. Dong, Z. Wu, X. Zhang, L. Zhang, H. Song, DNA stabilized Ag–Au alloy nanoclusters and their application as sensing probes for mercury ions. RSC Adv. 6 (2016) 51609–51618. [53] Y.-H. Lin, W.-L. Tseng, Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters Anal. Chem. 82 (2010) 9194–9200. [54] C. Wu, J. Wang, J. Shen, C. Bi, H. Zhou, Coumarin-based Hg2+ fluorescent probe: Synthesis and turn-on fluorescence detection in neat aqueous solution Sens. Actuators B. 238 (2017) 683–692. [55] J. Xie, Y. Zheng, J.Y. Ying, Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions Chem. Commun. 46 (2010) 961–963. [56] C.-W. Wang, Y.-N. Chen, B.-Y. Wu, C.-K. Lee, Y.-C. Chen, Y.-H. Huang, H.-T. Chang, Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal. Bioanal. Chem. 408 (2016) 287–294. [57] Y. Zhang, M. Li, Q. Niu, P. Gao, G. Zhang, C. Dong, S. Shuang, Gold nanoclusters as fluorescent sensors for selective and sensitive hydrogen sulfide detection. Talanta 171 (2017) 143–151. [58] W.-Y. Chen, G.-Y. Lan, H.-T. Chang, Use of Fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 83 (2011) 9450–9455. Chapter 2: [1] Z.X. Liu, B.B. Chen, M.L. Liu, H.Y. Zou, C.Z. Huang, Cu(i)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide–alkyne cycloadditions, Green Chem., 19 (2017) 1494–1498. [2] H. Jin, , R. Gui J. Gong, W. Huang, Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen, Biosens. Bioelectron., 92 (2017) 378–384. [3] W.-Y. Chen, C.-C. Huang, L.-Y. Chen, H.-T. Chang, Self-assembly of hybridized ligands on gold nanodots: tunable photoluminescence and sensing of nitrite, Nanoscale 6 (2014) 11078–11083. [4] G.-Y. Lan, C.-C. Huang, H.-T. Chang, Silver nanoclusters as fluorescent probes for selective and sensitive detection ofcopper ions, Chem. Commun. 46 (2010) 1257–1259. [5] J. Feng, W.J. Wang, X. Hai, Y.L. Yu, J.H, Wang, Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging, J. Mater. Chem. B, 4 (2016) 387–393. [6] P.-C. Hsu, Z.-Y. Shih, C.-H. Lee, H.-T. Chang, Synthesis and analytical applications of photoluminescent carbon nanodots, Green Chem. 14 (2012) 917–920. [7] H. Nie, M. Li, Q. Li, S. Liang, Y. Tan, L. Sheng, W. Shi, S.X.A. Zhang, Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing, Chem. Mater. 26 (2014) 3104−3112. [8] S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A.M.A.O. Al-Youbi, X. Sun, Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions, Adv. Mater. 24 (2012) 2037–2041. [9] X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents, J. Mater. Chem. 21 (2011) 2445–2450. [10] L. Ma, W. D. Xiang, H.H. Gao, J. Wang, Y. Ni, X. Liang, Facile synthesis of tunable fluorescent carbon dots and their third-order nonlinear optical properties, Dyes Pigm. 128 (2016) 1–7. [11] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.T. Lee, Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design, Angew. Chem. Int. Ed. 49 (2010) 4430–4434. [12] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots, Adv. Mater. 22 (2010) 734–738. [13] G.E. LeCroy, F. Messina, A. Sciortino, C.E. Bunker, P. Wang, S.K.A. Fernando, Y. P. Sun, Characteristic Excitation Wavelength Dependence of Fluorescence Emissions in Carbon “Quantum” Dots, J. Phys. Chem. C 121 (2017) 28180–28186. [14] V. Strauss, J.T. Margraf, C. Dolle, B. Butz, T.J. Nacken, J. Walter, W. Bauer, W. Peukert, E. Spiecker, T. Clark, D.M. Guldi, Carbon Nanodots: Toward a Comprehensive Understanding of Their Photoluminescence, J. Am. Chem. Soc. 136 (2014) 17308–17316. [15] Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B. A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.Y. Xie, Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, J. Am. Chem. Soc., 128 (2006) 7756–7757. [16] Q.L. Zhao, Z.L. Zhang, B.H. Huang, J. Peng, M. Zhang, D.W. Pang, Chem. Commun. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite, Chem. Commun. 0 (2008) 5116–5118. [17] J. Niu, H. Gao, J. Lumin. Synthesis and drug detection performance of nitrogen-doped carbon dots, 149 (2014) 159–162. [18] Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability, New J. Chem., 36 (2012) 861-864. [19] V.N. Mehta, S. Jha, R.K. Singhal, S.K. Kailasa, Preparation of multicolor emitting carbon dots for HeLa cell imaging, New J. Chem. 38 (2014) 6152–6160. [20] S.Y. Park, C.Y. Lee, H.-R. An, H. Kim, Y.-C. Lee, E.C. Park, H.-S. Chun, H.Y. Yang, S.-H. Choi, H.S. Kim, K.S. Kang, H.G. Park, J.-P. Kim, Y. Choi, J. Lee, H.U. Lee, Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications, Nanoscale, 9 (2017) 9210-9217 [21] P.-C. Hsu, H.-T. Chang, Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups, Chem. Commun. 48 (2012) 3984–3986. [22] A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas, E.P. Giannelis, Photoluminescent Carbogenic Dots, Chem. Mater. 20 (2008) 4539–4541. [23] S. Mitra, S. Chandra, T. Kundu, R. Banerjee, P. Pramanik, A. Goswami, Rapid microwave synthesis of fluorescent hydrophobic carbon dots, RSC Adv. 2 (2012) 12129-12131. [24] X. Jia, J. Li, E. Wang, One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence, Nanoscale 4 (2012) 5572−5575. [25] P.-C. Hsu, P.-C. Chen, C.-M. Ou, H.-Y. Chang. H.-T. Chang., Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells, J. Mater. Chem. B 1 (2013) 1774–1781. [26] C.-L. Li, C.-M. Ou, C.-C. Huang, W.-C. Wu, Y.-P. Chen, T.-E. Lin, L.-C. Ho, C.-W. Wang, C.-C. Shih, H.-C. Zhou, Y.-C. Lee, W.-F. Tzeng, T.-J. Chiou, S.-T. Chu, J. Cangm, H.-T. Chang, Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells, J. Mater. Chem. B 2 (2014) 4564–4571. [27] Y.S. Liu, Y.N. Zhao, Y.Y. Zhang, One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection, Sens. Act. B 196 (2014) 647−652. [28] B.S.B. Kasibabu, S.L. D'souza, S. Jha, R.K. Singhal, H. Basu, S.K. Kailasa, One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells, Anal. Methods 7 (2015) 2373–2378. [29] S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents, Chem. Commun. 48 (2012) 8835–8837. [30] V.N. Mehta, S. Jha, H. Basu, R.K. Singhal, S.K. Kailasa, One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells, Sens. Act. B. 213 (2015) 434–443. [31] C.-I. Wang, W.-C. Wu, A.P. Periasamy, H.