請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87275完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張煥宗 | zh_TW |
| dc.contributor.advisor | Huan-Tsung Chang | en |
| dc.contributor.author | 林裕峰 | zh_TW |
| dc.contributor.author | Yu-Feng Lin | en |
| dc.date.accessioned | 2023-05-18T16:46:44Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-16 | - |
| dc.identifier.citation | Chapter 1 Introduction
[1] Antoni, S., Soerjomataram, I., Møller, B., Bray, F., Ferlay, J., An assessment of GLOBOCAN methods for deriving national estimates of cancer incidence. Bulletin of the World Health Organization 2016, 94 (3), 174-184. [2] MacDonald, V., Chemotherapy: managing side effects and safe handling. Can. Vet. J. 2009, 50 (6), 665-668. [3] Wu, L., Qu, X., Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 2015, 44 (10), 2963-2997. [4] Caracciolo, G., Vali, H., Moore, A., Mahmoudi, M., Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today 2019, 27, 6-10. [5] Syedmoradi, L., Norton, M. L., Omidfar, K., Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2021, 225, 122002. [6] Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., Yu, Y., Chow, A., O'Connor, S. T., Chin, A. R., Yen, Y., Wang, Y., Marcusson, E. G., Chu, P., Wu, J., Wu, X., Li, A. X., Li, Z., Gao, H., Ren, X., Boldin, M. P., Lin, P. C., Wang, S. E., Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014, 25 (4), 501-15. [7] Hannafon, B. N., Trigoso, Y. D., Calloway, C. L., Zhao, Y. D., Lum, D. H., Welm, A. L., Zhao, Z. J., Blick, K. E., Dooley, W. C., Ding, W. Q., Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016, 18 (1), 90. [8] Gutierrez, C., Schiff, R., HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011, 135 (1), 55-62. [9] Woolcott, C. G., SenGupta, S. K., Hanna, W. M., Aronson, K. J., Estrogen and progesterone receptor levels in nonneoplastic breast epithelium of breast cancer cases versus benign breast biopsy controls. BMC Cancer 2008, 8 (1), 130. [10] Grau, C., Prakash Agarwal, J., Jabeen, K., Rab Khan, A., Abeyakoon, S., Hadjieva, T., Wahid, I., Turkan, S., Tatsuzaki, H., Dinshaw, K. A., Overgaard, J., Radiotherapy with or without mitomycin c in the treatment of locally advanced head and neck cancer: results of the IAEA multicentre randomised trial. Radiother. Oncol. 2003, 67 (1), 17-26. [11] Jin, C., Bai, L., Wu, H., Tian, F., Guo, G., Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro. Biomaterials 2007, 28 (25), 3724-30. [12] Shen, B., Zhao, K., Ma, S., Yuan, D., Bai, Y., Topotecan-loaded mesoporous silica nanoparticles for reversing multi-drug resistance by synergetic chemoradiotherapy. Chem. Asian. J. 2015, 10 (2), 344-8. [13] Barker, C. A., Postow, M. A., Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88 (5), 986-97. [14] Tian, G., Zhang, X., Gu, Z., Zhao, Y., Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv. Mater. 2015, 27 (47), 7692-7712. [15] Fan, W., Bu, W., Shi, J., On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 2016, 28 (21), 3987-4011. [16] Hauck, T. S., Jennings, T. L., Yatsenko, T., Kumaradas, J. C., Chan, W. C. W., Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater. 2008, 20 (20), 3832-3838. [17] Xie, J., Lee, S., Chen, X., Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev 2010, 62 (11), 1064-79. [18] Smith, B. R., Gambhir, S. S., Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117 (3), 901-986. [19] Prabhakar, U., Maeda, H., Jain, R. K., Sevick-Muraca, E. M., Zamboni, W., Farokhzad, O. C., Barry, S. T., Gabizon, A., Grodzinski, P., Blakey, D. C., Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73 (8), 2412-7. [20] Maeda, H., Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Delivery Rev. 2015, 91, 3-6. [21] Perry, J. L., Reuter, K. G., Luft, J. C., Pecot, C. V., Zamboni, W., DeSimone, J. M., Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017, 17 (5), 2879-2886. [22] Ganoth, A., Merimi, K. C., Peer, D., Overcoming multidrug resistance with nanomedicines. Expert Opin. Drug Deliv. 2015, 12 (2), 223-238. [23] Bertrand, N., Wu, J., Xu, X., Kamaly, N., Farokhzad, O. C., Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Delivery Rev. 2014, 66, 2-25. [24] Rao, L., Bu, L. L., Cai, B., Xu, J. H., Li, A., Zhang, W. F., Sun, Z. J., Guo, S. S., Liu, W., Wang, T. H., Zhao, X. Z., Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 2016, 28 (18), 3460-6. [25] Chen, F., Cai, W., Tumor vasculature targeting: a generally applicable approach for functionalized nanomaterials. Small 2014, 10 (10), 1887-93. [26] Biju, V., Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014, 43 (3), 744-764. [27] Tseng, Y.-J., Chou, S.-W., Shyue, J.-J., Lin, S.-Y., Hsiao, J.-K., Chou, P.