Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林璧鳳zh_TW
dc.contributor.advisorBi-Fong Linen
dc.contributor.author陳駿威zh_TW
dc.contributor.authorChun-Wai Chanen
dc.date.accessioned2023-05-18T16:30:47Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-11-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citation碩博士學位論文
楊政諺 (2009)。維生素對小鼠初代免疫細胞及子代免疫反應的影響。國立臺灣大學微生物與生化學研究所碩士論文。
趙文婉 (2009)。以NF-κB或IFN-γ轉錄活性篩選具免疫調節中草藥─穿心蓮活性成份之單離與鑑定。國立臺灣大學微生物與生化學研究所博士論文。
蔡依廷 (2009)。葉酸對塵蟎蛋白致敏BLAB/c小鼠口服耐受性的影響。國立臺灣大學微生物與生化學研究所碩士論文。
修淯琳 (2015)。高油飲食與葉酸營養狀況對免疫調節的影響。國立臺灣大學生化科技學系暨研究所碩士論文。
詹培萱 (2015)。葉酸缺乏與瘦體素對發炎反應之影響。國立臺灣大學生化科技學系暨研究所碩士論文。
辜祥霖 (2016)。不同葉酸含量對高油飲食小鼠腎臟的影響。國立臺灣大學生化科技學系暨研究所碩士論文。
吳繼恆 (2017)。葉酸缺乏影響抗原呈獻細胞功能與CD4+ T細胞分化之研究。國立臺灣大學生化科技學系暨研究所博士論文。
黃薰儀 (2019)。探討gamma-胺基丁酸對Vhlh基因剔除小鼠腎臟病與免疫調節的影響。國立臺灣大學生化科技學系暨研究所博士論文。
陳立芬 (2022)。以HK-2腎小管細胞株探討葉酸與高葡萄糖或果糖對腎的影響。國立臺灣大學生化科技學系暨研究所碩士論文。

中或英文書籍
Bender DA. (2003). Nutritional Biochemistry of the Vitamins (Second Edition). Cambridge University Press, Cambridge, UK.
Ross AC, Caballero BH, Cousins RJ, Tucker KL, Ziegler TR. (2014). Modern Nutrition in Health and Disease. (Eleventh Edition). Wolters Kluwer Health Adis (ESP), Philadelphia, USA.
Ueland PM & Rozen R. (2005) MTHFR Polymorphisms and Disease (First Edition). Landes Bioscience, Texas, USA.
Zempleni J, Rucker RB, Suttie JW, McCormick DB. (2012) Handbook of Vitamins (Fourth Edition). CRC Press (Taylor & Francis Group), Florida, USA.

國際組織或各國發表之中或英文年度報告
陳冠如、林璧鳳、林以勤、潘文涵 (2010),台灣十年來國人葉酸營養狀況的變遷:由NASHIT 1993-1996到2005-2008。
國健署 (2022),臺灣國民營養健康狀況變遷調查成果報告 (民國106-109年)
國發會 (2020)。中華民國人口推估 (2022年至2070年) 報告。中華民國國家發展委員會。
健保署 (2022)。中華民國109年全民健康保險統計。中華民國衛生福利部中央健康保健署。
USRDS. Annual Data Report of End-Stage Renal Disease (International Comparisons). United States Renal Data System. (2022)
WHO. Noncommunicable Diseases Progress Monitor. World Health Organization. (2017)
WHO. Annual Report of Obesity and Overweight. World Health Organization. (2021)

SCI國際期刊
Abe I, Shirato K, Hashizume Y, Mitsuhashi R, Kobayashi A, Shiono C, et al. Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats. Environmental Health and Preventive Medicine. (2013) 18:78–84. doi:10.1007/s12199-012-0286-6
Abe RM, Masroor A, Khorochkov A, Prieto J, Singh KB, Nnadozie MC, et al. The role of vitamins in non-alcoholic fatty liver disease: a systematic review. Cureus. (2021) 13:e16855. doi:10.7759/cureus16855
Abella V, Scotece M, Conde J, Pino J, Gonzalez-Gay MA, Gómez-Reino JJ, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nature Reviews Rheumatology. (2017) 13:100–109. doi:10.1038/nrrheum.2016.209
Adhikari PM, Chowta MN, Ramapuram JT, Rao SB, Udupa K, Acharya SD. Effect of vitamin B12 and folic acid supplementation on neuropsychiatric symptoms and immune response in HIV-positive patients. Journal of Neurosciences in Rural Practice. (2016) 7:362–367. doi:10.4103/0976-3147.182774
Akyürek N, Aycan Z, Çetinkaya S, Akyürek Ö, Yilmaz Ağladioğlu S, Ertan Ü. Peroxisome proliferator activated receptor (PPAR)-gamma concentrations in childhood obesity. Scandinavian Journal of Clinical and Laboratory Investigation. (2013) 73:355–360. doi:10.3109/00365513.2013.786121
Alhasson F, Seth RK, Sarkar S, Kimono DA, Albadrani MS, Dattaroy D, et al. High circulatory leptin mediated NOX-2-peroxynitrite-miR21 axis activate mesangial cells and promotes renal inflammatory pathology in nonalcoholic fatty liver disease. Redox Biology. (2018) 17:1–15. doi:10.1016/j.redox.2018.04.002
Alix PM, Guebre-Egziabher F, Soulage CO. Leptin as an uremic toxin: deleterious role of leptin in chronic kidney disease. Biochimie. (2014) 105:12–21. doi:10.1016/j.biochi.2014.06.024
Ambarkar M, Pemmaraju SV, Gouroju S, Manohar SM, Bitla AR, Yajamanam N, et al. Adipokines and their relation to endothelial dysfunction in patients with chronic kidney disease. Journal of Clinical and Diagnostic Research. (2016) 10:BC04–BC08. doi:10.7860/JCDR/2016/15867.7060
Aoyama M, Isshiki K, Kume S, Chin-Kanasaki M, Araki H, Araki S, et al. Fructose induces tubulointerstitial injury in the kidney of mice. Biochemical and Biophysical Research Communications. (2012) 419:244–249. doi:10.1016/j.bbrc.2012.02.001
Au-Yeung KK, Yip JC, Siow YL, O K. Folic acid inhibits homocysteine-induced superoxide anion production and nuclear factor kappa B activation in macrophages. Canadian Journal of Physiology and Pharmacology. (2006) 84:141–147. doi:10.1139/Y05-136
Axelsson J, Rashid Qureshi A, Suliman ME, Honda H, Pecoits-Filho R, Heimbürger O, et al. Truncal fat mass as a contributor to inflammation in end-stage renal disease. American Journal of Clinical Nutrition. (2004) 80:1222–1229. doi:10.1093/ajcn/80.5.1222
Bailey LB & Berry RJ. Folic acid supplementation and the occurrence of congenital heart defects, orofacial clefts, multiple births, and miscarriage. American Journal of Clinical Nutrition. (2005) 81:1213S–1217S. doi:10.1093/ajcn/81.5.1213
Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chemico-Biological Interactions. (2010) 188:319–333. doi:10.1016/j.cbi.2010.07.011
Birn H. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins. American Journal of Physiology-Renal Physiology. (2006) 291:F22–F36. doi:10.1152/ajprenal.00385.2005
Biswas PS. IL-17 in renal immunity and autoimmunity. Journal of Immunology. (2018) 201:3153–3159. doi:10.4049/jimmunol.1801042
Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proceedings of the National Academy of Sciences of the United States of America. (1997) 94:3290–3295. doi:10.1073/pnas.94.7.3290
Blüher M. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology. (2019) 15:288–298. doi:10.1038/s41574-019-0176-8
Bonet ML, Oliver J, Picó C, Felipe F, Ribot J, Cinti S, et al. Opposite effects of feeding a vitamin A-deficient diet and retinoic acid treatment on brown adipose tissue uncoupling protein 1 (UCP1), UCP2 and leptin expression. Journal of Endocrinology. (2000) 166:511–517. doi:10.1677/joe.0.1660511
Botto LD, Mulinare J, Erickson JD. Occurrence of congenital heart defects in relation to maternal multivitamin use. American Journal of Epidemiology. (2000) 151:878–884. doi:10.1093/oxfordjournals.aje.a010291
Buchan L, St Aubin CR, Fisher AL, Hellings A, Castro M, Al-Nakkash L, et al. High-fat, high-sugar diet induces splenomegaly that is ameliorated with exercise and genistein treatment. BMC Research Notes. (2018) 11:752. doi:10.1186/s13104-018-3862-z
Câmara NO, Iseki K, Kramer H, Liu ZH, Sharma K. Kidney disease and obesity: epidemiology, mechanisms and treatment. Nature Reviews Nephrology. (2017) 13:181–190. doi:10.1038/nrneph.2016.191
Cao Q, Harris DC, Wang Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda). (2015) 30:183–194. doi:10.1152/physiol.00046.2014
Carney EF. The impact of chronic kidney disease on global health. Nature Reviews Immunology. (2020) 16:251. doi:10.1038/s41581-020-0268-7
Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD. Homocysteine and stroke: evidence on a causal link from mendelian randomisation. Lancet. (2005) 365:224–232. doi:10.1016/S0140-6736(05)17742-3
Chaloupka FJ & Powell LM. Price, availability, and youth obesity: evidence from Bridging the Gap. Preventing Chronic Disease. (2009) 6:A93. doi: not found. [PMID: 19527594]
Chan CW, Chan PH, Lin BF. Folate deficiency increased lipid accumulation and leptin production of adipocytes. Frontiers in Nutrition. (2022) 9:852451. doi:10.3389/fnut.2022.852451
Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S. Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Archives of Toxicology. (2011) 85:327–335. doi:10.1007/s00204-010-0588-7
Chen XL, Dean RG, Hausman GJ. Expression of leptin mRNA and CCAAT-enhancer binding proteins in response to insulin deprivation during preadipocyte differentiation in primary cultures of porcine stromal-vascular cells. Domestic Animal Endocrinology. (1999) 17:389–401. doi:10.1016/s0739-7240(99)00054-5