-T. Chang, Electrochemical synthesis of photoluminescent carbon nanodots from glycine for highly sensitive detection of hemoglobin, Green Chem. 16 (2014) 2509–2514. [32] K. Ogura, M. Kobayashi, M. Nakayama, Y. Miho, In-situ FTIR studies on the electrochemical oxidation of histidine and tyrosine, J. Electroanal. Chem. 463 (1999) 218–223. [33] D.M. Close, P. Wardman, Calculation of Standard Reduction Potentials of Amino Acid Radicals and the Effects of Water and Incorporation into Peptides, J. Phys. Chem. A 122 (2018) 439–445. [34] S. Li, M. Hong, Protonation, Tautomerization, and Rotameric Structure of Histidine: A Comprehensive Study by Magic-Angle-Spinning Solid-State NMR, J. Am. Chem. Soc. 133 (2011) 1534–1544. [35] N.L. Weinberg, H.R. Weinberg, Electrochemical oxidation of organic compounds, Chem. Rev. 68 (1968) 449–523. [36] M.R. Thombare, G. S. Gokavi, Kinetics and mechanism of oxidation of glycine and alanine by Oxone® catalyzed by bromide ion, J. Braz. Chem. Soc. 25 (2014) 1545–1551. [37] J. Jiang, Y. He, S. Li, H. Cui, Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement, Chem. Commun. 48 (2012) 9634−9636. [38] M. Patel, W. Feng, K. Savaram, M.R. Khoshi, R. Huang, J. Sun, E. Rabie, C. Flach, R. Mendelsohn, E. Garfunkel, H. He, Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications, Small 11 (2015) 3358–3368. [39] X.L. Zhou, F. Solymosi, P.M. Blass, K.C. Cannon, J.M. White, Interactions of methyl halides (Cl, Br and I) with Ag(111), Surf. Sci. 219 (1989) 294–316. [40] Z. Liu, Y. Yang, Z. Du, W. Xing, S. Komarneni, Z. Zhang, X. Gao, Z. Yan, Furfuralcohol Co-Polymerized Urea Formaldehyde Resin-derived N-Doped Microporous Carbon for CO2 Capture, Nanoscale Res. Lett. 10 (2015) 333–343. [41] Y.Q. Dong, L.S. Wan, J.H. Cai, Q.Q. Fang, Y.W. Chi, G.N. Chen, Natural carbon-based dots from humic substances, Sci. Rep. 5 (2015) 10037. [42] J.C. Charlier, Defects in Carbon Nanotubes, Acc. Chem. Res. 35 (2002) 1063–1069. [43] J. Schneider, C.J. Reckmeier, Y. Xiong, M.V. Seckendorff, A.S. Andrei S. Susha, P. Kasák, A.L. Rogach, Molecular Fluorescence in Citric Acid-Based Carbon Dots, J. Phys. Chem. C 121 (2017) 2014−2022. [44] K. Ogura, Electrochemical reduction of carbon dioxide to ethylene: Mechanistic approach, Journal of CO2 Utilization 1 (2013) 43–49. [45] L.J. Saidel, A.R. Goldfarb, S. Waldman, The absorption spectra of amino acids in the region two hundred to two hundred and thirty millimicrons, J. Biol. Chem. 197 (1952) 285–291. [46] H. Wang B. C.W. Gu, D.W. Lee, J.S. Lee, Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory, Sci. Rep. 7 (2017) 43794. [47] R. Leberman, B.R. Rabin, Metal complexes of histidine, Trans. Faraday Soc. 55 (1959) 1660 –1670. [48] D.G. Barceloux, D. Barceloux, J. Toxicol., Copper, Clin. Toxicol, 37(2) (1999) 217–230. [49] M. Olivares, R. Uauy, Copper as an essential nutrient, Am. J. Clin. Nutr. 63 (1996) 791S-6S. [50] P.G. Georgopoulos, A. Roy, M.J. Yonone-Lioy, R.E. Opiekun, P.J. Lioy, Environmental copper: its dynamics and human exposure issues, J. Toxicol. Environ. Health, Part B, 4 (2001) 341–394. [51] O.Y. Zelenin, Interaction of the Ni2+ ion with citric acid in an aqueous solution, Russ J Coord Chem, 33 (2007) 346–350. [52] J.Q. Tian, Q. Liu, A.M. Asiri, A.O. Al-Yubi, X.P. Sun, Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu(2+), Anal., Chem. 85 (2013) 5595–5599. [53] A. Zhu, Q. Qu, X. Shao, B. Kong, Y. Tian, Carbon-Dot-Based Dual-Emission Nanohybrid Produces a Ratiometric Fluorescent Sensor for In Vivo Imaging of Cellular Copper Ions, Angew. Chem. Int. Ed., 124 (2012) 7297–7301. [54] M. Koneswaran, R. Narayanaswamy, RETRACTED: l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion, Sens. Act. B. 139 (2009) 104–109. [55] G. He, C. Liu, X. Liu, Q. Wang, A. Fan, S. Wang, X. Qian, Design and synthesis of a fluorescent probe based on naphthalene anhydride and its detection of copper ions, PloS one. 12 (2017) e0186994. [56] M.C. Rong, K.X. Zhang, Y.R. Wang, X. Chen, The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+, Chin. Chem. Lett. 28 (2017) 1119–1124. [57] C. Boonme, T. Noipa, T. Tuntulani, W. Ngeontae, Cysteamine capped CdS quantum dots as a fluorescence sensor for the determination of copper ion exploiting fluorescence enhancement and long-wave spectral shifts, Spectrochim. Acta Mol. Biomol. Spectrosc. 169 (2013) 161–168. [58] X.F. Hou, F. Zeng, F.K. Du and S.Z. Wu, Nanotechnology, Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells, 24 (2013) 335502. [59] Y. Wang, W.-T. Wu, M.-B. Wu, H.-D. Sun, H. Xie, C. Hu, X.-Y. Wu and J.-H. Qiu, Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions, New Carbon Mater. 30 (2015) 550–559. [60] L. Zhao, H. Li, Y. Xu, H. Liu, T. Zhou, N. Huang, Y. Li and L. Ding, Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots, Anal. Bioanal. Chem. 410 (2018) 4301–4309. [61] Y.C. Weng, T.H. Cheng, Electrochemical behavior of Cu2+-histidine complexes on a gassy carbon electrode, Naturforsch. 66 (2011) 279 – 288. [62] G. Oza, K. Oza, S. Pandey, S. Shinde, A. Mewada, M. Thakur, M. Sharon, M. Sharon, A Green Route Towards Highly Photoluminescent and Cytocompatible Carbon dot Synthesis and its Separation Using Sucrose Density Gradient Centrifugation, J Fluoresc. 25 (2015) 9–14. [63] Y.-J. Lin,, P.-C. Chen Z. Yuan, J.-Y. Ma, H.-T. Chang, The isomeric effect of mercaptobenzoic acids on the preparation and fluorescence properties of copper nanoclusters, Chem. Commun. 51 (2015) 11983–11986. Chapter 3: [1] J. Liu, R. Li, B. Yang, Carbon Dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 6 (2020) 2179–2195. [2] H. Li, X. Yan, D. Kong, R. Jin, C. Sun, D. Du, Y. Lin, G. Lu, Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 5 (2020) 218–234. [3] Y. Song, S. Zhu, B. Ying, Bioimaging based on fluorescent carbon dots. RSC Adv. 4 (2014) 27184–27200. [4] H.-W. Chu, B. Unnikrishnan, A. Anand, Y.-W. Lin C.-C. Huang, Carbon quantum dots for the detection of antibiotics and pesticides. J. Food Drug Anal. 28 (2020) 539–557. [5] X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications. Trends Anal. Chem. 89 (2017) 163–180. [6] D. Xu, Q. Lin, H.-T. Chang, Recent advances and sensing applications of carbon dots. Small Methods 4 (2020) 1900387. [7] R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5 (2017) 3717–3734 [8] A. Alaghmandfard, O. Sedighi, N.T. Rezaei, A.A. Abedini, A.M. Khachatourian, M.S. Toprak, A. Seifalian, Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater. Sci. Eng. C 120 (2021) 111756. [9] H. Ding, X.-X. Zhou, J.-S. Wei, X.-B. Li, B.-T. Qin, X.-B. Chen, H.-M. Xiong, Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon 167 (2020) 322–344. [10] F. Huo, P. G. Karmaker, Y. Liu, B. Zhao, X. Yang, Preparation and biomedical applications of multicolor carbon dots: recent advances and future challenges. Part. Part. Syst. Charact. 37 (2020) 1900489. [11] S. Ross, R.-S. Wu, S.-C. Wei, G.M. Ross, H.