-T., A versatile theranostic delivery platform integrating magnetic resonance imaging/computed tomography, pH/cis-diol controlled release, and targeted therapy. ACS Nano 2016, 10 (6), 5809-5822. [28] Karimi, M., Ghasemi, A., Sahandi Zangabad, P., Rahighi, R., Moosavi Basri, S. M., Mirshekari, H., Amiri, M., Shafaei Pishabad, Z., Aslani, A., Bozorgomid, M., Ghosh, D., Beyzavi, A., Vaseghi, A., Aref, A. R., Haghani, L., Bahrami, S., Hamblin, M. R., Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45 (5), 1457-1501. [29] Seyfried, T. N., Huysentruyt, L. C., On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18 (1-2), 43-73. [30] Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A., Fares, Y., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy 2020, 5 (1), 28. [31] Lambert, A. W., Pattabiraman, D. R., Weinberg, R. A., Emerging biological principles of metastasis. Cell 2017, 168 (4), 670-691. [32] Guan, X., Cancer metastases: challenges and opportunities. Acta Pharm. Sin. B 2015, 5 (5), 402-18. [33] Park, S. I., Zhang, J., Phillips, K. A., Araujo, J. C., Najjar, A. M., Volgin, A. Y., Gelovani, J. G., Kim, S. J., Wang, Z., Gallick, G. E., Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res. 2008, 68 (9), 3323-33. [34] Blaschuk, O. W., Sullivan, R., David, S., Pouliot, Y., Identification of a cadherin cell adhesion recognition sequence. Dev. Biol. 1990, 139 (1), 227-229. [35] Danhier, F., Feron, O., Préat, V., To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 2010, 148 (2), 135-146. [36] Ganta, S., Devalapally, H., Shahiwala, A., Amiji, M., A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Controlled Release 2008, 126 (3), 187-204. [37] Shi, Z., Zhou, Y., Fan, T., Lin, Y., Zhang, H., Mei, L., Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. in Med. 2020, 1, 32-47. [38] Palazzolo, S., Bayda, S., Hadla, M., Caligiuri, I., Corona, G., Toffoli, G., Rizzolio, F., The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr. Med. Chem. 2018, 25 (34), 4224-4268. [39] Shenoy, D., Little, S., Langer, R., Amiji, M., Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm. Res. 2005, 22 (12), 2107-14. [40] Shenoy, D., Little, S., Langer, R., Amiji, M., Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol. Pharm. 2005, 2 (5), 357-66. [41] Shenoy, D. B., Amiji, M. M., Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm. 2005, 293 (1-2), 261-70. [42] Devalapally, H., Shenoy, D., Little, S., Langer, R., Amiji, M., Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother. Pharmacol. 2007, 59 (4), 477-84. [43] Wahajuddin, Arora, S., Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 2012, 7, 3445-3471. [44] Liu, Z., Robinson, J. T., Tabakman, S. M., Yang, K., Dai, H., Carbon materials for drug delivery & cancer therapy. Mater. Today 2011, 14 (7), 316-323. [45] Huxford, R. C., Della Rocca, J., Lin, W., Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14 (2), 262-268. [46] Jiang, X., Han, Y., Zhang, H., Liu, H., Huang, Q., Wang, T., Sun, Q., Li, Z., Cu–Fe–Se ternary nanosheet-based drug delivery carrier for multimodal imaging and combined chemo/photothermal therapy of cancer. ACS Appl. Mater. Interfaces 2018, 10 (50), 43396-43404. [47] Liu, K., Liu, K., Liu, J., Ren, Q., Zhao, Z., Wu, X., Li, D., Yuan, F., Ye, K., Li, B., Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale 2020, 12 (5), 2902-2913. [48] Vines, J. B., Yoon, J.-H., Ryu, N.-E., Lim, D.-J., Park, H., Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019, 7. [49] Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., Jia, Q., Niu, G., Huang, X., Zhou, H., Meng, X., Wang, P., Lee, C.-S., Zhang, W., Han, X., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5 (1), 4596. [50] Noh, S.-h., Moon, S. H., Shin, T.-H., Lim, Y., Cheon, J., Recent advances of magneto-thermal capabilities of nanoparticles: From design principles to biomedical applications. Nano Today 2017, 13, 61-76. [51] Su, X. Y., Liu, P. D., Wu, H., Gu, N., Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol. Med. 2014, 11 (2), 86-91. [52] Kwatra, D., Venugopal, A., Anant, S., Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res. 2013, 2 (4), 330-342. [53] Coderre, J. A., Makar, M. S., Radiobiology of boron neutron capture therapy: problems with the concept of relative biological effectiveness. in progress in neutron capture therapy for cancer, Allen, B. J.; Moore, D. E.; Harrington, B. V., Eds. Springer US: Boston, MA, 1992; pp 435-437. [54] del Valle, A. C., Su, C.-K., Sun, Y.-C., Huang, Y.-F., NIR-cleavable drug addicts of gold nanostars for overcoming multidrug-resistant tumors. Biomater. Sci. 2020, 8 (7), 1934-1950. [55] Baker, S. N., Baker, G. A., Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 2010, 49 (38), 6726-6744. [56] Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. A. S., Pathak, P., Meziani, M. J., Harruff, B. A., Wang, X., Wang, H., Luo, P. G., Yang, H., Kose, M. E., Chen, B., Veca, L. M., Xie, S.-Y., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128 (24), 7756-7757. [57] Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F., Yang, X., Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, (34), 5118-5120. [58] Jian, H.-J., Wu, R.-S., Lin, T.-Y., Li, Y.-J., Lin, H.-J., Harroun, S. G., Lai, J.-Y., Huang, C.