Chen JY, Tsai YW, Chen SY, Ho CI, Weng YM, Hsiao CT, et al. The association of leptin and homocysteine with renal function impairment in a population of Taiwanese adults. Clinical Nutrition. (2015) 34:943–950. doi:10.1016/j.clnu.2014.10.001
Chen T, Zhang Y, Liu Y, Zhu D, Yu J, Li G, et al. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging. (2019) 11:7510–7524. doi:10.18632/aging.102263
Chen Q, Gao C, Wang M, Fei X, Zhao N. TRIM18-regulated STAT3 signaling pathway via PTP1B promotes renal epithelial-mesenchymal transition, inflammation, and fibrosis in diabetic kidney disease. Frontiers in Physiology. (2021) 12:709506. doi:10.3389/fphys.2021.709506
Chew TW, Jiang X, Yan J, Wang W, Lusa AL, Carrier BJ, et al. Folate intake, MTHFR genotype, and sex modulate choline metabolism in mice. Journal of Nutrition. (2011) 141:1475–1481. doi:10.3945/jn.111.138859
Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Frontiers in Endocrinology. (2016) 7:30. doi:10.3389/fendo.2016.00030
Chung HK, Kim OY, Lee H, Do HJ, Kim YS, Oh J, et al. Relationship between dietary folate intake and plasma monocyte chemoattractant protein-1 and interleukin-8 in heart failure patients. Journal of Clinical Biochemistry and Nutrition. (2011) 49:62–66. doi:10.3164/jcbn.10-129
Chung BH, Kim KW, Sun IO, Choi SR, Park HS, Jeon EJ, et al. Increased interleukin-17 producing effector memory T cells in the end-stage renal disease patients. Immunology Letters. (2012); 141:181–189. doi:10.1016/j.imlet.2011.10.002
Christensen B, Arbour L, Tran P, Leclerc D, Sabbaghian N, Platt R, et al. Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. American Journal of Medical Genetics. (1999) 84:151–157. doi:10.1002/(sici)1096-8628(19990521)84:2<151::aid-ajmg12>3.0.co;2-t
Cianciolo G, De Pascalis A, Di Lullo L, Ronco C, Zannini C, LaManna G. Folic acid and homocysteine in chronic kidney disease and cardiovascular disease progression: which comes first? Cardiorenal Medicine. (2017) 7:255–266. doi:10.1159/000471813
Clarke R, Collins R, Lewington S, Donald A, Alfthan G, Tuomilehto J, et al. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. Journal of the American Medical Association. (2002) 288:2015–2022. doi:10.1001/jama.288.16.2015
Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New England Journal of Medicine. (1996) 334:292–295. doi:10.1056/NEJM199602013340503
Coppolino G, Comi N, Bolignano D, Patella G, Comi A, Provenzano M, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) predicts renal function decline in patients with glomerular diseases. Frontiers in Cell and Developmental Biology. (2020) 8:336. doi:10.3389/fcell.2020.00336
Cortvrindt C, Speeckaert R, Moerman A, Delanghe JR, Speeckaert MM. The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology. (2017) 49:247–258. doi:10.1016/j.pathol.2017.01.003
Courtemanche C, Elson-Schwab I, Mashiyama ST, Kerry N, Ames BN. Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro. Journal of Immunology. (2004) 173:3186–3192. doi:10.4049/jimmunol.173.5.3186
Cousin B, Munoz O, Andre M, Fontanilles AM, Dani C, Cousin JL, et al. A role for preadipocytes as macrophage-like cells. Federation of American Societies for Experimental Biology Journal. (1999) 13:305–312. doi:10.1096/fasebj.13.2.305
Cui W, Maimaitiyiming H, Qi X, Norman H, Wang S. Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity. American Journal of Physiology-Renal Physiology. (2013) 305:F871–F880. doi:10.1152/ajprenal.00209.2013
Cumin F, Baum HP, de Gasparo M, Levens NN. Removal of endogenous leptin from the circulation by the kidney. International Journal of Obesity. (1997) 21:495–504. doi:10.1038/sj.ijo.0800428
D’Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nature Reviews Nephrology. (2016) 12:453–471. doi:10.1038/nrneph.2016.75
de Boer IH, Katz R, Fried LF, Ix JH, Luchsinger J, Sarnak MJ et al. Obesity and change in estimated GFR among older adults. American Journal of Kidney Diseases. (2009) 54:1043–1051. doi:10.1053/j.ajkd.2009.07.018
de Rosa V, Procaccini C, Calì G, Pirozzi G, Fontana S, Zappacosta S, et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity. (2007) 26:241–255. doi:10.1016/j.immuni.2007.01.011
Doshi SM & Friedman AN. Diagnosis and management of type 2 diabetic kidney disease. Clinical Journal of the American Society of Nephrology. (2017) 12:1366–1373. doi:10.2215/CJN.11111016
Duszka K, Gregor A, Guillou H, König J, Wahli W. Peroxisome proliferator-activated receptors and caloric restriction-common pathways affecting metabolism, health, and longevity. Cells. (2020) 9:1708. doi:10.3390/cells9071708
Ebaid H, Bashandy SA, Alhazza IM, Rady A, El-Shehry S. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats. Nutrition & Metabolism. (2013) 10:20. doi:10.1186/1743-7075-10-20
Eddy AA & Neilson EG. Chronic kidney disease progression. Journal of the American Society of Nephrology. (2006) 17:2964–2966. doi:10.1681/ASN.2006070704
Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyrén O. Obesity and risk for chronic renal failure. Journal of the American Society of Nephrology. (2006) 17:1695–1702. doi:10.1681/ASN.2005060638
Elsborg L & Larsen L. Folate deficiency in chronic inflammatory bowel diseases. Scandinavian Journal of Gastroenterology. (1979) 14:1019–1024. doi: not found. [PMID: 43587]
Fantuzzi G & Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. Journal of Leukocyte Biology. (2000) 68:437–446. doi:10.1189/jlb.68.4.437
Fantuzzi G. Adipose tissue, adipokines, and inflammation. Journal of Allergy and Clinical Immunolog. (2005) 115:911–920. doi:10.1016/j.jaci.2005.02.023
Farhadnejad H, Asghari G, Mirmiran P, Yuzbashian E, Azizi F. Micronutrient intakes and incidence of chronic kidney disease in adults: Tehran Lipid and Glucose Study. Nutrients. (2016) 8:217. doi:10.3390/nu8040217
Feng D, Zhou Y, Xia M, Ma J. Folic acid inhibits lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages by suppressing MAPKs and NF-κB activation. Inflammation Research. (2011) 60:817–822. doi:10.1007/s00011-011-0337-2
Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis and treatment. Nature Reviews Endocrinology. (2013) 9:713–723. doi:10.1038/nrendo.2013.184
Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proceedings of the National Academy of Sciences of the United States of America. (2002) 99:5606–5611. doi:10.1073/pnas.062066299
García OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutrition Reviews. (2009) 67:559–572. doi:10.1111/j.1753-4887.2009.00228.x
Garibotto G, Sofia A, Saffioti S, Bonanni A, Mannucci I, Verzola D. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clinical Nutrition. (2010) 29:424–433. doi:10.1016/j.clnu.2010.02.005
Gelber RP, Kurth T, Kausz AT, Manson JE, Buring JE, Levey AS, et al. Association between body mass index and CKD in apparently healthy men. American Journal of Kidney Diseases. (2005) 46:871–880. doi:10.1053/j.ajkd.2005.08.015
Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. American Journal of Physiology-Renal Physiology. (2007) 293:F1256–F1261. doi:10.1152/ajprenal.00181.2007
Ghishan FK & Kiela PR. Vitamins and minerals in inflammatory bowel disease. Gastroenterology Clinics of North America (2017) 46:797–808. doi:10.1016/j.gtc.2017.08.011
Giovannucci E, Stampfer MJ, Colditz GA, Rimm EB, Trichopoulos D, Rosner BA, et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. Journal of the National Cancer Institute. (1993) 85:875–884. doi:10.1093/jnci/85.11.875
Giovannucci E, Stampfer MJ, Colditz GA, Hunte DJ, Fuchs C, Rosner BA, et al. Multivitamin use, folate, and colon cancer in women in the Nurses’ Health Study, Annals of Internal Medicine. (1998) 129:517–524. doi:10.7326/0003-4819-129-7-199810010-00002
Gorska E, Popko K, Stelmaszczyk-Emmel A, Ciepiela O, Kucharska A, Wasik M. Leptin receptors. European Journal of Medical Research. (2010) 15:50–54. doi:10.1186/2047-783x-15-s2-50
Gotoh K, Inoue M, Masaki T, Chiba S, Shiraishi K, Shimasaki T, et al. Obesity-related chronic kidney disease is associated with spleen-derived IL-10. Nephrology Dialysis Transplantation. (2013) 28:1120–1130. doi:10.1093/ndt/gfs440