-T. Chang, The analytical and biomedical applications of carbon dots and their future theranostic potential: A review. J. Food Drug Anal. 28 (2020) 677–695. [12] M.L. Liu, B.B. Chen, C.M. Li, C.Z. Huang, Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 21 (2019) 449–471. [13] M. Liu, Y. Xu, F. Niu, J.J. Gooding, J. Liu, Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141 (2016) 2657–2664. [14] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemary, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.-J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Letters. 12 (2012) 844–849. [15] D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, J.-J. Zhu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 64 (2013) 424–434. [16] M. Vedamalai, A.P. Periasamy, C.-W. Wang, Y.-T. Tseng, L.-C. Ho, C.-C. Shih, H.-T. Chang, Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale. 6 (2014) 13119–13125. [17] R.K. Singh, R. Kumar, D.P. Singh, R. Savu, S.A. Moshkalev, Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater. Today Chem. 12 (2019) 282–314. [18] D. Dong, L.V. Oers, A. Tukker, E.V.D. Voet, Assessing the future environmental impacts of copper production in China: Implications of the energy transition. J. Clean. Prod. 274 (2020) 122825. [19] E.I. Solomon, D.E. Heppner, E.M. Johnston, D.W. Cinsbach, J. Cirera, M. Qayyum, M.T. Kieber-Emmons, C.H. Kjaergaard, R.G. Hadt, L. Tian, Copper active sites in biology. Cham. Rev. 114 (2014) 3659–3853. [20] E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Cham. Rev. 106 (2006) 1995–2044. [21] O. Bandmann, K.H. Weiss, S.G. Kaler, Wilson's disease and other neurological copper disorders. Lancet Neurol. 14 (2015) 103–113. [22] A.M. Humphrey, Chlorophyll Food Chemistry. 5 (1980) 57–67. [23] B. Gandul-Rojas, M. Roca, L. Gallardo-Guerrero, Detection of the color adulteration of green table olives with copper chlorophyllin complexes (E-141ii colorant). LWT-Food Sci. Technol. 46 (2012) 311–318 [24] EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food). Scientific Opinion on re-evaluation of copper complexes of chlorophylls (E141(i)) and chlorophyllins (E141(ii)) as food additives. EFSA Journal. 13 (2015) 4151. [25] JECFA. Purity specifications for chlorophyllins, copper complexes sodium and potassium salts. http://www.fao.org/ag/agn/jecfaadditives/specs/monograph5/additive-127-m5.pdf (accessed 13 March 2017). [26] FDA (United States Food and Drug Administration), Listing of color additives exempt from certification; sodium copper chlorophyllin. Federal Register. 67 (2002) 35429–35431. [27] A. Mortensen, A. Geppel, HPLC–MS analysis of the green food colorant sodium copper chlorophyllin. Innov. Food Sci. Emerg. Technol. 8 (2007) 419–425. [28] V. Chrastny, M. Komarek, Copper determination using ICP-MS with hexapole collision cell. Chem. Pap. 63 (2009) 512–519. [29] S.-C. Wei, Y.-W. Lin, H.-T. Chang, Carbon dots as artificial peroxidases for analytical applications. J. Food Drug Anal. 28 (2020) 558–574. [30] M. Batool, H.M. Junaid, S. Tabassum, F. Kanwal, K. Abid, Z. Fatima, A.T. Shah, Metal ion detection by carbon dots—a review. Crit. Rev. Anal. Chem. 52 (2022) 756–767. [31] X. Gao, C. Du, Z. Zhuang, W. Chen, Carbon quantum dot-based nanoprobes for metal ion detection. J. Mater. Chem. C 4 (2016) 6927–6945. [32] A.-Q. Zheng, C.-X. Zhao, X.-J. Wang, Y. Shu, J.-H. Wang, Simultaneous detection and speciation of mono- and di-valent copper ions with a dual-channel fluorescent nanoprobe. Chem. Commun. 56 (2020) 15337–15340 [33] K.M. Omer, Highly passivated phosphorous and nitrogen co-doped carbon quantum dots and fluorometric assay for detection of copper ions. Anal Bioanal Chem 410 (2018) 6331–6336. [34] A. Salinas-Castillo, D.P. Morales, A. Lapresta-Fernández, M. Ariza-Avidad, E. Castillo, A. Martínez-Olmos, A.J. Palma, L.F. Capitan-Vallvey, Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots. Anal Bioanal Chem 408 (2016) 3013–3020. [35] C. Li, W. Liu, X. Sun, W. Pan, G. Yu, J. Wang, Excitation dependent emission combined with different quenching manners supports carbon dots to achieve multi-mode sensing. Sens. Actuators B Chem. 263 (2018) 1–9. [36] J.-H. Liu, S.-T. Yang, X.-X. Chen, H. Wang, Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity. Curr Drug Metab. 13 (2012) 1046–1056. [37] S. Chowdhury, B. Rooj, A. Dutta, U. Mandal, Review on Recent Advances in Metal Ions Sensing Using Different Fluorescent Probes. J Fluoresc 28 (2018) 999–1021. [38] Y.-S. Lin, Y. L. Lin, A. P. Periasamy, J. S. Cang, H.-T. Chang, Parameters affecting synthesis of carbon dots for quantitation copper ions. Nanoscale adv. 1 (2019) 2553–2561. [39] T. Boobalan, M. Sethupathi, N. Sengottuvelan, P. Kumar, P. Balaji, B. Gulyás, P. Padmanabhan, S. T. Selvan, A. Arun, Mushroom-derived carbon dots for toxic metal ion detection and as antibacterial and anticancer agents. ACS Appl. Nano Mater. 3 (2020) 5910–5919 [40] Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Polyamine-Functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 84 (2012) 6220–6224. [41] J. Zong, X. Yang, A. Trinchi, S. Hardin, I. Cole, Y. Zhu, C. Li, T. Muster, G. Wei, Carbon dots as fluorescent probes for “off–on” detection of Cu2+ and l-cysteine in aqueous solution. Biosens. Bioelectron. 51 (2014) 330–335. [42] J. Ci, Y. Tian, S. Kuga, Z. Niu, M. Wu, Y. Huang, One-pot green synthesis of nitrogen-doped carbon quantum dots for cell nucleus labeling and copper(II) detection. Asian J. Chem. 12 (2017) 2916–2921. [43] D.D. Perrin, Stability of Metal Complexes with Salicylic Acid and Related Substances. Nature 182 (1958) 741–742. [44] K. Yin, D. Lu, L. Wang, Q. Zhang, J. Hao, G. Li, H. Li, Hydrophobic Carbon Dots from Aliphatic Compounds with One Terminal Functional Group. J. Phys. Chem. C 123 (2019) 22447–22456. [45] L. Lu, C. Feng, J. Xu, F. Wang, H. Yu, Z. Xu, W. Zhang, Hydrophobic-carbon-dot-based dual-emission micelle for ratiometric fluorescence biosensing and imaging of Cu2+ in liver cells. Biosens. Bioelectron. 92 (2017) 101–108. [46] H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21 (2009) 5563–5565. [47] TFDA, Method of Identification for Sodium Copper Chlorophyllin in Foods. Taiwan Food and Drug Administration, 2013. [48] U.S. Epa, Test methods for evaluating solid waste—physical chemical methods, SW-846. Washington [DC]: US Environmental Protection Agency, 1997.Q. Qiu, L. Lai, J. Cheng, J. Wu, Recent advances in the sulfonylation of alkenes with the insertion of sulfur dioxide via radical reactions. Chem. Commun. 54 (2018) 10405–10414. [49] L.P. Kuhn, A.H. Corwin, The behavior of organic acids and esters in sulfuric acid. J. Am. Chem. Soc. 70 (1948) 3370–3375. [50] C.S. Estes, A.Y. Gerard, J.D. Godward, S.B. Hayes, S.H. Liles, J.L. Shelton, T.S. Stewart, R.I. Webster, H.F. Webster, Preparation of highly functionalized carbon nanoparticles using a one-step acid dehydration of glycerol. Carbon. 