-C., Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano 2017, 11 (7), 6703-6716. [59] Lin, C.-J., Chang, L., Chu, H.-W., Lin, H.-J., Chang, P.-C., Wang, R. Y. L., Unnikrishnan, B., Mao, J.-Y., Chen, S.-Y., Huang, C.-C., High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small 2019, 15 (41), 1902641. [60] Deng, J., Lu, Q., Mi, N., Li, H., Liu, M., Xu, M., Tan, L., Xie, Q., Zhang, Y., Yao, S., Electrochemical synthesis of carbon nanodots directly from alcohols. Chem. Eur. J. 2014, 20 (17), 4993-4999. [61] Unnikrishnan, B., Wu, R.-S., Wei, S.-C., Huang, C.-C., Chang, H.-T., Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega 2020, 5 (20), 11248-11261. [62] Hua, X.-W., Bao, Y.-W., Wu, F.-G., Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl. Mater. Interfaces 2018, 10 (13), 10664-10677. [63] Ci, J., Tian, Y., Kuga, S., Niu, Z., Wu, M., Huang, Y., One-pot green synthesis of nitrogen-doped carbon quantum dots for cell nucleus labeling and copper (II) detection. Chem. Asian J. 2017, 12 (22), 2916-2921. [64] Hua, X.-W., Bao, Y.-W., Chen, Z., Wu, F.-G., Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 2017, 9 (30), 10948-10960. [65] Hill, S. A., Sheikh, S., Zhang, Q., Sueiro Ballesteros, L., Herman, A., Davis, S. A., Morgan, D. J., Berry, M., Benito-Alifonso, D., Galan, M. C., Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. Nanoscale Adv. 2019, 1 (8), 2840-2846. Chapter 2 Photoswitchable Carbon-Dot Liposomes Mediate Catalytic Cascade Reactions for Amplified Dynamic Treatment of Tumor Cells [1] Tanner, P., Balasubramanian, V., Palivan, C. G., Aiding nature’s organelles: artificial peroxisomes play their role. Nano Letters 2013, 13 (6), 2875-2883. [2] Liu, Z., Zhou, W., Qi, C.,Kong, T., Interface engineering in multiphase systems toward synthetic cells and organelles: from soft matter fundamentals to biomedical applications. Adv. Mater. 2020, 32 (43), 2002932. [3] Gaur, D., Dubey, N. C.,Tripathi, B. P., Biocatalytic self-assembled synthetic vesicles and coacervates: from single compartment to artificial cells. Adv. Colloid Interface Sci. 2022, 299, 102566. [4] Gräfe, D., Gaitzsch, J., Appelhans, D.,Voit, B., Cross-linked polymersomes as nanoreactors for controlled and stabilized single and cascade enzymatic reactions. Nanoscale 2014, 6 (18), 10752-10761. [5] Huang, Y., Ren, J.,Qu, X., Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119 (6), 4357-4412. [6] Wu, J., Wang, X., Wang, Q., Lou, Z., Li, S., Zhu, Y., Qin, L.,Wei, H., Manomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48 (4), 1004-1076. [7] Jiang, D., Ni, D., Rosenkrans, Z. T., Huang, P., Yan, X.,Cai, W., Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48 (14), 3683-3704. [8] Wei, S. C., Lin, Y. W.,Chang, H. T., Carbon dots as artificial peroxidases for analytical applications. J. Food Drug Anal. 2020, 28 (4), 558-574. [9] Lopez-Cantu, D. O., González-González, R. B., Melchor-Martínez, E. M., Martínez, S. A. H., Araújo, R. G., Parra-Arroyo, L., Sosa-Hernández, J. E., Parra-Saldívar, R.,Iqbal, H. M. N., Enzyme-mimicking capacities of carbon-dots nanozymes: properties, catalytic mechanism, and applications – a review. Int. J. Biol. Macromol. 2022, 194, 676-687. [10] Shi, W., Wang, Q., Long, Y., Cheng, Z., Chen, S., Zheng, H.,Huang, Y., Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47 (23), 6695-6697. [11] Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., Tan, H., Zhao, Z., Xie, Z.,Sun, Z., Highly luminescent s, n co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5 (24), 12272-12277. [12] Hu, Y., Gao, X. J., Zhu, Y., Muhammad, F., Tan, S., Cao, W., Lin, S., Jin, Z., Gao, X.,Wei, H., Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater. 2018, 30 (18), 6431-6439. [13] Fan, K., Xi, J., Fan, L., Wang, P., Zhu, C., Tang, Y., Xu, X., Liang, M., Jiang, B., Yan, X.,Gao, L., In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9 (1), 1440. [14] Yu, H., Shi, R., Zhao, Y., Waterhouse, G. I. N., Wu, L.-Z., Tung, C.-H.,Zhang, T., Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28 (43), 9454-9477. [15] Han, M., Zhu, S., Lu, S., Song, Y., Feng, T., Tao, S., Liu, J.,Yang, B., Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications. Nano Today 2018, 19, 201-218. [16] Bhati, A., Anand, S. R., Gunture, Garg, A. K., Khare, P.,Sonkar, S. K., Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting mg-n-embedded carbon dots. ACS Sustainable Chem. Eng. 2018, 6 (7), 9246-9256. [17] Li, H., Liu, R., Lian, S., Liu, Y., Huang, H.,Kang, Z., Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale 2013, 5 (8), 3289-3297. [18] Chen, T.-H.,Chang, H.-T., Stable and photoswitchable carbon-dot liposome. ACS Appl. Mater. Interfaces 2017, 9 (51), 44259-44263. [19] Harbour, J. R., Chow, V.,Bolton, J. R., An electron spin resonance study of the spin adducts of oh and ho2 radicals with nitrones in the ultraviolet photolysis of aqueous hydrogen peroxide solutions. Can. J. Chem. 1974, 52 (20), 3549-3553. [20] Hu, S., Tian, R., Dong, Y., Yang, J., Liu, J.,Chang, Q., Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale 2013, 5 (23), 11665-11671. [21] Li, H., Liu, R., Kong, W., Liu, J., Liu, Y., Zhou, L., Zhang, X., Lee, S.