Gross RL, Reid JV, Newberne PM, Burgess B, Marston R, Hift W. Depressed cell-mediated immunity in megaloblastic anemia due to folic acid deficiency. American Journal of Clinical Nutrition. (1975) 28:225–232. doi:10.1093/ajcn/28.3.225
Grubbs V, Lin F, Vittinghoff E, Shlipak MG, Peralta CA, Bansal N, et al. Body mass index and early kidney function decline in young adults: a longitudinal analysis of the CARDIA (Coronary Artery Risk Development in Young Adults) study. American Journal of Kidney Diseases. (2013) 63:590–597. doi:10.1053/j.ajkd.2013.10.055
Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse role of TGF-β in kidney disease. Frontiers in Cell and Developmental Biology. (2020) 8:123. doi:10.3389/fcell.2020.00123
Haczeyni F, Bell-Anderson KS, Farrell GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obesity Reviews. (2018) 19:406–420. doi:10.1111/obr.12646
Haggarty P. UK introduces folic acid fortification of flour to prevent neural tube defects. Lancet. (2021) 398:1199–1201. doi:10.1016/S0140-6736(21)02134-6
Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 and the kidney. Current Opinion in Nephrology and Hypertension. (2016) 25:42–49. doi:10.1097/MNH.0000000000000186
Halsted CH, Villanueva JA, Devlin AM, Chandler CJ. Metabolic interactions of alcohol and folate. Journal of Nutrition. (2002) 132:2367S–2372S. doi:10.1093/jn/132.8.2367S
Harkins JM, Moustaid-Moussa N, Chung YJ, Penner KM, Pestka JJ, North CM, et al. Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6J and ob/ob mice. Journal of Nutrition. (2004) 134:2673–2677. doi:10.1093/jn/134.10.2673
Hasegawa H, Kohno M, Sasaki M, Inoue A, Ito MR, Terada M, et al. Antagonist of monocyte chemoattractant protein 1 ameliorates the initiation and progression of lupus nephritis and renal vasculitis in MRL/lpr mice. Arthritis and Rheumatism. (2003) 48:2555–2566. doi:10.1002/art.11231
Hassan K. Association of low potassium diet and folic acid deficiency in patients with CKD. Therapeutics and Clinical Risk Management. (2015) 11:821–827. doi:10.2147/TCRM.S83751
Heming M, Gran S, Jauch SL, Fischer-Riepe L, Russo A, Klotz L, et al. Peroxisome proliferator-activated receptor-γ modulates the response of macrophages to lipopolysaccharide and glucocorticoids. Frontiers in Immunology. (2018) 9:893. doi:10.3389/fimmu.2018.00893
Henry CJ, Nemkov T, Casas-Selves M, Bilousova G, Zaberezhnyy V, Higa KC, et al. Folate dietary insufficiency and folic acid supplementation similarly impair metabolism and compromise hematopoiesis. Haematologica. (2017) 102:1985–1994. doi:10.3324/haematol.2017.171074
Heymsfield SB & Wadden TA. Mechanisms, pathophysiology, and management of obesity. New England Journal of Medicine. (2017) 376:254–266. doi:10.1056/NEJMra1514009
Hoffler U, Hobbie K, Wilson R, Bai R, Rahman A, Malarkey D, et al. Diet-induced obesity is associated with hyperleptinemia, hyperinsulinemia, hepatic steatosis, and glomerulopathy in C57BL/6J mice. Endocrine. (2009) 36:311–325. doi:10.1007/s12020-009-9224-9
Honda H, Qureshi AR, Axelsson J, Heimburger O, Suliman ME, Barany P, et al. Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. American Journal of Clinical Nutrition. (2007) 86:633–638. doi:10.1093/ajcn/86.3.633
Hong SS, Lee H, Kim KW. HIF-1α: a valid therapeutic target for tumor therapy. Cancer Research and Treatment. (2004) 36:343–353. doi:10.4143/crt.2004.36.6.343
Huang HY, Hsu T, Lin BF. Gamma-aminobutyric acid decreases macrophages infiltration and suppresses inflammatory responses in renal injury. Journal of Functional Foods. (2019) 60:103419. doi:10.1016/j.jff.2019.103419
Imig JD & Ryan MJ. Immune and inflammatory role in renal disease. Comprehensive Physiology. (2013) 3:957–976. doi:10.1002/cphy.c120028
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cellular and Molecular Life Sciences. (2018) 75:3313–3327. doi:10.1007/s00018-018-2860-6
Ishimura E, Okuno S, Tsuboniwa N, Shoji S, Yamakawa T, Nishizawa Y, et al. Relationship between fat mass and serum high-sensitivity C-reactive protein levels in prevalent hemodialysis patients. Nephron Clinical Practice. (2011) 119:c283–c288. doi:10.1159/000328931
Jiang C, Qu A, Matsubara T, Chanturiya T, Jou W, Gavrilova O, et al. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes. (2011) 60:2484–2495. doi:10.2337/db11-0174
Jin W & Dong C. IL-17 cytokines in immunity and inflammation. Emerging Microbes & Infections. (2013) 2:e60. doi:10.1038/emi.2013.58
Jin Y, Liu R, Xie J, Xiong H, He JC, Chen N. Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model. Laboratory Investigation. (2013) 93:801–811. doi:10.1038/labinvest.2013.64
Kalmpourtzidou A, Eilander A, Talsma EF. Global vegetable intake and supply compared to recommendations: a systematic review. Nutrients. (2020) 12:1558. doi:10.3390/nu12061558
Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney International. (2001) 59:1498–1509. doi:10.1046/j.1523-1755.2001.0590041498.x
Karra E, O’Daly OG, Choudhury AI, Yousseif A, Millership S, Neary MT, et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. Journal of Clinical Investigation. (2013) 123:3539–3551. doi:10.1172/JCI44403
Kashyap S, Warner GM, Hartono SP, Boyilla R, Knudsen BE, Zubair AS, et al. Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension. American Journal of Physiology-Renal Physiology. (2016) 310:F372–F384. doi:10.1152/ajprenal.00131.2015
Khitan Z & Kim DH. Fructose: a key factor in the development of metabolic syndrome and hypertension. Journal of Nutrition and Metabolism. (2013) 2013:682673. doi:10.1155/2013/682673
Kim YI, Hayek M, Mason JB, Meydani SN. Severe folate deficiency impairs natural killer cell-mediated cytotoxicity in rats. Journal of Nutrition. (2002) 132:1361–1367. doi:10.1093/jn/132.6.1361
Kim YI. Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiology, Biomarkers & Prevention. (2004) 13:511–519. doi:10.1158/1055-9965.511.13.4
Kim DH, Chun SY, Lee E, Kim B, Yoon B, Gil H, et al. IL-10 deficiency aggravates renal inflammation, fibrosis and functional failure in high-fat dieted obese mice. Tissue Engineering and Regenerative Medicine. (2021) 18:399–410. doi:10.1007/s13770-020-00328-7
Kinoshita M, Kayama H, Kusu T, Yamaguchi T, Kunisawa J, Kiyono H, et al. Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. Journal of Immunology. (2012) 189:2869–2878. doi:10.4049/jimmunol.1200420
Kolb AF & Petrie L. Folate deficiency enhances the inflammatory response of macrophages. Molecular Immunology. (2013) 54:164–172. doi:10.1016/j.molimm.2012.11.012
Korczynska J, Czumaj A, Chmielewski M, Swierczynski J, Sledzinski T. The causes and potential injurious effects of elevated serum leptin levels in chronic kidney disease patients. International Journal of Molecular Sciences. (2021) 22:4685. doi:10.3390/ijms22094685
Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Molecular Cell. (1999) 4:597–609. doi:10.1016/s1097-2765(00)80210-5
Kümpers P, Gueler F, Rong S, Mengel M, Tossidou I, Peters I, et al. Leptin is a coactivator of TGF-β in unilateral ureteral obstructive kidney disease. American Journal of Physiology-Renal Physiology. (2007). 293:F1355–F1362. doi:10.1152/ajprenal.00003.2007
Kunisawa J, Hashimoto E, Ishikawa I, Kiyono H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLOS One. (2012) 7:e32094. doi:10.1371/journal.pone.0032094
Kurts C, Panzer U, Anders HJ, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nature Reviews Immunology. (2013) 13:738–753. doi:10.1038/nri3523
La-Cava A & Matarese G. The weight of leptin in immunity. Nature Reviews Immunology. (2004) 4:371–379. doi:10.1038/nri1350
Lam QL, Liu S, Cao X, Lu L. Involvement of leptin signaling in the survival and maturation of bone marrow-derived dendritic cells. European Journal of Immunology. (2006) 36:3118–3130. doi:10.1002/eji.200636602