142 (2019) 547–557. [51] C. S. Hiremath, J. Tonannavar, Vibrational assignments and effect of aldehyde rotation on substituents in some trisubstituted benzaldehydes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 73 (2009) 388–397. [52] J.C. Vinci, I.M. Ferrer, N.W. Guterry, V.M. Colon, J.F. Destino, F.V. Bright, L.A. Colon, Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets. Appl. Spectrosc. 69 (2015) 1082–1090. [53] K.M. Chan, D.D. Huang, Y.J. Li, M.N. Chan, J.H. Seinfeld, C.K. Chan, Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles. J. Atmos. Chem. 70 (2013) 1–18. [54] H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-Color Light-Emitting Carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 10 (2016) 484–491. [55] T. Song, Y. Zhao, K. Matras-Postolek, P. Yang, Color-tunable carbon dots via control the degree of self-assembly in solution at different concentration. J. Lumin. 212 (2019) 69–75 [56] TFDA, The use range and limit of food additives. Taiwan Food and Drug Administration, 2019. [57] T.-H. Ji, X.-L. Li, Y. Mao, Z. Mei, Y. Tian, Electron/energy co-transfer behavior and reducibility of Cu-chlorophyllin-bonded carbon-dots. RSC Adv. 10 (2020) 31495–31501. [58] X. Zheng, W. Liu, Q. Gai, Z. Tian, S. Ren, A carbon‐dot‐based fluorescent probe for the sensitive and selective detection of copper(II) ions. ChemistrySelect 4 (2019) 2392–2397. [59] N. Papaioannou, A. Marinovic, N. Yoshizawa, A.E. Goode, M. Fay, A. Khlobystov, M.-M. Titirici, Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Sci Rep 8 (2018) 6559. [60] Y. Kuang, L. Chen, J. Lu, C. Yang, Y. Li, L. Lu, Y. Nie, A carbon-dot-based dual-emission probe for ultrasensitive visual detection of copper ions. New J. Chem. 42 (2018) 19771–19778. [61] X. Ma, S. Lin, Y. Dang, X. Zhang, F. Xia, Carbon dots as an “on-off-on” fluorescent probe for detection of Cu(II) ion, ascorbic acid, and acid phosphatase. Anal. Bioanal. Chem. 411 (2019) 6645–6653. [62] Y.X. Mu, Q.F. Zhuang, S.P. Huang, M.Y. Hu, Y. Wang, Y.N. Ni, Adenine-stabilized carbon dots for highly sensitive and selective sensing of copper(II) ions and cell imaging. Spectrochim. Acta A 239 (2020) 118531. [63] N. Chaudhary, P.K. Gupta, S. Eremin, P.R. Solanki, One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J. Environ. Chem. Eng 8 (2020) 103720. [64] United States Environmental Protection Agency, National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (accessed 14 July 2021). [65] X. Ma, Y. Dong, H. Sun, N. Chen, Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Mater. Today Chem. 5 (2017) 1–10. [66] L. Liu, H. Gong, D. Li, L. Zhao, Synthesis of carbon dots from pear juice for fluorescence detection of Cu2+ ion in water. J. Nanosci. Nanotechnol. 18 (2018) 5327–5332. [67] M.-C. Rong, K.-X. Zhang, Y.-R. Wang, X. Chen, The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chin. Chem. Lett. 28 (2017) 1119–1124. [68] X.F. Hou, F. Zeng, F.K. Du, S.Z. Wu, Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells. Nanotechnology 24 (2013) 335502. [69] L. Zhao, H. Li, Y. Xu, H. Liu, T. Zhou, N. Huang, Y. Li, L. Ding, Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots. Anal. Bioanal. Chem. 410 (2018) 4301–4309. [70] Y. Wang, W.-T. Wu, M.-B. Wu, H.-D. Sun, H. Xie, C. Hu, X.-Y. Wu, J.-H. Qiu, Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions. New Carbon Mater. 30 (2015) 550–559. Chapter 4: [1] A.I. Arieff, A. Kerian, S.G. Massry, J. DeLima, Intracellular pH of brain: alterations in acute respiratory acidosis and alkalosis. Am. J. Physiol. 230 (1976) 804–812. [2] H. Tapper, R. Sundler, Role of lysosomal and cytosolic pH in the regulation of macrophage lysosomal enzyme secretion. Biochem. J. 272 (1990) 407–414. [3] E. Persi, M. Duran-Frigola, M. Damaghi, W.R. Roush, P. Aloy, J.L. Cleveland, R.J. Gillies, E. Ruppin, Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun. 9 (2018) 2997. [4] Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda, Y. Baba, Acidic extracellular microenvironment and cancer. Cancer Cell Int. 13 (2013) 89. [5] F. Weinberg, N. Ramnath, D. Nagrath, Reactive oxygen species in the tumor microenvironment: an overview. Cancers (Basel). 11 (2019) 1191. [6] P. Chen, Z. Zheng, Y. Zhu, Y. Dong, F. Wang, G. Liang, Bioluminescent turn-on probe for sensing hypochlorite in vitro and in tumors. Anal. Chem. 89 (2017) 5693–5696. [7] C. Nusshold, M. Kolllroser, H. Kofeler, G. Rechberger, H. Reicher, A. Ullen, E. Bernhart, S. Waltl, I. Kratzer, A. Hermetter, H. Hackl, Z. Trajanoski, A. Hrzenjak, E. Malle, W. Sattler, Hypochlorite modification of sphingomyelin generates chlorinated lipid species that induce apoptosis and proteome alterations in dopaminergic PC12 neurons in vitro. Free Radic. Biol. Med. 48 (2010) 1588–1600. [8] J.T. Hou, W.X. Ren, K. Li, J. Seo, A. Sharma, X.Q. Yu, J.S. Kim, Fluorescent bioimaging of pH: from design to applications. Chem. Soc. Rev. 46 (2017) 2076–2090. [9] Y.-N. Chen, P.-C. Chen, C.-W. Wang, Y.-S. Lin, C.-M. Ou, L.-C. Ho, H.-T. Chang, One-pot synthesis of fluorescent BSA–Ce/Au nanoclusters as ratiometric pH probes. Chem. Commun.50 (2014) 8571–8574. [10] P. Chen, I. Ilyas, S. He, Y. Xing, Z. Jin, C. Huang, Ratiometric pH sensing and imaging in living cells with dual-emission semiconductor polymer dots. Molecules 24 (2019) 2923. [11] H.-W. Chu, B. Unnikrishnan, A. Anand, Y.-W. Lin, C.-C. Huang, Carbon quantum dots for the detection of antibiotics and pesticides. J. Food Drug Anal. 28 (2020) 539–557. [12] A. Han, S. Hao, Y. Yang, X. Li, X. Luo, G. Fang, J. Liu, S. Wang, Perspective on recent developments of nanomaterial based fluorescent sensors: applications in safety and quality control of food and beverages. J. Food Drug Anal. 28 (2020) 486–507. [13] D. Xu, Q. Lin, H.