請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87260完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴喜美 | zh_TW |
| dc.contributor.advisor | Hsi-Mei Lai | en |
| dc.contributor.author | 金丸 開皇 | zh_TW |
| dc.contributor.author | Kaio Kanemaru | en |
| dc.date.accessioned | 2023-05-18T16:41:28Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-18 | - |
| dc.identifier.citation | Aleksei Kaleda at el. (2021). Physicochemical, textural, and sensorial properties of fibrous meat analogs from oat-pea protein blends extruded at different moistures, temperatures, and screw speeds. Future Foods 4, 10092
Alonso, R., Orue, E., Zabalza, M. J., Grant, G., & Marzo, F. (2000). Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. Journal of the Science of Food and Agriculture, 80(3), 397–403. Bencini, M. C. (1986). Functional properties of drum dried chickpea (Cicer arietinum L.) flour. Journal of Food Science, 51, 1518–1526. Cai, W., & Diosady, L. L. (1993). Modeling of expansion and water solubility index of wheat starch during extrusion cooking. Acta Alimentaria, 22(3), 181–192. Case, S. E., Hamann, D. D., & Schwartz, S. J. (1992). Effect of starch gelatinization on physical properties of extruded wheat and corn based products. Cereal Chemistry, 69, 401–409. Chang, Y.K., Hashimoto, J.M., Acioli-Moura, R., Martinez-Flores, H.E., MartinezBustos, F., 2001. Influence of extrusion conditions on cassava starch and soybean protein concentrate blends. Acta Alimentaria 30 (2), 189–203 Chao Zhong, Songwen Tan, Timothy Langrish. (2019). Redness generation via Maillard reactions of whey protein isolate (WPI) and ascorbic acid (vitamin C) in spray-dried powders. Journal of Food Engineering. 244, 11-20 Chinnaswamy, R., & Bhattacharya, K. R. (1983). Studies on expanded rice. Physicochemical basis of varietal differences. Journal of Food Science, 48, 1600–1603. Claudia Philipp, Indrawati Oey, Pat Silcock, Svenja M. Beck, Roman Buckow. (2017). Impact of protein content on physical and microstructural properties of extruded rice starch-pea protein snacks. Journal of Food Engineering 212, 165e173 Day, L., & Swanson, B. G. (2013). Functionality of protein-fortified extrudates. Comprehensive Reviews in Food Science and Food Safety, 12(5), 546–564. Fatema Hossain Brishti, Shyan Yea Chay, Kharidah Muhammad.(2021). Texturized mung bean protein as a sustainable food source: Effects of extrusion on its physical, textural and protein quality. Innovative Food Science and Emerging Technologies 67, 102591 Gomez, M.H., Aguilera, J.M., 1984. A physicochemical model for extrusion of corn starch. Journal of Food Science 49, 40–43. 63. Hagenimana, A., Ding, X., & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43, 38–46. Huihui Peng. (2022). High moisture extrusion of pea protein: Effect of L-cysteine on product properties and the process forming a fibrous structure. Food Hydrocolloids 129, 107633 J.M. Ramos DiazK,, KantanenJ.M. EdelmannH, SuhonenT, Sontag-StrohmK, JouppilaV. Piironen. (2022). Fibrous meat analogues containing oat fiber concentrate and pea protein isolate: Mechanical and physicochemical characterization. Innovative Food Science & Emerging Technologies, 77, 102954 Jeunink J. and Cheftel JC. 1979. Chemical and physicochemical changes in field bean and soybean protein texturized by extrusion. J. Food Sci. 44:1322-1325. Jinchuang Zhanga, Li Liua, Yuanrong Jiangb, Faisal Shaha, Yongjun Xuc, Qiang Wanga. (2020). High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/ wheat starch mixtures: Effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocolloids, 99, 105311 Kokini, J. L., Chang, C. N., & Lai, L. S. (1991). The role of rheological properties on extrudate expansion. In J. L. Kokini, C. T. Ho, & M. V. Karwe (Eds.), Food Extrusion Science and Technology (pp. 345–360). New York: Marcel Dekker Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x Mercier, C., & Feillet, P. (1975). Modification of carbohydrate components by extrusion-cooking of cereal products. Cereal Chemistry, 52(3), 283–297 Mizrahi S, Zimmermann G, Berk Z and Cogan U (1967): The use of isolated soybean proteins in bread. Cereal Chem, 44, 193-203. Park, J., Rhee, K. S., Kim, B. K., & Rhee, K. C. (1993). Single-screw extrusion of defatted soy flour, corn starch and raw beef blends. Journal of Food Science, 58(1), 