Lang CL, Wang MH, Hung KY, Hsu SH, Chiang CK, Lu KC. Correlation of interleukin-17 producing effector memory T cells and CD4+CD25+Foxp3 regulatory T cells with the phosphate levels in chronic hemodialysis patients. Scientific World Journal. (2014) 2014:593170. doi:10.1155/2014/593170
Lee J, Oh KH, Park SK. Dietary micronutrients and risk of chronic kidney disease: a cohort study with 12 year follow-up. Nutrients. (2021) 13:1517. doi:10.3390/nu13051517
Levey AS. Defining AKD: The spectrum of AKI, AKD, and CKD. Nephron. (2022) 146:302–305. doi:10.1159/000516647
Li M, Chen J, Li YS, Feng YB, Zeng QT. Folic acid reduces chemokine MCP-1 release and expression in rats with hyperhomocystinemia. Cardiovascular Pathology. (2007) 16:305–309. doi:10.1016/j.carpath.2007.03.005
Lim CC, Teo BW, Tai ES, Lim SC, Chan CM, Sethi S, et al. Elevated serum leptin, adiponectin and leptin to adiponectin ratio is associated with chronic kidney disease in Asian adults. PLOS One. (2015) 10:e0122009. doi:10.1371/journal.pone.0122009
Lin HL, Chen CJ, Tsai WC, Yen JH, Liu HW. In vitro folate deficiency induces apoptosis by a p53, Fas (Apo-1, CD95) independent, bcl-2 related mechanism in phytohaemagglutinin-stimulated human peripheral blood lymphocytes. British Journal of Nutrition. (2006) 95:870–878. doi:10.1079/bjn20051579
Lisboa J, Ribeiro MR, Luna R, Lima R, Nascimento R, Monteiro M, et al. Food intervention with folate reduces TNF-α and interleukin levels in overweight and obese women with the MTHFR C677T polymorphism: a randomized trial. Nutrients. (2020) 12:361 doi:10.3390/nu12020361
Liu J, Wei Q, Guo C, Dong G, Liu Y, Tang C, et al. Hypoxia, HIF, and associated signaling networks in chronic kidney disease. International Journal of Molecular Sciences. (2017) 18:950. doi:10.3390/ijms18050950
Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International Journal of Molecular Sciences. (2019) 20:2358. doi:10.3390/ijms20092358
Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, et al. Leptin regulates proinflammatory immune responses. Federation of American Societies for Experimental Biology Journal. (1998) 12:57–65. doi:10.1096/fasebj.12.1.57
Lopez-Hernandez FJ & Lopez-Novoa JM. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell and Tissue Research. (2012) 347:141–154. doi:10.1007/s00441-011-1275-6
Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. (1998) 394:897–901. doi:10.1038/29795
Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y, et al. Histopathological findings of renal tissue induced by oxidative stress due to different concentrations of fluoride. Oncotarget. (2017a) 8:50430–50446. doi:10.18632/oncotarget.17365
Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y, et al. Sodium fluoride induces renal inflammatory responses by activating NF-κB signaling pathway and reducing anti-inflammatory cytokine expression in mice. Oncotarget. (2017b) 8:80192–80207. doi:10.18632/oncotarget.19006
Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. European Journal of Pharmacology. (2018) 820:65–76. doi:10.1016/j.ejphar.2017.12.016
Mahabir S, Ettinger S, Johnson L, Baer DJ, Clevidence BA, Hartman TJ, et al. Measures of adiposity and body fat distribution in relation to serum folate levels in postmenopausal women in a feeding study. European Journal of Clinical Nutrition. (2008) 62:644–650. doi:10.1038/sj.ejcn.1602771
Marques C, Teixeira D, Cunha A, Meireles M, Pestana D, Keating E, et al. Methotrexate enhances 3T3-L1 adipocytes hypertrophy. Cell Biology and Toxicology. (2013) 29:293–302. doi:10.1007/s10565-013-9255-0
Marques-Oliveira GH, Silva TM, Lima WG, Valadares H, Chaves VE. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides. (2018) 106:49–58. doi:10.1016/j.peptides.2018.06.007
Martínez-Vega R, Murillo-Cuesta S, Partearroyo T, Varela-Moreiras G, Varela-Nieto I, Pajares MA. Long-term dietary folate deficiency accelerates progressive hearing loss on CBA/Ca mice. Frontiers in Aging Neuroscience. (2016) 8:209. doi:10.3389/fnagi.2016.00209
Massague J & Wotton D. Transcriptional control by the TGF-β/Smad signaling system. The EMBO Journal. (2000) 19:1745–1754. doi:10.1093/emboj/19.8.1745
Matoba K, Kawanami D, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K. Rho-kinase mediates TNF-α-induced MCP-1 expression via p38 MAPK signaling pathway in mesangial cells. Biochemical and Biophysical Research Communications. (2010) 402:725–730. doi:10.1016/j.bbrc.2010.10.093
Matsui F & Meldrum KK. The role of the Janus kinase family/signal transducer and activator of transcription signaling pathway in fibrotic renal disease. Journal of Surgical Research. (2012) 178:339–345. doi:10.1016/j.jss.2012.06.050
McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Frontiers in Endocrinology. (2013) 10:52. doi:10.3389/fendo.2013.00052
Meadows DN, Bahous RH, Best AF, Rozen R. High dietary folate in mice alters immune response and reduces survival after malarial infection. PLOS One. (2015) 10:e0143738. doi:10.1371/journal.pone.0143738
Meenakshi & Maheshwari RC. Fluoride in drinking water and its removal. Journal of Hazardous Materials. (2006) 137:456–463. doi:10.1016/j.jhazmat.2006.02.024
Menendez C, Lage M, Peino R, Baldelli R, Concheiro P, Diéguez C, et al. Retinoic acid and vitamin D3 powerfully inhibit in vitro leptin secretion by human adipose tissue. Journal of Endocrinology. (2001) 170:425–431. doi:10.1677/joe.0.1700425
Meng XM, Chung AC, Lan HY. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clinical Science. (2013) 124:243–254. doi:10.1042/CS20120252
Meng XM, Tang PM, Li J, Lan HY. TGF-β/Smad signaling in renal fibrosis. Frontiers in Physiology. (2015) 6:82. doi:10.3389/fphys.2015.00082
Merkestein M, Laber S, McMurray F, Andrew D, Sachse G, Sanderson J, et al. (2015). FTO influences adipogenesis by regulating mitotic clonal expansion. Nature Communications. (2015) 6:6792. doi:10.1038/ncomms7792
Mitsui G, Dote T, Adachi K, Dote E, Fujimoto K, Shimbo Y, et al. Harmful effects and acute lethal toxicity of intravenous administration of low concentrations of hydrofluoric acid in rats. Toxicology and Industrial Health. (2007) 23:5–12. doi:10.1177/0748233707076420
Mlodzik-Czyzewska MA, Malinowska AM, Chmurzynska A. Low folate intake and serum levels are associated with higher body mass index and abdominal fat accumulation: a case control study. Nutrition Journal. (2020) 19:53. doi:10.1186/s12937-020-00572-6
Moein S, Vaghari-Tabari M, Qujeq D, Kashifard M, Shokri-Shirvani J, Hajian-Tilaki K. Association between serum folate with inflammatory markers, disease clinical activity and serum homocysteine in patients with inflammatory bowel disease. Does folate level have an effect on maintaining clinical remission? Acta Biomedica. (2020) 91:e2020106. doi:10.23750/abm.v91i4.8467
Mojtabai R. Body mass index and serum folate in childbearing age women. European Journal of Epidemiology. (2004) 19:1029–1036. doi:10.1007/s10654-004-2253-z
Motawi TK, Shaker OG, Ismail MF, Sayed NH. Peroxisome proliferator-activated receptor gamma in obesity and colorectal cancer: the role of epigenetics. Scientific Reports. (2017) 7:10714. doi:10.1038/s41598-017-11180-6
Mou X, Zhou DY, Zhou DY, Ma JR, Liu YH, Chen HP, et al. Serum TGF-β1 as a biomarker for type 2 diabetic nephropathy: a meta-analysis of randomized controlled trials. PLOS One. (2016) 11:e0149513. doi:10.1371/journal.pone.0149513
Mu W, Ouyang X, Agarwal A, Zhang L, Long DA, Cruz PE, et al. IL-10 suppresses chemokines, inflammation, and fibrosis in a model of chronic renal disease. Journal of the American Society of Nephrology. (2005) 16:3651–3660. doi:10.1681/ASN.2005030297
Nalbantoglu IL & Brunt EM. Role of liver biopsy in nonalcoholic fatty liver disease. World Journal of Gastroenterology. (2014) 20:9026–9037. doi:10.3748/wjg.v20.i27.9026
Neill US. Leaping for leptin: the 2010 Albert Lasker Basic Medical Research Award goes to Douglas Coleman and Jeffrey M. Friedman. Journal of Clinical Investigation. (2010) 120:3413−3418. doi:10.1172/JCI45094.
Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Tanaka K, Okubo K, et al. Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. American Journal of Kidney Diseases. (2004) 44:437–445. doi:10.1053/j.ajkd.2004.05.024
Ntambi JM & Kim YC. Adipocyte differentiation and gene expression. Journal of Nutrition. (2000) 130:3122S−6S. doi:10.1093/jn/130.12.3122S
Opal SM & DePalo VA. Anti-inflammatory cytokines. Chest. (2000) 117:1162−1172. doi:10.1378/chest.117.4.1162
Ott ES, Shay NF. Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytes. Experimental Biology and Medicine. (2001) 226:841–846. doi:10.1177/153537020122600906
Patel DM, Bose M, Cooper ME. Glucose and blood pressure-dependent pathways-the progression of diabetic kidney disease. International Journal of Molecular Sciences. (2020) 21:2218. doi:10.3390/ijms21062218
Pérez-Pérez A, Vilariño-García T, Fernández-Riejos P, Martín-González J, Segura-Egea JJ, Sánchez-Margalet V. Role of leptin as a link between metabolism and the immune system. Cytokine and Growth Factor Review. (2017) 35:71–84. doi:10.1016/j.cytogfr.2017.03.001
Pedone C, Roshanravan B, Scarlata S, Patel KV, Ferrucci L, Incalzin RA. Longitudinal association between serum leptin concentration and glomerular filtration rate in humans. PLOS One. (2015) 10:e0117828. doi:10.1371/journal.pone.0117828
Ponziani FR, Cazzato IA, Danese S, Fagiuoli S, Gionchetti P, Annicchiarico BE, et al. Folate in gastrointestinal health and disease. European Review for Medical and Pharmacological Sciences. (2012) 16:376–385. doi: not found. [PMID: 22530356]
Prentice KJ, Saksi J, Hotamisligil GS. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. Journal of Lipid Research. (2019) 60:734–740. doi:10.1194/jlr.S091793
Raza S, Tewari A, Rajak S, Sinha RA. Vitamins and nonalcoholic fatty liver disease: a molecular insight. Liver Research. (2021) 5:62–71. doi:10.1016/j.livres.2021.03.004
Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, Gassaway BM, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell. (2020) 183:1848–1866. doi:10.1016/j.cell.2020.11.009
Ross SH & Cantrell DA. Signaling and function of interleukin-2 in T lymphocytes. Annual Review of Immunology. (2018) 36:411–433. doi:10.1146/annurev-immunol-042617-053352
Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients. (2011) 3:118–134. doi:10.3390/nu3010118
Rozen-Zvi B, Hayashida T, Hubchak SC, Hanna C, Platanias LC, Schnaper HW. TGF-β/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1α expression. American Journal of Physiology-Renal Physiology. (2013) 305:F485–F494. doi:10.1152/ajprenal.00215.2013
Sadeghabadi ZA, Nourbakhsh M, Alaee M, Larijani B, Razzaghy-Azar M. Peroxisome proliferator-activated receptor gamma expression in peripheral blood mononuclear cells and angiopoietin-like protein 4 levels in obese children and adolescents. Journal of Endocrinological Investigation. (2017) 41:241–247. doi:10.1007/s40618-017-0730-y
Samarakoon R, Overstreet JM, Higgins SP, Higgins PJ. TGF-β1→SMAD/p53/USF2→PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell and Tissue Research. (2012) 347:117–128. doi:10.1007/s00441-011-1181-y
Sanchez-Niño MD, Bozic M, Córdoba-Lanús E, Valcheva P, Gracia O, Ibarz M, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. American Journal of Physiology-Renal Physiology. (2012) 302:F647–F657. doi:10.1152/ajprenal.00090.2011
Sclafani A. Oral, post-oral and genetic interactions in sweet appetite. Physiology & Behavior. (2006) 89:525–530. doi:10.1016/j.physbeh.2006.03.021
Sellers TA, Kushi LH, Cerhan JR, Vierkant RA, Gapstur SM, Vachon CM, et al. Dietary folate intake, alcohol, and risk of breast cancer in a prospective study of postmenopausal women. Epidemiology. (2001) 12:420–428. doi:10.1097/00001648-200107000-00012
Seok SJ, Lee ES, Kim GT, Hyun M, Lee JH, Chen S, et al. Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrology Dialysis Transplantation. (2013) 28:1700–1710. doi:10.1093/ndt/gfs555
Shankar A, Sun L, Klein BE, Lee KE, Muntner P, Nieto FJ, et al. Markers of inflammation predict the long-term risk of developing chronic kidney disease: a population-based cohort study. Kidney International. (2011) 80:1231–1238. doi:10.1038/ki.2011.283
Shankar A, Syamala S, Xiao J, Muntner P. Relationship between plasma leptin level and chronic kidney disease. International Journal of Nephrology. (2012) 2012:269532. doi:10.1155/2012/269532
Sharma K, Considine RV, Michael B, Dunn SR, Weisberg LS, Kurnik BR, et al. Plasma leptin is partly cleared by the kidney and is elevated in hemodialysis patients. Kidney International. (1997) 51:1980–1985. doi:10.1038/ki.1997.269
Shu S, Wang Y, Zheng M, Liu Z, Cai J, Tang C, et al. Hypoxia and hypoxia-inducible factors in kidney injury and repair. Cells. (2019) 8:207. doi:10.3390/cells8030207
Sinuani I, Averbukh Z, Gitelman I, Rapoport MJ, Sandbank J, Albeck M, et al. Mesangial cells initiate compensatory renal tubular hypertrophy via IL-10-induced TGF-β secretion: effect of the immunomodulator AS101 on this process. American Journal of Physiology-Renal Physiology. (2006) 291:F384–F394. doi:10.1152/ajprenal.00418.2005
Sinuani I, Beberashvili I, Averbukh Z, Sandbank J. Role of IL-10 in the progression of kidney disease. World Journal of Transplantation. (2013) 3:1–8. doi:10.5500/wjt.v3.i4.91
Skeete J & DiPette DJ.Relationship between homocysteine and hypertension: new data add to the debate. Journal of Clinical Hypertension. (2017) 19:1171–1172. doi:10.1111/jch.13073
Softic S, Gupta MK, Wang GX, Fujisaka S, O’Neill BT, Rao TN, et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. Journal of Clinical Investigation. (2017) 127:4059–4074. doi:10.1172/JCI94585
Solini A, Santini E, Ferrannini E. Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects. International Journal of Obesity. (2006) 30:1197–1202. doi:10.1038/sj.ijo.0803265
Song Z, Xiaoli AM, Yang F. Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients. (2018) 10:1383. doi:10.3390/nu10101383
Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetes. (2003) 52:812–817. doi:10.2337/diabetes.52.3.812
Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Critical Reviews in Clinical Laboratory Sciences. (2016) 53:52–67. doi:10.3109/10408363.2015.1084990
Stasi A, Cosola C, Caggiano G, Cimmarusti MT, Palieri R, Acquaviva PM, et al. Obesity-related chronic kidney disease: principal mechanisms and new approaches in nutritional management. Frontiers in Nutrition. (2022) 9:925619. doi:10.3389/fnut.2022.925619
Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Frontiers in Immunology. (2017) 8:405. doi:10.3389/fimmu.2017.00405
Sun X, Han F, Miao W, Hou N, Cao Z, Zhang G. Sonographic evaluation of para- and perirenal fat thickness is an independent predictor of early kidney damage in obese patients. International Urology and Nephrology. (2013) 45:1589–1595. doi:10.1007/s11255-013-0404-4
Sutti S & Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nature Reviews Gastroenterology & Hepatology. (2020) 17:81–92. doi:10.1038/s41575-019-0210-2
Tanaka M, Suganami T, Kim-Saijo M, Toda C, Tsuiji M, Ochi K, et al. Role of central leptin signaling in the starvation-induced alteration of B-cell development. Journal of Neuroscience. (2011) 31:8373–8380. doi:10.1523/jneurosci.6562-10.2011
Tang J, Yan H, Zhuang S. Inflammation and oxidative stress in obesity-related glomerulopathy. International Journal of Nephrology. (2012) 2012:608397. doi:10.1155/2012/608397
Therrien FJ, Agharazii M, Lebel M, Larivière R. Neutralization of tumor necrosis factor-alpha reduces renal fibrosis and hypertension in rats with renal failure. American Journal of Nephrology. (2012) 36:151–161. doi:10.1159/000340033
Thuesen BH, Husemoen LL, Ovesen L, Jørgensen T, Fenger M, Linneberg A. Lifestyle and genetic determinants of folate and vitamin B12 levels in a general adult population. British Journal of Nutrition. (2010) 103:1195–1204. doi:10.1017/S0007114509992947
Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K, Yasuda-Yamahara M, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORc1 inhibition. Cell Metabolism. (2020) 32(3):404–419. doi:10.1016/j.cmet.2020.06.020
Tomiyama-Hanayama M, Rakugi H, Kohara M, Mima T, Adachi Y, Ohishi M, et al. Effect of interleukin-6 receptor blockage on renal injury in apolipoprotein E-deficient mice. American Journal of Physiology-Renal Physiology. (2009) 297:F679–F684. doi:10.1152/ajprenal.90680.2008
Trayhurn P & Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proceedings of the Nutrition Society. (2001) 60:329–339. doi:10.1079/PNS200194
van der Heijden RA, Bijzet J, Meijers WC, Yakala GK, Kleemann R, Nguyen TQ, et al. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis. Scientific Reports. (2015) 5:16474. doi:10.1038/srep16474.
Wahluyo S, Ismiyatin K, Purwanto B, Mukono IS. The influence of sodium fluoride on the growth of ameloblasts and kidney proximal tubular cells. Folia Biologica. (2017) 63:31–34. doi: not found. [PMID: 28374673]
Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. British Medical Journal. (2002) 325:1202–1206. doi:10.1136/bmj.325.7374.1202
Wang G, Dai J, Mao J, Zeng X, Yang X, Wang X. Folic acid reverses hyper-responsiveness of LPS-induced chemokine secretion from monocytes in patients with hyperhomocysteinemia. Atherosclerosis. (2005) 179:395–402. doi:10.1016/j.atherosclerosis.2004.10.033
Weldegiorgis M & Woodward M. Elevated triglycerides and reduced high-density lipoprotein cholesterol are independently associated with the onset of advanced chronic kidney disease: a cohort study of 911,360 individuals from the United Kingdom. BMC Nephrology. (2022) 23:312. doi:10.1186/s12882-022-02932-2
Weng JR, Chen CY, Pinzone JJ, Ringel MD, Chen CS. Beyond peroxisome proliferator-activated receptor γ signaling: the multi-facets of the antitumor effect of thiazolidinediones. Endocrine-Related Cancer. (2006) 13:401–413. doi:10.1677/erc.1.01182
Whitford GM. The physiological and toxicological characteristics of fluoride. Journal of Dental Research. (1990) 69:539–557. doi:10.1177/00220345900690S108
Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, et al. Body-mass index and cause-specific mortality in 900000 adults: collaborative analyses of 57 prospective studies. Lancet. (2009) 373:1083–1096. doi:10.1016/S0140-6736(09)60318-4
Wolf G, Hamann A, Han DC, Helmchen U, Thaiss F, Ziyadeh FN, et al. Leptin stimulates proliferation and TGF-β expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney International. (1999) 56:860–872. doi:10.1046/j.1523-1755.1999.00626.x
Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH, et al. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. American Journal of Pathology. (2013) 182:118–131. doi:10.1016/j.ajpath.2012.09.009
Wu CH, Huang TC, Lin BF. Folate deficiency affects dendritic cell function and subsequent T helper cell differentiation. Journal of Nutritional Biochemistry. (2017) 41:65–72. doi:10.1016/j.jnutbio.2016.11.008
Wuerzner G, Pruijm M, Maillard M, Bovet P, Renaud C, Burnier M, et al. Marked association between obesity and glomerular hyperfiltration: a cross-sectional study in an African population. American Journal of Kidney Diseases. (2010) 56:303–312. doi:10.1053/j.ajkd.2010.03.017
Xing CY, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW. Direct effects of dexamethasone on human podocytes. Kidney International (2006) 70:1038–1045. doi:10.1038/sj.ki.5001655
Xu T, Sheng Z, Yao L. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment. Frontiers in Medicine. (2017) 11:340–348. doi:10.1007/s11684-017-0570-3
Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T, Nomura T, et al. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity. (2007) 27:145–159. doi:10.1016/j.immuni.2007.04.017
Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of diabetic kidney disease: current and future. Diabetes & Metabolism Journal. (2021) 45:11–26. doi:10.4093/dmj.2020.0217