-T. Chang, Recent advances and sensing applications of carbon dots. Small Methods 4 (2020) 1900387. [14] H. Ehtesabi, Z. Hallaji, S. Najafi Nobar, Z. Bagheri, , Carbon dots with pH-responsive fluorescence: a review on synthesis and cell biological applications. Microchim. Acta 287 (2020) 150. [15] W. Song, W. Duan, Y. Liu, Z. Ye, Y. Chen, H. Chen, S. Qi, J. Wu, D. Liu, L. Xiao, C. Ren, X. Chen, Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots. Anal. Chem. 89 (2017) 13626–13633. [16] X. Ye, Y. Xiang, Q. Wang, Z. Li, Z. Liu, A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 15 (2019) 1901673. [17] M. Zhang, R. Su, J. Zhong, L. Fei, W. Cai, Q. Guan, W. Li, N. Li, Y. Chen, L. Cai, Q. Xu, Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 12 (2019) 815–821. [18] D. Li, Y. Feng, J. Lin, M. Chen, S. Wang, X. Wang, H. Sheng, Z. Shao, M. Zhu, X. Meng, A mitochondria-targeted two-photon fluorescent probe for highly selective and rapid detection of hypochlorite and its bio-imaging in living cells. Sens. Actuators B Chem. 222 (2016) 483–491. [19] M. Vedamalai, D. Kedaria, R. Vasita, I. Gupta, Oxidation of phenothiazine based fluorescent probe for hypochlorite and its application to live cell imaging. Sens. Actuators B Chem. 263 (2018) 137–142. [20] Y. Feng, S. Li, D. Li, Q. Wang, P. Ning, M. Chen, X. Tian, X. Wang, Rational design of a diaminomaleonitrile-based mitochondria – targeted two-photon fluorescent probe for hypochlorite in vivo: solvent-independent and high selectivity over Cu2+. Sens. Actuators B Chem. 254 (2018) 282–290. [21] X. Zhong, Q. Yang, Y. Chen, Y. Jiang, Z. Dai, Aggregation-induced fluorescence probe for hypochlorite imaging in mitochondria of living cells and zebrafish. J. Mater. Chem. B 8 (2020) 7375–7381. [22] G. Chen, F. Song, J. Wang, S. Sun, J. Fan, X. Qiang, X. Wang, B. Dou, X. Peng, FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite. Chem. Commun. 48 (2012) 2949–2951. [23] B. Yin, J. Deng, X. Peng, Q. Long, J. Zhao, Q. Lu, Q. Chen, H. Li, H. Tang, Y. Zhang, S. Yao, Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138 (2013) 6551–6557. [24] Y. Hu, J. Yang, L. Jia, J.-S. Yu, Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon 93 (2015) 999–1007. [25] E.F.C. Simoes, L.P. Silva, J.C.G.E. Silva, J.M.M. Leitao, Hypochlorite fluorescence sensing by phenylboronic acid-alizarin adduct based carbon dots. Talanta 208 (2020) 120447. [26] H. Wang, L. Zhang, X. Guo, W. Dong, R. Wang, S. Shuang, X. Gong, C. Dong, Comparative study of Cl,N-Cdots and N-Cdots and application for trinitrophenol and ClO− sensor and cell-imaging. Anal. Chim. Acta 1091 (2019) 76–87. [27] L. Wang, J. Jana, J.S. Chung, S.H. Hur, High quantum yield aminophenylboronic acid-functionalized N-doped carbon dots for highly selective hypochlorite ion detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 260 (2021) 119895. [28] L. Ma, S. Sun, Y. Wang, K. Jiang, J. Zhu, J. Li, H. Lin, A graphene quantum dot-based fluorescent nanoprobe for hypochlorite detection in water and in living cells. Microchim. Acta 184 (2017) 3833–3840. [29] Y. Meng, H. Zhang, W. Li, Y. Liu, X. Gong, S. Shuang, C. Dong, A facile synthesis of long-wavelength emission nitrogen-doped carbon dots for intracellular pH variation and hypochlorite sensing. Biomater. Sci. 9 (2021) 2255–2261. [30] F. Yan, Z. Bai, T. Ma. X. Sun, F. Zu, Y. Luo, L. Chen, Surface modification of carbon quantum dots by fluorescein derivative for dual-emission ratiometric fluorescent hypochlorite biosensing and in vivo bioimaging. Sens. Actuators B Chem. 296 (2019) 126638. [31] Y. Jiao, Y. Meng, W. Lu, Y. Gao, Y. Liu, X. Gong, Y. Liu, S. Shuang, C. Dong, Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta 219 (2020) 121170. [32] S.A. Hill, D. Benito-Alifonso, S.A. Davis, D.J. Morgan, M. Berry, M.C. Galan, Practical three-minute synthesis of acid-coated fluorescent carbon dots with tuneable core structure. Sci. Rep. 8 (2018) 12234. [33] C.-I. Wang, W.-C. Wu, A. P. Periasamy, H.-T. Chang, Electrochemical synthesis of photoluminescent carbon nanodots from glycine for highly sensitive detection of hemoglobin. Green Chem. 16 (2014) 2509–2514. [34] X. Wu, Y. Diao, C. Sun, J. Yang, Y. Wang, S. Sun, Fluorimetric determination of ascorbic acid with o-phenylenediamine. Talanta 59 (2003) 95–99. [35] J. Stejskal, Polymers of phenylenediamines. Prog. Polym. Sci. (2015) 41, 1–31. [36] Z.X. Liu, Z.L. Wu, M.X. Gao, H. Liu, C.Z. Huang, Carbon dots with aggregation induced emission enhancement for visual permittivity detection. Chem. Commun. 52 (2016) 2063–2066. [37] A. Sharma, T. Gadly, S.S. Neogy, K. Ghosh, M. Kumbhakar, Molecular origin and self-assembly of fluorescent carbon nanodots in polar solvents. J. Phys. Chem. Lett. 8 (2017) 1044–1052. [38] Q. Zeng, T. Feng, S. Tao, S. Zhu, B.Yang, Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci. Appl. 10 (2021) 1–13. [39] Y.X. Jiao, G.H. Han, Y. Gao, W. Lu, Y. Liu, M. Xian, S. Shuang, C. Dong, Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging. Anal. Chim. Acta 1042 (2018) 125–132. [40] A.M. Craciun, A. Diac, M. Focsan, C. Socaci, K. Magyari, D. Maniu, I. Mihalache, L. M. Veca, S. Astilean, A. Terec, Surface passivation of carbon nanoparticles with p-phenylenediamine towards photoluminescent carbon dots. RSC Adv. 6 (2016) 56944–56951. [41] M. Vedamalai, A.P. Periasamy, C.-W. Wang, Y.-T. Tseng, L.-C. Ho, C.-C. Shih, H.-T. Chang, Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6 (2014) 13119–13125. [42] A. Dutta, S.T.Y. Trolles-Cavalcante, A. Cleetus, V. Marks, A. Schechter, R. D. Webster, A.Borenstein, Surface modifications of carbon nanodots reveal the chemical source of their bright fluorescence. Nanoscale Adv. 3 (2021) 716–724. [43] O.L. Li, S. Chiba, Y. Wada, G. Panomsuwan, T. Ishizaki, Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 5 (2017) 2073–2082. [44] T. Pillar-Little, D.Y. Kim, Differentiating the impact of nitrogen chemical states on optical properties of nitrogen-doped graphene quantum dots. RSC Adv. 7 (2017) 48263–48267. [45] R. Gupta, S. Sanotra, H.N. Sheikh, B.L. Kalsotra, Room temperature aqueous phase synthesis and characterization of novel nano-sized coordination polymers composed of copper (II), nickel (II), and zinc (II) metal ions with p-phenylenediamine (PPD) as the bridging ligand. J. Nanostructure Chem. 3 (2013) 1–9 [46] L. Zhang, H. Wang, W. Yu, Z. Su, L. Chai, J. Li, Y. Shi, Facile and large-scale synthesis of functional poly (m-phenylenediamine) nanoparticles by Cu2+-assisted method with superior ability for dye adsorption. J. Mater. Chem. A 22 (2012 18244–18251. [47] F. Limosani, E. M. Bauer, D. Cecchetti, S. Biagioni, V. Orlando, R. Pizzoferrato, P. Prosposito, M. Carbone, Top-down N-doped carbon quantum dots for multiple purposes: heavy metal detection and intracellular fluorescence. Nanomaterials 11 (2021) 2249. [48] K.I. Takei, R. Takahashi, T. Noguchi, Correlation between the hydrogen-bond structures and the C=O stretching frequencies of carboxylic acids as studied by density functional theory calculations: Theoretical basis for interpretation of infrared bands of carboxylic groups in proteins. J. Phys. Chem. B 112 (2008) 6725–6731. [49] S. Li, X. Song, Y. Wang, Z. Hu, F. Yan, G. Feng, Developed a ratiometric fluorescence pH nanosensor based on label-free carbon dots for intracellular lysosome imaging and water pH monitoring with a smartphone. Dyes Pigm. 193 (2021) 109490. [50] S. Song, J. Hu, M. Li, X. Gong, C. Dong, S. Shuang, Fe3+ and intracellular pH determination based on orange fluorescence carbon dots co-doped with boron, nitrogen and sulfur. Mater. Sci. Eng. C 118 (2021) 111478 [51] T. Ghosh, S. Chatterjee, E. Prasad, Photoinduced electron transfer from various aniline derivatives to graphene quantum dots. J. Phys. Chem. A 119 (2015) 11783–11790. [52] D. Escudero, Revising intramolecular photoinduced electron transfer (PET) from first-principles. Acc. Chem. Res. 49 (2016) 1816–1824. [53] S. Zhang, X. Ji, J. Liu, Q. Wang, L. Jin, One-step synthesis of yellow-emissive carbon dots with a large Stokes shift and their application in fluorimetric imaging of intracellular pH. Spectrochim. Acta A Mol. Biomol. Spectrosc. 