-T.,Kang, Z., Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst. Nanoscale 2014, 6 (2), 867-873. [22] Kim, N., Lee, J., Gu, M.,Kim, B. S., Modulating charge carriers in carbon dots toward efficient solar-to-energy conversion. Carbon Energy 2021, 3 (4), 590-614. [23] Fernando, K. A. S., Sahu, S., Liu, Y., Lewis, W. K., Guliants, E. A., Jafariyan, A., Wang, P., Bunker, C. E.,Sun, Y.-P., Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 2015, 7 (16), 8363-8376. [24] Song, B., Wang, T., Sun, H., Shao, Q., Zhao, J., Song, K., Hao, L., Wang, L.,Guo, Z., Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 2017, 46 (45), 15769-15777. [25] Haram, S. K., Quinn, B. M.,Bard, A. J., Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 2001, 123 (36), 8860-8861. [26] Cailotto, S., Negrato, M., Daniele, S., Luque, R., Selva, M., Amadio, E.,Perosa, A., Carbon dots as photocatalysts for organic synthesis: metal-free methylene–oxygen-bond photocleavage. Green Chem. 2020, 22 (4), 1145-1149. [27] Privitera, A., Righetto, M., Mosconi, D., Lorandi, F., Isse, A. A., Moretto, A., Bozio, R., Ferrante, C.,Franco, L., Boosting carbon quantum dots/fullerene electron transfer via surface group engineering. Phys. Chem. Chem. Phys. 2016, 18 (45), 31286-31295. [28] Omer, K. M., Tofiq, D. I.,Hassan, A. Q., Solvothermal synthesis of phosphorus and nitrogen doped carbon quantum dots as a fluorescent probe for iron(III). Microchim Acta 2018, 185 (10), 466. [29] Khan, S., Verma, N. C., Gupta, A.,Nandi, C. K., Reversible photoswitching of carbon dots. Sci. Rep. 2015, 5 (1), 11423. [30] van de Linde, S.,Sauer, M., How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem. Soc. Rev. 2014, 43 (4), 1076-1087. [31] van de Linde, S., Krstić, I., Prisner, T., Doose, S., Heilemann, M.,Sauer, M., Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem. Photobiol. Sci. 2011, 10 (4), 499-506. [32] Datta, A., Kapri, S.,Bhattacharyya, S., Carbon dots with tunable concentrations of trapped anti-oxidant as an efficient metal-free catalyst for electrochemical water oxidation. J. Mater. Chem. A 2016, 4 (38), 14614-14624. [33] Komeily-Nia, Z., Chen, J.-Y., Nasri-Nasrabadi, B., Lei, W.-W., Yuan, B., Zhang, J., Qu, L.-T., Gupta, A.,Li, J.-L., The key structural features governing the free radicals and catalytic activity of graphite/graphene oxide. Phys. Chem. Chem. Phys. 2020, 22 (5), 3112-3121. [34] Zeng, L., Li, X., Fan, S., Li, J., Mu, J., Qin, M., Wang, L., Gan, G., Tadé, M.,Liu, S., The bioelectrochemical synthesis of high-quality carbon dots with strengthened electricity output and excellent catalytic performance. Nanoscale 2019, 11 (10), 4428-4437. [35] Gonzalez, D. H., Kuang, X. M., Scott, J. A., Rocha, G. O., Paulson, S. E., Terephthalate probe for hydroxyl radicals: yield of 2-hydroxyterephthalic acid and transition metal interference. Anal. Lett. 2018, 51 (15), 2488-2497. [36] Liu, F., Lai, S., Tong, H., Lakey, P. S. J., Shiraiwa, M., Weller, M. G., Pöschl, U., Kampf, C. J., Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Anal. Bioanal. Chem. 2017, 409 (9), 2411-2420. [37] Chen, Z.-J., Huang, Z., Huang, S., Zhao, J.-L., Sun, Y., Xu, Z.-L.,Liu, J., Effect of proteins on the oxidase-like activity of ceo2 nanozymes for immunoassays. Analyst 2021, 146 (3), 864-873. [38] Liu, Y., Xiang, Y., Ding, D., Guo, R., Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition. RSC Adv. 2016, 6 (113), 112435-112444. [39] Mitra, S., Nguyen, L. N., Akter, M., Park, G., Choi, E. H., Kaushik, N. K., Impact of ROS generated by chemical, physical, and plasma techniques on cancer attenuation. Cancers (Basel) 2019, 11 (7). [40] Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G.,Castoria, G.,Migliaccio, A., ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 2020, 52 (2), 192-203. [41] Panieri, E., Santoro, M. M., ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016, 7 (6), 2253-2253. Chapter 3 Self-assembly Amphiphilic Carbon-Dot-Liposome as an Effective Cell Membrane Fluidic Modulator for Metastatic Triple-Negative Breast Cancer Treatment [1] Seyfried, T. N., Huysentruyt, L. C., On the Origin of Cancer Metastasis. 