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Frontiers in Nutrition. (2019) 6:48. doi:10.3389/fnut.2019.00048
Zager RA & Iwata M. Inorganic fluoride divergent effects on human proximal tubular cell viability. American Journal of Pathology. (1997) 150:735–745. doi: not found. [PMID: 9033286]
Zhang S, Hunter DJ, Hankinson SE, Giovannucci EL, Rosner BA, Colditz GA, et al. A prospective study of folate intake and the risk of breast cancer. Journal of the American Medical Association. (1999) 281:1632–1637. doi:10.1001/jama.281.17.1632
Zhang R, Ma J, Xia M, Zhu H, Ling W. Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. Journal of Nutrition. (2004) 134:825–830. doi:10.1093/jn/134.4.825
Zhang C, Yi F, Xia M, Boini KM, Zhu Q, Laperle LA, et al. NMDA receptor-mediated activation of NADPH oxidase and glomerulosclerosis in hyperhomocysteinemic rats. Antioxidants & Redox Signaling. (2010) 13:975–986. doi:10.1089/ars.2010.3091
Zhao Y, Sun R, You L, Gao C, Tian Z. Expression of leptin receptors and response to leptin stimulation of human natural killer cell lines. Biochemical and Biophysical Research Communications. (2003) 300:247–252. doi:10.1016/s0006-291x(02)02838-3
Zhao M, Yuan MM, Yuan L, Huang LL, Liao JH, Yu XL, et al. Chronic folate deficiency induces glucose and lipid metabolism disorders and subsequent cognitive dysfunction in mice. PLOS One. (2018) 13:e0202910. doi:10.1371/journal.pone.0202910
Zheng C, Huang L, Luo W, Yu W, Hu X, Guan X, et al. Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice. Cell Death & Disease. (2019) 10:848. doi:10.1038/s41419-019-2085-0
Zhu Q & Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nature Reviews Nephrology. (2018) 14:105–120. doi:10.1038/nrneph.2017.157
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87231-
dc.description.abstract全球肥胖和末期腎臟病的盛行率逐年攀升,肥胖致腎臟病變(obesity-related nephropathy)的發生率亦大幅增加。過多的內臟脂肪囤積是導致糖尿病、高血壓和高瘦素血症的主要原因,更是促進慢性發炎反應與慢性腎臟病的危險因子。隨著現代化飲食傾向高油脂、含糖飲料與少蔬果的攝食,易導致肥胖和葉酸攝取不足。已知,身體質量指數和內臟脂肪量與血液葉酸濃度呈負相關,暗示葉酸營養狀況與肥胖的發生具有關聯性。本研究的假說為葉酸營養狀況與腎功能有關,長期缺葉酸可能影響脂質代謝,促進慢性發炎反應和影響免疫調節功能,加劇慢性腎病變的病程。在氟化鈉誘導腎炎小鼠實驗中,使用12週齡的C57BL/6背景Vhlh+/+小鼠,分別以含葉酸(f1)或缺葉酸(f0)的正常油脂(normal-fat,NF-f0或NF-f1)飼料餵飼14週,於犧牲前4週,每天管餵生理食鹽水(對照組)或氟化鈉(誘導組)。結果顯示,葉酸缺乏與氟化鈉不影響小鼠的尿蛋白和血液尿素氮,但顯著增加血清肌酸酐、TGF-β1、IL-6和MCP-1,顯示葉酸缺乏加劇氟化鈉誘導的腎功能異常與慢性發炎反應。為探討葉酸營養狀況對脂質代謝的影響,6週齡的C57BL/6小鼠分別以f1或f0的高油(high-fat,HF-f1或HF-f0)、高油高果糖(high-fat high-fructose,HFF-f1或HFF-f0)、NF-f1或NF-f0飼料餵飼12個月後犧牲。結果顯示,攝食缺葉酸飼料顯著增加小鼠的脂肪組織重量、脂肪細胞大小、血清瘦素濃度和肝臟脂質含量,又以高油高果糖缺葉酸小鼠最為顯著,且增加體重、肝臟脂質合成相關基因的表現量、血清轉胺酶活性和非酒精性脂肪肝病變程度。續以3T3-L1脂肪細胞株驗證缺葉酸培養顯著增加脂質堆積、瘦素分泌量、脂質合成相關基因的表現量,如:Cebpα、Acc1、Fasn和Fabp4;也增加脂肪細胞在氯化鈷誘導缺氧反應下HIF-1α的蛋白質表現量,缺氧相關基因的表現量,如:Hif1α、Glut1和Il6,且測得培養液中葡萄糖殘餘量較低。顯示,葉酸缺乏促進脂肪細胞增大,進而增加瘦素分泌,其機制可能與缺葉酸促進脂肪細胞缺氧壓力有關。因脂肪細胞增大後可能分泌較多發炎性細胞激素,以不同葉酸含量的培養液培養3T3-L1前脂肪細胞和分化成熟的脂肪細胞來驗證。結果發現,缺葉酸培養增加沒有或有添加LPS刺激下的NF-κB轉錄活性,MCP-1和IL-6分泌量。另以缺葉酸的脂肪細胞條件培養液和肥胖小鼠血清、leptin、LPS或LPS+IFN-γ培養刺激RAW264.7巨噬細胞株或初代腹腔巨噬細胞,發現葉酸缺乏顯著增加NO、TNF-α、MCP-1和IL-6的分泌量,顯示缺葉酸增加巨噬細胞的促發炎活性。進一步分析初代脾臟細胞分泌細胞激素的能力,發現缺葉酸會顯著降低抗發炎的IL-10,顯示葉酸缺乏影響免疫調節功能。葉酸缺乏也影響MES-13腎小球間質細胞株與人類腎小管上皮細胞株在沒有或有添加LPS或LPS+leptin刺激下MCP-1、IL-6和TGF-β1的分泌量,回補葉酸則可降低細胞激素的生成。在飲食誘發肥胖致慢性腎病變小鼠實驗中,高油或高油高果糖飲食增加尿蛋白和尿液嗜中性白血球明膠酶相關運載蛋白,也增加腎臟中MCP-1、IL-6、TNF-α、TGF-β1和瘦素的含量,以及膠原蛋白沉積,進而促進慢性腎衰竭的程度。葉酸缺乏則進一步增加促發炎與促纖維化的細胞激素和瘦素,以及Hif1α基因表現;高油高果糖又缺葉酸更顯著增加腎纖維化訊息路徑分子STAT3和Smad2/3的磷酸化,從而加劇腎纖維化。最後,以MES-13細胞培養實驗證明缺葉酸可能藉由mTORc1/HIF-1α促進腎細胞的缺氧壓力,進而增加下游基因膠原蛋白Col1a1的表現。綜合上述,微量營養素葉酸不足影響脂質代謝與免疫調節功能並促進慢性發炎反應,進而加劇慢性腎病變。zh_TW
dc.description.abstractThe global prevalence of obesity and end-stage renal disease is increasing simultaneously and rapidly by the year, and the incidence of obesity-related nephropathy (ORN) has also increased significantly. Excessive visceral fat accumulation is the main cause of diabetes, hypertension, and hyperleptinemia, and it is also a risk factor for chronic inflammation and chronic kidney disease. As modern diets tend to be high in fat, sugar-sweetened beverages, and low in fruits and vegetables, which results in obesity and inadequate folate intake. Body mass index and visceral fat mass are known to be inversely correlated with sera folate levels, implying a link between folate nutritional status and the development of ORN. Therefore, the hypothesis of this study is that folate insufficiency promotes ORN in mice by affecting lipid metabolism, inflammatory response, and immune regulation. To investigate the effects of folate nutritional status on renal function, twelve-week-old C57BL/6 background Vhlh+/+ mice were fed a normal-fat (NF) diet with folate (NF-f1) or without folate (NF-f0) for 14 weeks. Four weeks before sacrifice, the mice were oral-gavaged with PBS or sodium fluoride (NaF). As a result, folate deficiency and NaF did not affect the urine protein and blood urea nitrogen of mice, but significantly increased serum creatinine, TGF-β1, IL-6, and MCP-1 levels, showing that folate deficiency exacerbates NaF-induced kidney dysfunction and chronic inflammation. Then, six-week-old male C57BL/6 mice were fed with a diet with f1 or f0 in a high-fat (HF) diet (HF-f1 or HF-f0), or a high-fat high-fructose (HFF) diet (HFF-f1 or HFF-f0) for 12 months, compared with NF-f1 and NF-f0. The results showed that folate-deficient diet significantly increased white adipose tissue weight, adipocyte size, serum leptin level, and hepatic triglyceride (TG) in mice, among which the HFF-f0 mice were the most significant, and increased body weight, the expression hepatic lipogenesis-related genes, serum transaminase activity, and degree of non-alcoholic fatty liver disease. Increased intracellular TG, leptin secretion, and the expression of lipogenesis-related genes Cebpα, Acc1, Fasn, and Fabp4, higher HIF-1α protein and hypoxia-related genes Hif1α, Glut1, and Il6 expression, lower residual glucose in the culture medium also detected in folate-deficient 3T3-L1 adipocytes. It has been shown that folate deficiency promotes the hypertrophy of adipocytes, thereby increasing the secretion of leptin, and the mechanism may be related