227 (2020) 117677. [54] Q. Wang, H. Yang, Q. Zhang, H. Ge, S. Zhang, Z. Wang, X. Ji, Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of pH variation in living cells. Mikrochim Acta 186 (2019) 1–9. [55] J. Shangguan, D. He, X. He, K. Wang, F. Xu, J. Liu, J. Tang, X. Yang, J. uang, Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal. Chem. 88 (2016) 7837–7843. [56] Z. Wei, H. Li, S. Liu, W. Wang, H. Chen, L. Xiao, C. Ren, X. Chen, Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid. Anal. chem. 91 (2019) 15477–15483. [57] S. Losada-Barreiro, C. Bravo-Diaz, Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem. 133 (2017) 379–402. [58] P. Nguema, M. jun, Application of ferrate (VI) as disinfectant in drinking water treatment processes: a review. Int. J. Microbiol. Res. 7 (2016) 53–62. [59] R.M.G. Berg, K. Møller, D. M.Bailey, Neuro-oxidative-nitrosative stress in sepsis. J. Cereb. Blood Flow Metab. 31 (2011) 1532–1544. Chapter 5: [1] L.B. Zhang, E.K. Wang, Metal nanoclusters: New fluorescent probes for sensors and bioimaging, Nano Today, 9 (2014) 132–157. [2] J. Sun, Y.D. Jin, Fluorescent Au nanoclusters: recent progress and sensing applications, J Mater Chem C, 2 (2014) 8000–8011. [3] S.W. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T.G. Schaaff, et al., Gold nanoelectrodes of varied size: Transition to molecule-like charging, Science, 280 (1998) 2098–2101. [4] Y.Y. Huang, L. Fuksman, J. Zheng, Luminescence mechanisms of ultrasmall gold nanoparticles, Dalton T, 47 (2018) 6267–6273. [5] J. Zheng, C. Zhou, M.X. Yu, J.B. Liu, Different sized luminescent gold nanoparticles, Nanoscale, 4 (2012) 4073–4083. [6] X. Yuan, Z.T. Luo, Y. Yu, Q.F. Yao, J.P. Xie, Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development, Chem-Asian J, 8 (2013) 858–871. [7] L.-Y. Chen, C.-W. Wang, Z. Yuan, H.-T. Chang, Fluorescent gold nanoclusters: recent advances in sensing and imaging, Anal Chem, 87 (2015) 216–229. [8] Z.Q. Yuan, M.H. Peng, L. Shi, Y. Du, N. Cai, Y. He, et al., Disassembly mediated fluorescence recovery of gold nanodots for selective sulfide sensing, Nanoscale, 5 (2013) 4683–4686. [9] Y.-J. Liao, Y.-C. Shiang, C.-C. Huang, H.-T. Chang, Molecularly Imprinted Aptamers of Gold Nanoparticles for the Enzymatic Inhibition and Detection of Thrombin, Langmuir, 28 (2012) 8944–8951. [10] F. Wen, Y.H. Dong, L. Feng, S. Wang, S.C. Zhang, X.R. Zhang, Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing, Anal Chem, 83 (2011) 1193–1196. [11] Y.-W. Lin, C.-C. Huang, H.-T. Chang, Gold nanoparticle probes for the detection of mercury, lead and copper ions, Analyst, 136 (2011) 863–871. [12] K. Aslan, J.R. Lakowicz, C.D. Geddes, Nanogold plasmon resonance-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering, Anal Chem, 77 (2005) 2007–2014. [13] Y. Yang, L.Q. Lu, X.K. Tian, Y. Li, C. Yang, Y.L. Nie, et al., Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters, Sensor Actuat B-Chem, 278 (2019) 82–87. [14] K. Sokolowska, E. Hulkko, L. Lehtovaara, T. Lahtinen, Dithiol-Induced Oligomerization of Thiol-Protected Gold Nanoclusters, J Phys Chem C, 122 (2018) 12524–12533. [15] D. Mishra, F. Aldeek, E. Lochner, G. Palui, B.R. Zeng, S. Mackowski, et al., Aqueous Growth of Gold Clusters with Tunable Fluorescence Using Photochemically Modified Lipoic Acid-Based Ligands, Langmuir, 32 (2016) 6445–6458. [16] Z.K. Wu, R.C. Jin, Stability of the Two Au-S Binding Modes in Au-25 (SG)(18) Nanoclusters Probed by NMR and Optical Spectroscopy, Acs Nano, 3 (2009) 2036–2042. [17] Y. Negishi, Y. Takasugi, S. Sato, H. Yao, K. Kimura, T. Tsukuda, Magic-numbered Au-n clusters protected by glutathione monolayers (n=18, 21, 25, 28, 32, 39): Isolation and spectroscopic characterization, J Am Chem Soc, 126 (2004) 6518–6519. [18] F.N. Lu, H.W. Yang, Y. Tang, C.-J. Yu, G.R. Wang, Z.Q. Yuan, et al., 11-Mercaptoundecanoic acid capped gold nanoclusters with unusual aggregation-enhanced emission for selective fluorometric hydrogen sulfide determination, Microchim Acta, 187 (2020) DOI: 10.1007/s00604-020-4159-1. [19] J.-G. You, W.-L. Tseng, Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes, Anal Chim Acta, 1078 (2019) 101–111. [20] N. Goswami, Q.F. Yao, T.K. Chen, J.P. Xie, Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters, Coordin Chem Rev, 329 (2016) 1–15. [21] R.R. Nasaruddin, T.K. Chen, J.G. Li, N. Goswami, J.G. Zhang, N. Yan, et al., Ligands Modulate Reaction Pathway in the Hydrogenation of 4-Nitrophenol Catalyzed by Gold Nanoclusters, Chemcatchem, 10 (2018) 395–402. [22] T. Higaki, C. Liu, M. Zhou, T.Y. Luo, N.L. Rosi, R.C. Jin, Tailoring the Structure of 58-Electron Gold Nanoclusters: Au103S2(S-Nap)(41) and Its Implications, J Am Chem Soc, 139 (2017) 9994–10001. [23] Z.K. Wu, R.C. Jin, On the Ligand's Role in the Fluorescence of Gold Nanoclusters, Nano Lett, 10 (2010) 2568–2573. [24] D.M. Chevrier, L. Raich, C. Rovira, A. Das, Z.T. Luo, Q.F. Yao, et al., Molecular-Scale Ligand Effects in Small Gold-Thiolate Nanoclusters, J Am Chem Soc, 140 (2018) 15430–15436. [25] H.-Y. Chang, Y.-T. Tseng, Z.-Q. Yuan, H.-L. Chou, C.-H. Chen, B.-J. Hwang, et al., The effect of ligand-ligand interactions on the formation of photoluminescent gold nanoclusters embedded in Au(I)-thiolate supramolecules, Phys Chem Chem Phys, 19 (2017) 12085–12093. [26] H. Cheng, L.N. Yang, Y. Jiang, Y.Y. Huang, Z.H. Sun, J. Zhang, et al., Adsorption kinetic process of thiol ligands on gold nanocrystals, Nanoscale, 5 (2013) 11795–11800. [27] C.-C. Huang, Z. Yang, K.-H. Lee, H.-T. Chang, Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II), Angew Chem Int Edit, 46 (2007) 6824–6828. [28] X.R. Song, N. Goswami, H.H. Yang, J.P. Xie, Functionalization of metal nanoclusters for biomedical applications, Analyst, 141 (2016) 3126–3140. [29] Y.