2013, 18 (1-2), 43-73. [2] Chapman, D., Biological membranes. Thrombosis Research 1974, 4, 37-40. [3] Huang, C., Freter, C., Lipid Metabolism, Apoptosis and Cancer Therapy. Int. J. Mol. Sci. 2015, 16 (1). [4] Dias, C., Nylandsted, J., Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discovery 2021, 7 (1), 4. [5] Bevers, E. M., Comfurius, P., Zwaal, R. F. A., Regulatory Mechanisms in Maintenance and Modulation of Transmembrane Lipid Asymmetry: Pathophysiological Implications. Lupus 1996, 5 (5), 480-487. [6] Stafford, J. H., Thorpe, P. E., Increased exposure of phosphatidylethanolamine on the surface of tumor vascular endothelium. Neoplasia 2011, 13 (4), 299-308. [7] Sok, M., Sentjurc, M., Schara, M., Membrane fluidity characteristics of human lung cancer. Cancer letters 1999, 139 (2), 215-220. [8] Edmond, V., Dufour, F., Poiroux, G., Shoji, K., Malleter, M., Fouqué, A., Tauzin, S., Rimokh, R., Sergent, O., Penna, A., Dupuy, A., Levade, T., Theret, N., Micheau, O., Ségui, B., Legembre, P., Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility. Oncogene 2015, 34 (8), 996-1005. [9] Zouaoui, J., Trunfio-Sfarghiu, A. M., Brizuela, L., Piednoir, A., Maniti, O., Munteanu, B., Mebarek, S., Girard-Egrot, A., Landoulsi, A., Granjon, T., Multi-scale mechanical characterization of prostate cancer cell lines: Relevant biological markers to evaluate the cell metastatic potential. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (12), 3109-3119. [10] Nakazawa, I., Iwaizumi, M., A Role of the Cancer Cell Membrane Fluidity in the Cancer Metastases: An ESR Study. The Tohoku Journal of Experimental Medicine 1989, 157 (3), 193-198. [11] Deliconstantinos, G., Physiological aspects of membrane lipid fluidity in malignancy. Anticancer Res 1987, 7 (5b), 1011-21. [12] Sherbet, G. V., Membrane Fluidity and Cancer Metastasis. Pathobiology 1989, 57 (4), 198-205. [13] Tong, L., Zhao, Y., Huff, T. B., Hansen, M. N., Wei, A., Cheng, J. X., Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Adv. Mater. 2007, 19 (20), 3136-3141. [14] Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., Manivannan, G., Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 2011, 7 (2), 184-192. [15] Barrera, G., Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy. ISRN Oncology 2012, 2012, 137289. [16] Escribá, P. V., Membrane-lipid therapy: a new approach in molecular medicine. Trends Mol. Med. 2006, 12 (1), 34-43. [17] Tan, L. T.-H., Chan, K.-G., Pusparajah, P., Lee, W.-L., Chuah, L.-H., Khan, T. M., Lee, L.-H., Goh, B.-H., Targeting Membrane Lipid a Potential Cancer Cure? Front. Pharmacol. 2017, 8. [18] Angelucci, C., Maulucci, G., Lama, G., Proietti, G., Colabianchi, A., Papi, M., Maiorana, A., De Spirito, M., Micera, A., Balzamino, O. B., Di Leone, A., Masetti, R., Sica, G., Epithelial-Stromal Interactions in Human Breast Cancer: Effects on Adhesion, Plasma Membrane Fluidity and Migration Speed and Directness. PLoS One 2012, 7 (12), e50804. [19] Danhier, F., Feron, O., Préat, V., To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 2010, 148 (2), 135-146. [20] Pagano, R. E., Weinstein, J. N., INTERACTIONS OF LIPOSOMES WITH MAMMALIAN CELLS. Annual Review of Biophysics and Bioengineering 1978, 7 (1), 435-468. [21] Düzgüneş, N., Nir, S., Mechanisms and kinetics of liposome–cell interactions. Adv. Drug Delivery Rev. 1999, 40 (1), 3-18. [22] Tomatsu, I., Marsden, H. R., Rabe, M., Versluis, F., Zheng, T., Zope, H., Kros, A., Influence of pegylation on peptide-mediated liposome fusion. J. Mater. Chem. 2011, 21 (47), 18927-18933. [23] Hatakeyama, H., Akita, H., Harashima, H., The Polyethyleneglycol Dilemma: Advantage and Disadvantage of PEGylation of Liposomes for Systemic Genes and Nucleic Acids Delivery to Tumors. Biol. Pharm. Bull. 2013, 36 (6), 892-899. [24] Zheng, X. T., Ananthanarayanan, A., Luo, K. Q., Chen, P., Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small 2015, 11 (14), 1620-1636. [25] Unnikrishnan, B., Wu, R.-S., Wei, S.-C., Huang, C.-C., Chang, H.-T., Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS Omega 2020, 5 (20), 11248-11261. [26] Wu, R.-S., Lin, Y.-S., Nain, A., Unnikrishnan, B., Lin, Y.-F., Yang, C.-R., Chen, T.-H., Huang, Y.-F., Huang, C.-C., Chang, H.-T., Evaluation of chemotherapeutic response in living cells using subcellular Organelle‒Selective amphipathic carbon dots. Biosens. Bioelectron. 2022, 211, 114362. [27] Hua, X.-W., Bao, Y.-W., Wu, F.-G., Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10 (13), 10664-10677. [28] Sun, S., Zhang, L., Jiang, K., Wu, A., Lin, H., Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic Agents. Chem. Mater. 2016, 28 (23), 8659-8668. [29] Gharat, P. M., Chethodil, J. M., Srivastava, A. P., P. K, P., Pal, H., Dutta Choudhury, S., An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties. Photochemical & Photobiological Sciences 2019, 18 (1), 110-119. [30] Han, G., Zhao, J., Zhang, R., Tian, X., Liu, Z., Wang, A., Liu, R., Liu, B., Han, M.-Y., Gao, X., Zhang, Z., Membrane-Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angew. Chem. Int. Ed. 2019, 58 (21), 7087-7091. [31] Hua, X.-W., Bao, Y.-W., Chen, Z., Wu, F.-G., Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 2017, 9 (30), 10948-10960. [32] Li, D., Na, X., Wang, H., Wang, C., Yuan, Z., Zhu, B.-W., Tan, M., The effects of carbon dots produced by the Maillard reaction on the HepG2 cell substance and energy metabolism. Food Funct. 2020, 11 (7), 6487-6495. [33] Chen, T.-H., Chang, H.