9–20. Palanisamy, M., T¨opfl, S., Berger, R. G., & Hertel, C. (2019). Physico-chemical and nutritional properties of meat analogues based on Spirulina/lupin protein mixtures. European Food Research and Technology, 245(3), 1889–1898. https://doi.org/10.1007/s00217-019-03298-w Roland, W. S. U., Pouvreau, L., Curran, J., van de Velde, F., & de Kok, P. M. T. (2017). Flavor aspects of pulse ingredients. Cereal Chemistry, 94(1), 58–65. https://doi.org/10.1094/CCHEM-06-16-0161 Seker, M. (2005). Selected properties of native or modified maize starch/soy protein mixtures extruded at varying screw speed. Journal of the Science of Food and Agriculture, 85, 1161–1165. Sun, Y., & Muthukumarappan, K. (2002). Changes in functionality of soy-based extrudates during single-screw extrusion processing. International Journal of Food Properties, 5(2), Tang, J., Ding, X.L., 1994. Relationship between functional properties and macromolecular modification of extruded corn starch. Cereal Chemistry 71 (4), 364–369. van den Einde, R.M., van der Goot, A.J., Boom, R.M., 2003. Understanding molecular weight reduction of starch during heating–shearing processes. Journal of Food Science 68 (8), 2396–2404. Verbeek, C. J., & Van den Berg, L. E. (2010). Extrusion processing and properties of protein-based thermoplastics. Macromolecular Materials and Engineering, 295(1), 10–21. Yu, L., Ramaswamy, H. S., & Boye, J. (2012). Twin-screw extrusion of corn flour and soy protein isolate (SPI) blends: A response surface analysis. Food and Bioprocess, Technology, 5(2), 485–497. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87260 | - |
| dc.description.abstract | 在此研究中,利用豌豆和綠豆蛋白開發組織化植物蛋白 (texturized vegetable protein, TVP) 產品並分析其原料與擠壓設定條件對擠出物 (extrudate) 特性的影響。本研究分為四個部分,第一部分,評估不同原料經低水分含量擠壓處理之影響。將豌豆分離蛋白 (pea protein isolate, PPI)、綠豆分離蛋白 (mung bean protein isolate, MBPI)、大豆分離蛋白 (soy protein isolate, SPI) 和馬鈴薯澱粉 (potato starch, PS) 混合製備樣品,並分析其色澤變化、物理特性和微觀結構。結果顯示,MBPI色澤變化較少,且有較低的假密度(bulk density, BD)及較高的吸水指數(water absorption index, WAI),因此具有良好的加工性質。從SEM圖中觀察到,含有 MBPI 和 PS 的樣品具多孔結構,提高孔隙率。添加SPI和PS的樣品則增強以PPI為主原料之擠出物的物理性質。第二部分,評估不同擠壓設定條件在低水分擠壓操作之影響,包括在 PPI 加工過程中改變螺桿轉速和水分含量以製備樣品。結果顯示,提高螺桿轉速和降低水分含量有利於產品膨發並增強其物理性質。不同的擠壓條件會影響擠出物的WAI,但不會影響保油率 (oil holding capacity, OHC)。第三部分,評估經擠壓後之 TVP 的烹煮性質。經烹煮後的TVP具較有利保存的低水分含量和低水活性,儲存穩定性佳。在感官品評中,MBPI 與對照組 (non-fat soybean, NFS) 有相同的可接受性,但PPI組則有較低的數值。第四部分,評估不同原料經高水分擠壓處理之影響。結果顯示,經擠壓後的產品 (high moisture meat analogue, HMMA) 在特定方向有纖維狀結構,且富含蛋白質的組別具有較高硬度和切斷力,添加 PS的組別顯著降低其硬度和切斷力,經油煎的HMMA可提高其硬度和切斷力。經由一系列的擠壓和烹煮試驗,顯示PPI 和 MBPI 的加工性質適合作為取代蛋白質之原料。相信這項研究將會為開發 PPI 和 MBPI 的新產品提供參考。 | zh_TW |
| dc.description.abstract | In this study, the characteristics of the extrusion process were analyzed for the development of new products using pea and mung bean proteins. This research was carried out in four parts. In the first part, the impact of different raw materials on low-moisture extrusion process was evaluated. Pea protein isolate (PPI) and mung bean protein isolate (MBPI) were mixed with soy protein isolate (SPI) and potato starch (PS) to prepare samples and analyzed for color change, physical properties, and microstructure. MBPI showed good processing properties such as less color deterioration, low bulk density (BD), high water absorption index (WAI) of the products. In SEM image, porous structures were observed in the product containing MBPI and PS, which increased the porosity. The addition of SPI and PS improved the physical properties of PPI. In the second part, the effect of different extruder operating conditions on low-moisture extrusion process was evaluated. The screw speed and moisture content were varied in the processing of PPI and the samples were prepared. Increasing screw speed and decreasing moisture content facilitated the product expansion and improved the physical properties. Changing conditions affected water holding capacity (WAI), but not oil holding capacity (OHC). In the third part, cooking properties of the product (texturized vegetable protein, TVP) obtained by extrusion processing were evaluated. The cooked TVP showed reasonable moisture content and water activity, and showed high storability. In sensory evaluation, MBPI showed a high level of acceptability similar to the control (non-fat soybean, NFS), while PPI showed low sensory properties. In the fourth part, the impact of different raw materials on