-Q. Wang, Y.-Y. Zhang, X.-G. Wu, X.-W. He, W.-Y. Li, Rapid facile in situ synthesis of the Au/Poly(N-isopropylacrylamide) thermosensitive gels as temperature sensors, Mater Lett, 143 (2015) 326–329. [30] J. Zheng, J.T. Petty, R.M. Dickson, High quantum yield blue emission from water-soluble Au-8 nanodots, J Am Chem Soc, 125 (2003) 7780–7781. [31] Y.J. Ju, N. Li, S.G. Liu, L. Han, N. Xiao, H.Q. Luo, et al., Ratiometric fluorescence method for malachite green detection based on dual-emission BSA-protected gold nanoclusters, Sensor Actuat B-Chem, 275 (2018) 244–250. [32] B.-Y. Wu, C.-W. Wang, P.-C. Chen, H.-T. Chang, Glutathione assisted preparation of gold nanoclusters using minimum amount of protein, Sensor Actuat B-Chem, 238 (2017) 1258–1265. [33] A.D. Eaton, L.S. Clesceri, A.E. Greenberg, M.A.H. Franson, Standard methods for the examination of water and wastewater. 20th ed., (1998). [34] Z.T. Luo, X. Yuan, Y. Yu, Q.B. Zhang, D.T. Leong, J.Y. Lee, et al., From Aggregation-Induced Emission of Au(I)-Thiolate Complexes to Ultrabright Au(0)@Au(I)-Thiolate Core-Shell Nanoclusters, J Am Chem Soc, 134 (2012) 16662–16670. [35] N. Schaeffer, B. Tan, C. Dickinson, M.J. Rosseinsky, A. Laromaine, D.W. McComb, et al., Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range, Chem Commun, (2008) 3986–3988. [36] X. Yuan, N. Goswami, W.L. Chen, Q.F. Yao, J.P. Xie, Insights into the effect of surface ligands on the optical properties of thiolated Au-25 nanoclusters, Chem Commun, 52 (2016) 5234–5237. [37] F.Q. Schafer, G.R. Buettner, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radical Bio Med, 30 (2001) 1191–1212. [38] D.V. Goia, E. Matijevic, Tailoring the particle size of monodispersed colloidal gold, Colloid Surface A, 146 (1999) 139–152. [39] D. Fixler, T. Nayhoz, K. Ray, Diffusion Reflection and Fluorescence Lifetime Imaging Microscopy Study of Fluorophore-Conjugated Gold Nanoparticles or Nanorods in Solid Phantoms, Acs Photonics, 1 (2014) 900–905. [40] X. Le Guevel, B. Hotzer, G. Jung, K. Hollemeyer, V. Trouillet, M. Schneider, Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy, J Phys Chem C, 115 (2011,) 10955–10963. [41] L.G. Li, L.H. Ferng, Y. Wei, C. Yang, H.F. Ji, Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water, J Colloid Interf Sci, 381 (2012) 11–16. [42] J. Zheng, C.W. Zhang, R.M. Dickson, Highly fluorescent, water-soluble, size-tunable gold quantum dots, Phys Rev Lett, 93 (2004) 077402. [43] R.J. Reiffenstein, W.C. Hulbert, S.H. Roth, Toxicology of Hydrogen-Sulfide, Annu Rev Pharmacol, 32 (1992) 109–134. [44] K. Abe, H. Kimura, The possible role of hydrogen sulfide as an endogenous neuromodulator, J Neurosci, 16 (1996) 1066–1071. [45] T. Morris, H. Copeland, G. Szulczewski, Synthesis and characterization of gold sulfide nanoparticles, Langmuir, 18 (2002) 535–539. [46] Y. Zhang, H.Y. Shen, X. Hai, X.W. Chen, J.H. Wang, Polyhedral Oligomeric Silsesquioxane Polymer-Caged Silver Nanoparticle as a Smart Colorimetric Probe for the Detection of Hydrogen Sulfide, Anal Chem, 89 (2017) 1346–1352. [47] P.-C. Chen, Y.-C. Li, J.-Y. Ma, J.-Y. Huang, C.-F. Chen, H.-T. Chang, Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices, Sci Rep-Uk, 6 (2016) 24882. [48] Z.H. Li, S. Guo, C. Lu, A highly selective fluorescent probe for sulfide ions based on aggregation of Cu nanocluster induced emission enhancement, Analyst, 140 (2015) 2719–2725. [49] J. Fan, R.P. Li, P.P. Xu, J.W. Di, Y.F. Tu, J.L. Yan, Sensitive Sulfide Sensor with a Trypsin-stabilized Gold Nanocluster, Anal Sci, 30 (2014) 457–462. [50] M.L. Cui, J.M. Liu, X.X. Wang, L.P. Lin, L. Jiao, Z.Y. Zheng, et al., A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2-, Sensor Actuat B-Chem, 188 (2013) 53–58. [51] J. Liu, J.H. Chen, Z.Y. Fang, L.W. Zeng, A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes, Analyst, 137 (2012) 5502–5505. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87276 | - |
| dc.description.abstract | 螢光奈米材料具有高靈敏度、專一性及高穩定性,故在環境分析、生物感測器、食品安全及顯影技術中具有潛力。第一部分研究由組氨酸添加各種鹵化物以簡單、新穎且環保的電化學方法合成碳點。鹵化物在碳點的形成中起兩個重要作用;控制反應速率和表面狀態。我們通過傅里葉變換紅外光譜、循環伏安法、電化學阻抗譜和 X光電子能譜結果驗證了銅離子與碘離子碳點表面配體(咪唑和組氨酸)相互作用。在 0.8 mM 碘離子的條件下,碘離子碳點對銅離子的選擇性高於被測金屬離子(如汞離子和銀離子)。此方法在訊雜比為 3 時對銅離子的偵測極限為 0.22 µM,並通過分析自來水、湖泊和海水樣品來驗證其實用性。
在第二部分中,與水溶性碳點相比,疏水性碳點的性質和應用很少被提及。在這項研究中,採用一鍋法、簡單的化學氧化方法在室溫下將濃硫酸及三酸甘油脂 (triolein, TO) 合成疏水碳點 (TO-C dots)。銅葉綠素鈉 (SCC) 通過光誘導電子轉移淬滅 TO-CD 螢光。在 400 nm 激發下,TO-C dots 在 500 nm 處的螢光強度顯示出對 1.0–10 M 範圍內的 SCC 濃度的線性相關,偵測極限為 0.61 M。調味飲料中 SCC 的定量顯示回收率為 98-103%,相對標準偏差小於 6.5%。通過在氫氧化鈉水解,疏水性 TO-C dots 可以簡單地轉化為親水性 TO-C dots。親水性 TO-CD 上磺酰基的存在增強了其對銅離子的配位能力,導致螢光猝滅,從而可以檢測銅離子,其偵測極限為 0.21 M 和線性範圍為 0.5-10 M。親水性 TO-CD對銅離子具有高選擇性(耐受性至少是其他金屬離子的 10 倍)。該測定已通過加標土壤樣品的分析得到驗證,銅離子的回收率為 97.8-99.0%,相對標準偏差低於 2.0%。表面可調式的TO-CD展示了它們在快速偵測環境樣品中的銅離子和食品中的 SCC 方面的潛力。 在第三部分中,通過水熱法合成間苯二胺-抗壞血酸碳奈米粒子 (mPA CNPs),作為一種新型螢光感測器(量子產率 = 10%)用於偵測 pH 和次氯酸鹽。間苯二胺對於 pH 值和次氯酸鹽的反應性而被選為 CNPs 的主要成分。同時,引入了具有許多含氧基團的抗壞血酸以提高水溶性和增強反應性。因此,mPA CNPs可以通過自身螢光變化作為 pH 感測器和在中性 pH 下作為次氯酸鹽感測器。所製備的 mPA CNP 在 pH 5.5 至 8.5(R2 = 0.989)的 pH 範圍內以及次氯酸鹽的 0.125-1.25 M 濃度範圍內(R2 = 0.985)表現出線性螢光響應。在中性 pH 條件下,次氯酸鹽的檢測限 (LOD) 計算為 0.029 M。此外,mPA CNPs 還能應用於細胞中pH及次氯酸鹽濃度的成像。 在最後一部分中,聚合物在穀胱甘肽 (GSH) 輔助下可用於製備穩定的螢光金奈米團簇 (Au NCs)。 GSH 為還原劑,而聚合物為模板以穩定形成的 Au NC。製備聚合物模板 GSH-Au NCs 的最佳 pH 值為 11.0。在螢光強度和穩定性方面,聚二烯丙基二甲基銨 (PDDA) 比聚苯乙烯磺酸鹽 (PSS) 更適合製備 Au NCs。硫化氫與金團簇表面反應形成硫化金使 PDDA/GSH-Au NCs 的螢光淬滅。 PDDA/GSH-Au NCs 對硫離子的線性檢測範圍為 1-10 M,偵測極限(訊雜比 = 3)為 0.32 M。PDDA/GSH-Au NCs 在高鹽度環境下保持穩定,已應用於溫泉水樣品中硫化物離子的定量,具有良好的準確度和回收率。 | zh_TW |
| dc.description.abstract | Fluorescent nanomaterials have high sensitivity, specificity, and stability, making them potential candidates for use in environmental analysis, biosensors, food safety, and imaging techniques. First of all, a simple, eco-friendly, and low-cost electrochemical approach has been applied to the syntheses of carbon dots (C dots) from histidine hydrochloride in the absence or presence of halides (Cl, Br, and I) at various potentials up to 10 V. The halides play two important roles in determining the formation of C dots; controlling the reaction rate and surface states. Fourier transform infrared spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy results of I-C dots reveal the interactions of Cu2+ with the surface ligands (imidazole and histidine). The I-C dot probe in the presence of 0.8 mM I- is selective toward Cu2+ over the tested metal ions such as Hg2+ and Ag+. Practicality of this probe has been validated by the analyses of tap, lake, and sea water samples, with negligible matrix effects.