-T., Stable and Photoswitchable Carbon-Dot Liposome. ACS Applied Materials & Interfaces 2017, 9 (51), 44259-44263. [34] Foucaud, Y., Lainé, J., Filippov, L. O., Barrès, O., Kim, W. J., Filippova, I. V., Pastore, M., Lebègue, S., Badawi, M., Adsorption mechanisms of fatty acids on fluorite unraveled by infrared spectroscopy and first-principles calculations. J. Colloid Interface Sci. 2021, 583, 692-703. [35] Schällibaum, J., Dalla Torre, F. H., Caseri, W. R., Löffler, J. F., Large-scale synthesis of defined cobalt nanoparticles and magnetic metal–polymer composites. Nanoscale 2009, 1 (3), 374-381. [36] Tandon, P., Raudenkolb, S., Neubert, R. H. H., Rettig, W., Wartewig, S., X-ray diffraction and spectroscopic studies of oleic acid–sodium oleate. Chem. Phys. Lipids 2001, 109 (1), 37-45. [37] Mao, X.-J., Zheng, H.-Z., Long, Y.-J., Du, J., Hao, J.-Y., Wang, L.-L., Zhou, D.-B., Study on the fluorescence characteristics of carbon dots. Spectrochim. Acta, Part A 2010, 75 (2), 553-557. [38] Wang, Y., Kalytchuk, S., Zhang, Y., Shi, H., Kershaw, S. V., Rogach, A. L., Thickness-Dependent Full-Color Emission Tunability in a Flexible Carbon Dot Ionogel. The Journal of Physical Chemistry Letters 2014, 5 (8), 1412-1420. [39] Shashidhar, G. M., Manohar, B., Nanocharacterization of liposomes for the encapsulation of water soluble compounds from Cordyceps sinensis CS1197 by a supercritical gas anti-solvent technique. RSC Adv. 2018, 8 (60), 34634-34649. [40] Doktorovová, S., Araújo, J., Garcia, M. L., Rakovský, E., Souto, E. B., Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf., B 2010, 75 (2), 538-542. [41] Mulik, R. S., Mönkkönen, J., Juvonen, R. O., Mahadik, K. R., Paradkar, A. R., Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm. 2010, 398 (1), 190-203. [42] Roy, P., Periasamy, A. P., Chuang, C., Liou, Y.-R., Chen, Y.-F., Joly, J., Liang, C.-T., Chang, H.-T., Plant leaf-derived graphene quantum dots and applications for white LEDs. New J. Chem. 2014, 38 (10), 4946-4951. [43] Li, C.-L., Huang, C.-C., Periasamy, A. P., Roy, P., Wu, W.-C., Hsu, C.-L., Chang, H.-T., Synthesis of photoluminescent carbon dots for the detection of cobalt ions. RSC Adv. 2015, 5 (3), 2285-2291. [44] Priev, A., Zalipsky, S., Cohen, R., Barenholz, Y., Determination of Critical Micelle Concentration of Lipopolymers and Other Amphiphiles: Comparison of Sound Velocity and Fluorescent Measurements. Langmuir 2002, 18 (3), 612-617. [45] Scholz, N., Behnke, T., Resch-Genger, U., Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension—A Method Comparison. Journal of Fluorescence 2018, 28 (1), 465-476. [46] Fluksman, A., Benny, O., A robust method for critical micelle concentration determination using coumarin-6 as a fluorescent probe. Anal. Methods 2019, 11 (30), 3810-3818. [47] Wei, X., Shamrakov, D., Nudelman, S., Peretz-Damari, S., Nativ-Roth, E., Regev, O., Barenholz, Y., Cardinal Role of Intraliposome Doxorubicin-Sulfate Nanorod Crystal in Doxil Properties and Performance. ACS Omega 2018, 3 (3), 2508-2517. [48] Guo, L., Li, C., Shang, H., Zhang, R., Li, X., Lu, Q., Cheng, X., Liu, Z., Sun, J. Z., Yu, X., A side-chain engineering strategy for constructing fluorescent dyes with direct and ultrafast self-delivery to living cells. Chem. Sci. 2020, 11 (3), 661-670. [49] Milanetti, E., Raimondo, D., Tramontano, A., Prediction of the permeability of neutral drugs inferred from their solvation properties. Bioinformatics 2016, 32 (8), 1163-1169. [50] Seddon, A. M., Casey, D., Law, R. V., Gee, A., Templer, R. H., Ces, O., Drug interactions with lipid membranes. Chem. Soc. Rev. 2009, 38 (9), 2509-2519. [51] Yang, J., Bahreman, A., Daudey, G., Bussmann, J., Olsthoorn, R. C. L., Kros, A., Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes. ACS Cent. Sci. 2016, 2 (9), 621-630. [52] Kou, L., Sun, J., Zhai, Y., He, Z., The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian J. Pharm. Sci. 2013, 8 (1), 1-10. [53] Sun, L., Gao, Y., Wang, Y., Wei, Q., Shi, J., Chen, N., Li, D., Fan, C., Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem. Sci. 2018, 9 (27), 5967-5975. [54] Vancini, R., Wang, G., Ferreira, D., Hernandez, R., Brown, D. T., Alphavirus Genome Delivery Occurs Directly at the Plasma Membrane in a Time- and Temperature-Dependent Process. 2013, 87 (8), 4352-4359. [55] Golfetto, O., Hinde, E., Gratton, E., Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes. Biophys. J. 2013, 104 (6), 1238-1247. [56] Sanchez Susana, A., Tricerri Maria, A., Gratton, E., Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proceedings of the National Academy of Sciences 2012, 109 (19), 7314-7319. [57] Yamamoto, K., Ando, J., Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases. J. Cell Sci. 2013, 126 (5), 1227-1234. [58] Owen, D. M., Rentero, C., Magenau, A., Abu-Siniyeh, A., Gaus, K., Quantitative imaging of membrane lipid order in cells and organisms. Nat. Protoc. 2012, 7 (1), 24-35. [59] Casuso, I., Khao, J., Chami, M., Paul-Gilloteaux, P., Husain, M., Duneau, J.-P., Stahlberg, H., Sturgis, J. N., Scheuring, S., Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat. Nanotechnol. 