high moisture extrusion process was evaluated. The product after extrusion process (high moisture meat analogue, HMMA) formed a fibrous structure in a certain direction, and high hardness and cutting force were measured for the protein-rich sample. The addition of PS significantly decreased hardness and cutting force. Frying process of HMMA increased hardness and cutting force. A series of extrusion processing and cooking revealed the processing properties of PPI and MBPI, indicating their suitability as alternative proteins. It was believed that this research will serve as fundamental data for the development of new protein foods using PPI and MBPI. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:41:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T16:41:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS i
LIST OF TABLES v LIST OF FIGURES vii ABSTRUCT x 摘要 xii Chapter 1 Introduction 1 1-1. Alternative Protein 1 1-1-1. Growing demand for alternative protein 1 1-1-2. Current Status of Alternative Proteins 3 1-2. Plant-base protein 4 1-2-1. Soy 4 1-2-2. Pea 4 1-2-3. Mung bean 5 1-2-4. Use of plant-base protein in meat substitutes 5 1-3 Extrusion processing 7 1-3-1 Extrusion process for meat substitute 8 1-4 Purpose of this study 10 Chapter 2 Low moisture extrusion process 11 2-1 Introduction 11 2-2 Material and Method 11 2-2-1 Material 11 2-2-2 Experiment procedure 13 2-2-3 Extrusion process 13 2-2-4 Color value 16 2-2-5 Physical property analysis 17 2-2-6 Microstructure (SEM) 19 2-2-7 Statistical analysis 20 2-3 Results and discussions 20 2-3-1 Appearance and color 20 2-3-2 physical property analysis 24 2-3-3 Microstructure (SEM) 33 2-4. Conclusion 35 Chapter 3 Low moisture extrusion process (Operating conditions) 36 3-1 Introduction 36 3-2 Materials and methods 36 3-2-1 Materials 36 3-2-2 Experiment procedure 36 3-2-3 Extrusion process 36 3-2-3 Physical property analysis 37 3-2-4 Statistical analysis 37 3-3 Results and Discussions 37 3-3-1 Physical property analysis 37 3-4. Conclusion 46 Chapter 4 Processing and cooking of TVP 47 4-1 Introduction 47 4-2 Materials and Methods 47 4-2-1 Materials 47 4-2-2 Experiment procedure 47 4-2-3 Cooking process 48 4-2-4 Color value 49 4-2-5 Storability 50 4-2-6 Sensory evaluation 51 4-2-7 Statistical analysis 52 4-3 Results and discussion 53 4-3-1 Appearance and color 53 4-3-2 Cooking yield 56 4-3-3 Storability 58 4-3-4 Sensory evaluation 60 4-4. Conclusion 64 Chapter 5 High moisture extrusion process 65 5-1 Introduction 65 5-2 Materials and Methos 65 5-2-1 Materials 65 5-2-2 Experiment procedure 66 5-2-3 Extrusion process 66 5-2-4 Frying process 68 5-2-5 Color value 68 5-2-6 Texture profile analysis (TPA) 68 5-2-7 statistical analysis 71 5-3 Results and discussion 71 5-3-1 Appearance and Color 71 5-3-2 Texture profile analysis 75 5-4. Conclusion 79 Chapter 6 General summary and future research 80 REFERENCE 82 ACKNOWLEDGEMENT 87 | - |
| dc.language.iso | en | - |
| dc.subject | 替代蛋白 | zh_TW |
| dc.subject | 高水分植物肉 | zh_TW |
| dc.subject | 組織化植物蛋白 | zh_TW |
| dc.subject | 擠壓技術 | zh_TW |
| dc.subject | 綠豆蛋白 | zh_TW |
| dc.subject | 豌豆蛋白 | zh_TW |
| dc.subject | Alternative protein | en |
| dc.subject | Pea protein | en |
| dc.subject | Mung bean protein | en |
| dc.subject | Extrusion | en |
| dc.subject | Texturized vegetable protein | en |
| dc.subject | High moisture meat analogue | en |
| dc.title | 豌豆及綠豆蛋白之擠壓加工特性 | zh_TW |
| dc.title | Extrusion Properties of Pea and Mung Bean Proteins 金丸開皇 KANEMARU KAIO 指導教授:賴喜美 博士、北村豐 博士 Advisor: Hsi-Mei Lai, Ph.D., Yutaka Kitamura, Ph.D. 中華民國 112 年 1 月 January, | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 北村豊 | zh_TW |
| dc.contributor.coadvisor | Kitamura Yutaka | en |
| dc.contributor.oralexamcommittee | 粉川美踏;宮崎均 | zh_TW |
| dc.contributor.oralexamcommittee | Kokawa Mito;Miyazaki Hitoshi | en |
| dc.subject.keyword | 替代蛋白,豌豆蛋白,綠豆蛋白,擠壓技術,組織化植物蛋白,高水分植物肉, | zh_TW |
| dc.subject.keyword | Alternative protein,Pea protein,Mung bean protein,Extrusion,Texturized vegetable protein,High moisture meat analogue, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202300631 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-02-19 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業化學系 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 4.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