In the second part, a one-pot, simple chemical oxidation approach has been applied to synthesize hydrophobic carbon dots (TO-C dots) at room temperature from triolein (TO) in concentrated sulfuric acid solution. Sodium copper chlorophyllin (SCC) quenches the fluorescence of TO-C dots by a photoinduced electron transfer process. Quantitation of SCC in flavored drinks shows percentage recovery (%R) vaues of 98–103% and relative standard deviation (RSD) values less than 6.5%. The hydrophobic TO-C dots can be simply converted into hydrophilic TO-C dots through hydrolysis in NaOH solution. The presence of sulfonyl groups on the hydrophilic TO-C dots enhances the coordination ability of the CDs toward Cu2+ ions, leading to fluorescence quenching which allows for the detection of Cu2+ ions. The assay has been validated with the analysis of spiked soil samples, with %R values of Cu concentration of 97.8–99.0% and RSDs below 2.0%. The surface tunable CD probes demonstrate their potential for the rapid screening of Cu2+ ions in environmental samples and SCC in foods. In the third part, m-Phenylenediamine carbon nanoparticles (mPA CNPs) were developed through one-pot hydrothermal reaction as a novel fluorescent probe (quantum yield = 10%) for pH and hypochlorite sensing. m-Phenylenediamine was chosen as the major component of CNPs for pH and hypochlorite responsiveness. Meanwhile, ascorbic acid with many oxygen-containing groups was introduced to generate favorable functionalities for improved water solubility and enhanced sensing response. The as-prepared mPA CNPs exhibited a linear fluorescence response over the pH ranges from pH 5.5 to 8.5 (R2 = 0.989), and over the concentration range of 0.125–1.25 μM for hypochlorite (R2 = 0.985). The mPA CNPs were further applied to the cell imaging. The mPA CNPs were also successfully used for cell imaging and sensitive detection of hypochlorite as well as pH changes in biological system. In the last part, a glutathione (GSH)-assisted approach in the presence of a polymer has been demonstrated for the preparation of stable and fluorescent gold nanoclusters (Au NCs). GSH acts as a reducing agent, while the polymer is used as a template to stabilize the as-formed Au NCs. The optimal pH value for the preparation of polymer-templated GSH-Au NCs is 11.0. With respect to the fluorescence intensity and stability, polydiallyldimethylammonium (PDDA) is more suitable than polystyrene sulfonate (PSS) for the preparation of Au NCs. The PDDA/GSH-Au NCs show sensitivity and selectivity for the quantitation of sulfide ions, with a linear detection range of 1–10 μM and a low detection limit (signal-to-noise ratio = 3) of 0.32 μM. The low-cost PDDA/GSH-Au NCs have been applied to the quantitation of sulfide ions in spring water samples with good accuracy and recovery. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:47:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T16:47:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
國立臺灣大學博士學位論文口試委員會審定書 I 中文摘要 II Abstract IV Contents VII Table and Scheme Contents XI Figure Contents XIII Chapter 1 Introduction 1 1.1 Background 2 1.2 Carbon dots (C dots) 3 1.3 Applications of C dots 5 1.4 Gold nanoclusters 6 1.5 Application of AuNCs 8 1.6 Motivation 11 1.7 Reference 13 Chapter 2 Parameters Affecting the Optical Properties of Carbon Dots Prepared from Histidine 25 2.1 Introduction 26 2.2 Experimental Section 27 2.2.1 Materials. 27 2.2.2 Preparation of C dots. 28 2.2.3 Characterization. 29 2.2.4 Quantitation of Cu2+ ions. 31 2.3 Results and discussion 32 2.3.1 Formation of C dots 32 2.3.2 Effect of applied voltage. 33 2.3.3 Effect of histidine concentration and pH value. 34 2.3.4 Effect of sodium halides. 35 2.3.5 Effect of reaction time 39 2.3.6 Formation routes. 41 2.3.7 Sensitivity and selectivity. 41 2.3.8 Sensing mechanism. 44 2.3.9 Real sample analysis. 46 2.4 Conclusions 46 2.5 References 48 Chapter 3 Carbon dots with polarity-tunable characteristics for the selective detection of sodium copper chlorophyllin and copper ions 76 3.1 Introduction 77 3.2 Experimental Section 81 3.2.1 Materials 81 3.2.2 Preparation of hydrophobic and hydrophilic TO-C dots 82 3.2.3 Characterization of TO-C dots 83 3.2.4 Determination of fluorescence quantum yield 84 3.2.5 Detection of SCC 84 3.2.6 Detection of Cu2+ ions 85 3.3 Results and Discussion 87 3.3.1 Synthesis of TO-C dots 87 3.3.2 Effect of triolein and sulfuric acid concentration 90 3.3.3 Concentration-dependent optical properties of TO-C dots 92 3.3.4 Fluorescence detection of sodium copper chlorophyllin (SCC) by hydrophobic TO-C dots 93 3.3.5 Preparation of hydrophilic CDs and detection of Cu2+ ions 96 3.4 Conclusions 99 3.5 References 101 Chapter 4 Development of fluorescent carbon nanoparticle-based probes for intracellular pH and hypochlorite sensing 135 4.1 Introduction 136 4.2 Experimental Section 139 4.2.1 Materials 139 4.2.2 Cells culture 140 4.2.3 Instruments 141 4.2.4 Synthesis of mPA CNPs 142 4.2.5 Determination of fluorescence quantum yield and lifetime 143 4.2.6 pH sensing based on mPA CNPs 144 4.2.7 Detection of ROS and anti-oxidants based on mPA CNPs 145 4.2.8 In vitro biocompatibility assessment 145 4.2.9 In vitro pH detection 146 4.2.10 In vitro hypochlorite detection 147 4.3 Results and Discussion 147 4.3.1 Characterization of mPA CNPs 147 4.3.2 pH sensing based on mPA CNPs 151 4.3.3 Hypochlorite sensing based on mPA CNPs 153 4.4 Conclusions 156 4.5 References 157 Chapter 5 Polymer/glutathione Au nanoclusters for detection of sulfides 188 5.1 Introduction 189 5.2 Experimental Section 192 5.2.1 Materials 192 5.2.2 Synthesis of PDDA/GSH-Au NCs 192 5.2.3 Synthesis of PSS/GSH-Au NCs 193 5.2.4 Synthesis of GSH-Au NCs 194 5.2.5 Characterization 194 5.2.6 Detection of sulfides 195 5.2.7 Analysis of real sample 196 5.3 Results and discussion 197 5.3.1 Preparation of PDDA/GSH-Au NCs 197 5.3.2 Preparation of PSS/GSH-Au NCs 201 5.3.3 Stability of PDDA/GSH-Au NCs and PSS/GSH-Au NCs 202 5.3.4 Quantitation of sulfide ions 203 5.3.5 Selectivity and practicality 205 5.4 Conclusion 206 5.5 References 207 Conclusions and Prospect 227 Appendix: Publications 229 | - |
| dc.language.iso | en | - |
| dc.subject | 碳奈米粒子 | zh_TW |
| dc.subject | 碳量子點 | zh_TW |
| dc.subject | 金奈米團簇 | zh_TW |
| dc.subject | 銅葉綠素鈉 | zh_TW |
| dc.subject | 銅離子 | zh_TW |
| dc.subject | Sodium copper chlorophyllin | en |
| dc.subject | copper ions | en |
| dc.subject | carbon dots | en |
| dc.subject | carbon nanoparticles | en |
| dc.subject | gold nanoclusters | en |
| dc.subject | hypochlorite | en |
| dc.title | 螢光奈米感測器開發 | zh_TW |
| dc.title | Development of Fluorescence Nanosensors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 胡焯淳;黃郁棻;黃志清;陳建甫 | zh_TW |
| dc.contributor.oralexamcommittee | Cho-Chun Hu;Yu-Fen Huang;Chih-Ching Huang;Chien-Fu Chen | en |
| dc.subject.keyword | 碳量子點,金奈米團簇,碳奈米粒子,銅離子,銅葉綠素鈉, | zh_TW |
| dc.subject.keyword | carbon dots,gold nanoclusters,carbon nanoparticles,copper ions,Sodium copper chlorophyllin,hypochlorite, | en |
| dc.relation.page | 229 | - |
| dc.identifier.doi | 10.6342/NTU202300566 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-02-18 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 7.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