2012, 7 (8), 525-529. [60] Seetharaman, S., Etienne-Manneville, S., Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol. 2020, 30 (9), 720-735. [61] Ananthakrishnan, R., Ehrlicher, A., The forces behind cell movement. Int J Biol Sci 2007, 3 (5), 303-17. [62] Parsons, J. T., Horwitz, A. R., Schwartz, M. A., Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 2010, 11 (9), 633-643. [63] Löwe, M., Kalacheva, M., Boersma, A. J., Kedrov, A., The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. 2020, 287 (23), 5039-5067. [64] Pijuan, J., Barceló, C., Moreno, D. F., Maiques, O., Sisó, P., Marti, R. M., Macià, A., Panosa, A., In vitro Cell Migration, Invasion, and Adhesion Assays: From Cell Imaging to Data Analysis. Front. Cell Dev. Biol. 2019, 7. [65] Rowan, B. G., Gimble, J. M., Sheng, M., Anbalagan, M., Jones, R. K., Frazier, T. P., Asher, M., Lacayo, E. A., Friedlander, P. L., Kutner, R., Chiu, E. S., Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts. PLoS One 2014, 9 (2), e89595. [66] McAllister, S. D., Murase, R., Christian, R. T., Lau, D., Zielinski, A. J., Allison, J., Almanza, C., Pakdel, A., Lee, J., Limbad, C., Liu, Y., Debs, R. J., Moore, D. H., Desprez, P.-Y., Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Research and Treatment 2011, 129 (1), 37-47. [67] Fong, S., Itahana, Y., Sumida, T., Singh, J., Coppe, J.-P., Liu, Y., Richards Peter, C., Bennington James, L., Lee Nancy, M., Debs Robert, J., Desprez, P.-Y., Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences 2003, 100 (23), 13543-13548. [68] Ware, M. J., Colbert, K., Keshishian, V., Ho, J., Corr, S. J., Curley, S. A., Godin, B., Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique. Tissue Engineering Part C: Methods 2016, 22 (4), 312-321. [69] Perry, J. L., Reuter, K. G., Luft, J. C., Pecot, C. V., Zamboni, W., DeSimone, J. M., Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location. Nano Letters 2017, 17 (5), 2879-2886. [70] Xie, J., Lee, S., Chen, X., Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010, 62 (11), 1064-79. [71] Chai, S., Kan, S., Sun, R., Zhou, R., Sun, Y., Chen, W., Yu, B., Fabricating polydopamine-coated MoSe2-wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy. Int. J. Nanomed. 2018, Volume 13, 7607-7621. [72] Li, K., Li, D., Zhao, L., Chang, Y., Zhang, Y., Cui, Y., Zhang, Z., Calcium-mineralized polypeptide nanoparticle for intracellular drug delivery in osteosarcoma chemotherapy. Bioact. Mater. 2020, 5, 721-731. [73] Sharma, S., Kotamraju, V. R., Mölder, T., Tobi, A., Teesalu, T., Ruoslahti, E., Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth. Nano Lett. 2017, 17 (3), 1356-1364. [74] Su, Y.-L., Yu, T.-W., Chiang, W.-H., Chiu, H.-C., Chang, C.-H., Chiang, C.-S., Hu, S.-H., Hierarchically Targeted and Penetrated Delivery of Drugs to Tumors by Size-Changeable Graphene Quantum Dot Nanoaircrafts for Photolytic Therapy. Adv. Funct. Mater. 2017, 27 (23), 1700056. [75] Jadapalli, J. K., Wright, G. W., Kain, V., Sherwani, M. A., Sonkar, R., Yusuf, N., Halade, G. V., Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters the inflammation-resolution program in the myocardium. American Journal of Physiology-Heart and Circulatory Physiology 2018, 315 (5), H1091-H1100. [76] Gavrieli, Y., Sherman, Y., Ben-Sasson, S. A., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 1992, 119 (3), 493-501. [77] Kyrylkova, K., Kyryachenko, S., Leid, M., Kioussi, C., Detection of Apoptosis by TUNEL Assay. In Odontogenesis: Methods and Protocols, Kioussi, C., Ed. Humana Press: Totowa, NJ, 2012; pp 41-47. [78] Gaus, K., Zech, T., Harder, T., Visualizing membrane microdomains by Laurdan 2-photon microscopy (Review). Mol. Membr. Biol. 2006, 23 (1), 41-48. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87275 | - |
| dc.description.abstract | 癌症是全球第二大死亡原因,其中腫瘤轉移是臨床癌症病患的的主要死因,佔所有癌症患者的90%以上。不幸的是,目前針對轉移癌的治療策略有很大的局限性,致使發展能夠特異性靶向標靶轉移癌的新療法乃是現今癌症治療的亮點。在這份研究中,我們通過簡單的乾燥鍛燒與水解的方法成功合成了一種新型的脂質樣碳奈米點(Lipid-like C-dots),它可以自組裝成類微脂體的結構,即碳奈米點微脂體(CDsomes)。為了克服癌症轉移,在本研究第一部分中,我們首先評估了CDsomes本身的對於癌症細胞治療效果。我們發現 CDsomes可以驅動光催化級聯反應以產生足夠量的氧化壓力來殺死癌細胞。特別的是,我們發現其光催化級聯反應的機理與其獨特的螢光開關切換特性高度相關。研究的第二部分則通過一系列細胞遷移實驗來評估CDsomes的抗癌轉移能力,在這一部分中,我們發現CDsomes可以專一性累積於細胞膜上,並通過在腫瘤環境中誘導膜脂質進行排列從而降低轉移性癌細胞膜的流動性,降低細胞膜流動性不僅在動物體外測試中顯著抑制了轉移細胞的遷移和侵襲浸潤能力,而且在動物體內明顯阻止了腫瘤的轉移。除此之外CDsomse可以有效地攜帶一系列不同極性的抗癌藥物,並將它們輸送到高度異質腫瘤的深層區域。總的來說,我們的研究結果表明,CDsomes不僅可以作為光動力療法的光敏劑,而且還提供了一種簡單而有效的策略來增加提攜帶藥物的療效和防止細胞移動,從而減少癌症轉移。 | zh_TW |
| dc.description.abstract | Cancer is the second leading cause of death worldwide. Tumor metastasis is the major cause modality in clinical cancer treatments, accounting for over 90% of all cancer patients. Unfortunately, current therapeutic strategies toward metastasis cancer have significant limitations, and there is great interest in aspiring novel therapies capable of specifically targeting metastasis cancer. In this report, a novel lipid-like C-dots were synthesized through a simple dry heat route followed by hydrolysis, which can self-assemble into a liposome-like structure, namely C-dot liposome (CDsomes). To overcome cancer metastasis, the therapeutic effects of CDsomes itself were evaluated in the first part. We found that the CDsomes can drive a photocatalytic cascade reaction to produce a sufficient amount of oxidative stress for killing cancer cells. The mechanism of photocatalytic cascade reaction is highly correlated with its unique photoswitching property. In the second part, the anticancer metastasis of CDsomes was evaluated by a series of cell mobility tests. In this part, CDsomes are found to target the cell membrane and subsequently down-regulated the cell membrane fluidity by ordering the membrane lipid, epically in an acidic tumor environment. The down-regulated cell membrane fluidity dramatically not only inhibits the metastatic cell migration and invasion in vitro but obviously prevents the tumor metastasis in vivo. Moreover, the CDsomse can efficiently carry a series of anticancer drugs with different polarities meanwhile deliver them to a deep region of a heterogenic tumor. Collectively, our findings suggest that CDsomes can not only serve as a photosensitizer for photodynamic therapy but also provide a simple but effective strategy to enhance medical performance and prevent cellular mobility that reduces cancer metastasis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:46:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T16:46:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 國立台灣大學博士學位論文口試委員審定書 I
中文摘要 II 英文摘要 III 目錄 V Table and Scheme Contents VIII Figure Contents IX Chapter 1 Introduction 1 1.1 Background 2 1.2 Current nanomaterials for cancer therapy 6 1.3 Carbon dots 9 1.4 Motivation 11 1.5 Reference 13 Chapter 2 Photoswitchable Carbon-Dot Liposomes Mediate Catalytic Cascade Reactions for Amplified Dynamic Treatment of Tumor Cells 31 2.1 Introduction 32 2.2 Results and discussion 36 2.2.1 Photocatalytic oxidase- and peroxidase-mimic activities of CDsomes 36 2.2.2 Catalytic mechanisms behind CDsomes 37 2.2.3 Photocatalytic CDsomes for self-boosting ROS-based dynamic therapy 41 2.3 Conclusions 44 2.4 Experimental Section 45 2.4.1 Chemicals and reagent 45 2.4.2 Preparation of self-assembled CDsomes 46 2.4.3 Determination of photocatalytic oxidase-mimic activity of CDsomes 46 2.4.4 Determination of peroxidase-mimic activity of CDsomes 47 2.4.5 EPR analysis 47 2.4.6 Determination of band structure parameters of CDsomes 48 2.4.7 Cell culture and cytotoxicity assays 48 2.4.8 Determination of intracellular ROS levels 49 2.4.9 Live/dead staining 50 2.5 References 50 Chapter 3 Self-assembly Amphiphilic Carbon-Dot-Liposome as an Effective Cell Membrane Fluidic Modulator for Metastatic Triple-Negative Breast Cancer Treatment 75 3.1 Introduction 76 3.2 Results and discussion 79 3.2.1 Synthesis and characterization of amphiphilic LCDs 79 3.2.2 CDsomes as vesicles for drug loading and delivery 81 3.2.3 Cellular uptake of CDsomes 83 3.2.4 Membrane fluidity alteration by CDsomes 84 3.2.5 CDsomes-mediated inhibition of cell migration and invasion in vitro 85 3.2.6 Dox@CDsosmes-mediated intracellular drug delivery and deep tumor penetration in multicellular spheroids 86 3.2.7 Therapeutic efficacy of Dox@CDsomes in vivo 87 3.2.8 in vivo Dox@CDsomes anti-metastasis 91 3.3 Conclusion 92 3.4 Experimental Section 93 3.4.1 Chemicals and reagent 93 3.4.2 Synthesis of the Cdotsomes 93 3.4.3 CMC determination of Cdotsomes 94 3.4.4 Tpt determination of Cdotsomes 95 3.4.5 Cell culture and cytotoxicity assay 95 3.4.6 In vitro cell migration and invasion assays 96 3.4.7 Cell membrane fluidity measurement 97 3.4.8 Penetration and uptake of Cdotsomes in 3D Multicellular Tumor Spheroids 98 3.4.9 In vivo orthotopic TNBC breast tumor model 99 3.4.10 Histological analyst 100 3.5 References 102 Conclusions and Prospect 144 | - |
| dc.language.iso | en | - |
| dc.subject | 碳奈米點微脂體 | zh_TW |
| dc.subject | 光動力治療 | zh_TW |
| dc.subject | 細胞膜流動性 | zh_TW |
| dc.subject | 深層腫瘤藥物遞送 | zh_TW |
| dc.subject | 抗轉移 | zh_TW |
| dc.subject | Photodynamic therapy | en |
| dc.subject | anti-metastasis | en |
| dc.subject | C-dots liposome | en |
| dc.subject | deep tumor penetration | en |
| dc.subject | membrane fluidity | en |
| dc.title | 自組裝脂質樣碳奈米點應用於癌症治療 | zh_TW |
| dc.title | Self-assembled Lipid-Like Carbon Dots for Cancer Therapy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 黃志清;黃郁棻;胡焯淳;陳建甫 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ching Huang;Yu-Fen Huang;Cho-Chun Hu;Chien-Fu Chen | en |
| dc.subject.keyword | 光動力治療,碳奈米點微脂體,抗轉移,深層腫瘤藥物遞送,細胞膜流動性, | zh_TW |
| dc.subject.keyword | Photodynamic therapy,C-dots liposome,anti-metastasis,deep tumor penetration,membrane fluidity, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202300560 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2028-02-15 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 5.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