to the fact that folate deficiency promotes the hypoxic stress of adipocytes. Since adipocytes may secrete more inflammatory cytokines after hypertrophy, 3T3-L1 preadipocytes and differentiated mature adipocytes were cultured in a medium with different folic acid content to verify. It was found that folate-deficient culture increased NF-κB transcriptional activity, MCP-1 and IL-6 secretions without or with LPS stimulation. Then, stimulate the RAW264.7 macrophages or primary peritoneal macrophages by culturing folate-deficient adipocyte conditioned-media, obese mouse serum, leptin, LPS, or LPS+IFN-γ, and found that folate deficiency significantly increased nitric oxide, TNF-α, MCP-1, and IL-6 secretions, showing that folate deficiency increased the pro-inflammatory activity of macrophages. Further analysis of the ability of primary splenocytes to secrete cytokines, it is interesting that folate deficiency can significantly reduce anti-inflammatory IL-10, showing that folate status affects immune regulation. Folate deficiency also increased the secretion of MCP-1, IL-6, and TGF-β1 in glomerular mesangial cells (MES-13) and human renal tubular epithelial cells without or with LPS or LPS+leptin stimulation, after replenishment of folic acid showing reduction of cytokine productions. Finally, in the obesity-induced chronic nephropathy experiment, HFF diet increased urinary protein and neutrophil gelatinase-associated lipocalin excretions, renal MCP-1, IL-6, TNF-α, TGF-β1, and leptin contents, as well as collagen deposition, thereby promoting the chronic renal failure. Folate deficiency further increased pro-inflammatory and pro-fibrotic cytokines and leptin, as well as Hif1α gene expression. HFF diet together with folate deficiency significantly increased the phosphorylation of renal fibrosis signaling pathway molecules STAT3 and Smad2/3, thus aggravating renal fibrosis. Though the in vitro experiments proved that folate deficiency might promote the hypoxic stress of MES-13 cells through mTORc1/HIF-1α, thereby increasing the expression of the downstream gene collagen Col1a1. Based on the above, the insufficiency of micronutrient folic acid affecting lipid metabolism and immune regulation might further promote chronic inflammation, which in turn exacerbates chronic nephropathy.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:30:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T16:30:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents[目錄]
摘要......i
Abstract......iii
目錄......I
圖目錄......VII
表目錄......X
第一章 文獻回顧......1
第一節 葉酸......1
一、葉酸化學結構與食物來源......1
二、葉酸代謝......1
三、葉酸的營養生化功能......2
四、葉酸缺乏......3
五、葉酸營養與疾病......5
六、葉酸營養狀況......7
第二節 肥胖......7
一、肥胖的定義與盛行率......7
二、肥胖的病因......8
三、肥胖的疾病風險......9
四、脂肪細胞......9
五、氯化鈷誘發細胞化學性缺氧模式......11
六、肥胖與葉酸營養......11
七、肥胖與糖攝取......12
第三節 發炎反應......12
一、葉酸營養與免疫反應......12
二、葉酸與發炎反應......14
三、肥胖與免疫反應......15
第四節 腎臟疾病......17
一、腎臟構造與生理功能......17
二、腎臟疾病簡介......18
三、末期腎臟病的盛行率......19
四、慢性腎臟疾病檢測指標......19
五、肥胖及瘦素與腎臟疾病......20
六、糖尿病腎病變......21
七、微量營養素與腎臟疾病......22
八、腎臟疾病相關細胞激素......23
九、腎臟纖維化相關訊息傳遞路徑......27
十、氟化鈉誘導腎炎小鼠模式......28
第五節 研究動機與目的......30
第二章 探討葉酸缺乏對氟化鈉誘導腎炎小鼠的影響......31
第一節 前言......31
第二節 材料與方法......32
一、建立氟化鈉誘導腎炎小鼠動物模式......32
(一) 動物飼養......32
(二) 血液採集與處理......32
(三) 血清葉酸濃度測定......32
二、探討葉酸缺乏對氟化鈉誘導腎炎小鼠的影響......34
(一) 血清與尿液肌酸酐測定......34
(二) 血液尿素氮測定......34
(三) 尿蛋白與尿液肌酸酐比值測定......35
(四) 腎臟組織均質......35
(五) 組織與細胞蛋白質含量測定......35
(六) 酵素結合免疫吸附分析法......36
(七) 腎組織切片染色......37
三、統計分析......37
第三節 結果......38
一、葉酸缺乏與氟化鈉誘導對小鼠生長與攝食量的影響......38
二、葉酸缺乏對氟化鈉誘導腎炎小鼠腎功能的影響......40
三、葉酸缺乏對氟化鈉誘導腎炎小鼠發炎反應的影響......40
第四節 總結......43
第三章 葉酸營養狀況對脂質代謝的影響......44
第一節 前言......44
第二節 材料與方法......45
一、以小鼠動物模式探討葉酸缺乏對脂質代謝的影響......45
(一) 動物飼養......45
(二) 血液採集與處理......45
(三) 血清葉酸濃度測定......45
(四) 血清同半胱胺酸與瘦素測定......47
(五) 血糖分析......47
(六) 血脂分析......48
(七) 尾靜脈血壓測量......49
(八) 組織切片染色......50
(九) 肝臟脂質含量測定......51
(十) 肝臟mRNA表現量分析......51
(十一) 血清轉胺酶活性分析......54
二、以脂肪細胞培養模式探討葉酸缺乏對脂質代謝的影響......54
(一) 3T3-L1細胞株繼代培養......54
(二) 3T3-L1細胞株分化......55
(三) Oil-Red O脂肪油滴染色......56
(四) 脂肪細胞上清液瘦素與脂聯素測定......56
(五) 脂肪細胞內TG測定......57
(六) 脂肪細胞mRNA表現量分析......57
(七) 脂肪細胞蛋白質表現量分析......58
(八) 上清液殘留葡萄糖濃度測定......61
三、統計分析......62
第三節 結果......63
一、葉酸缺乏對小鼠脂質代謝的影響......63
(一) 葉酸缺乏對小鼠血清葉酸與同半胱胺酸的影響......63
(二) 葉酸缺乏對小鼠體重與器官重量的影響......64
(三) 葉酸缺乏對小鼠血糖、血脂和血壓的影響......66
(四) 葉酸缺乏對小鼠脂質堆積與血清瘦素濃度的影響......69
(五) 葉酸缺乏對小鼠肝臟脂質堆積及肝組織病變的影響......74
二、葉酸缺乏對脂肪細胞脂質代謝的影響......78
(一) 葉酸缺乏對3T3-L1脂肪細胞脂質堆積與瘦素分泌的影響......78
(二) 葉酸缺乏對3T3-L1脂肪細胞脂質代謝相關基因表現的影響......79
(三) 葉酸缺乏增加3T3-L1脂肪細胞脂質堆積的機制探討......81
第四節 總結......82
第四章 葉酸營養狀況對脂肪細胞與巨噬細胞促發炎活性的影響......83
第一節 前言......83
第二節 材料與方法......84
一、探討葉酸缺乏對脂肪細胞發炎活性的影響......84
(一) 3T3-L1細胞株繼代培養......84
(二) 3T3-L1細胞內葉酸含量分析......84
(三) 前脂肪細胞短暫轉染與3κB-luciferase轉錄活性測定......84
(四) 前脂肪細胞與成熟脂肪細胞分泌促發炎細胞激素實驗......86
二、探討葉酸缺乏與瘦素對巨噬細胞促發炎活性的影響......86
(一) RAW264.7巨噬細胞株培養......86
(二) 條件培養液(conditioned-media, CM)培養試驗......87
(三) RAW264.7巨噬細胞株促發炎活性實驗......87
(四) 細胞存活率測定......88
(五) 一氧化氮(nitric oxide, NO)測定......88
(六) 初代腹腔巨噬細胞之取得與培養......88
(七) 初代巨噬細胞內葉酸含量分析......89
(八) 酵素結合免疫吸附分析法......89
四、統計分析......89
第三節 結果......90
一、葉酸缺乏對脂肪細胞發炎活性的影響......90
(一) 葉酸缺乏對3T3-L1前脂肪細胞NF-κB轉錄活性的影響......90
(二) 葉酸缺乏對3T3-L1前脂肪細胞分泌促發炎細胞激素的影響......91
(三) 葉酸缺乏對3T3-L1成熟脂肪細胞分泌促發炎細胞激素的影響......92
二、葉酸缺乏與瘦素對巨噬細胞促發炎活性的影響......93
(一) 葉酸缺乏條件培養液對RAW264.7巨噬細胞株分泌促發炎細胞激素的影響......93
(二) 葉酸缺乏與瘦素對RAW264.7巨噬細胞株一氧化氮生成的影響......94
(三) 葉酸缺乏對RAW264.7巨噬細胞株分泌促發炎細胞激素的影響......95
(四) 葉酸缺乏對初代腹腔巨噬細胞分泌促發炎細胞激素的影響......96
第四節 總結......97
第五章 葉酸營養狀況對免疫調節的影響......98
第一節 前言......98
第二節 材料與方法......99
一、探討葉酸缺乏對免疫調節的影響......99
(一) 初代脾臟淋巴細胞之取得與培養......99
(二) 初代脾臟細胞內葉酸含量分析......99
(三) 細胞激素含量分析......99
二、統計分析......100
第三節 結果......100
一、葉酸缺乏對免疫調節的影響......100
(一) 葉酸缺乏對高油飲食誘發肥胖小鼠脾臟細胞激素分泌的影響......100
(二) 葉酸缺乏對高油高果糖飲食誘發肥胖小鼠脾臟細胞激素分泌的影響......103
(三) 葉酸缺乏對初代脾臟細胞分泌促發炎細胞激素的影響......106
(四) 葉酸缺乏對飲食誘發肥胖小鼠血清細胞激素的影響......107
第四節 總結......108
第六章 葉酸營養狀況對慢性腎病變的影響......109
第一節 前言......109
第二節 材料與方法......110
一、探討葉酸缺乏與瘦素對腎細胞的影響......110
(一) MES-13腎小球間質細胞株培養......110
(二) MES-13細胞內葉酸含量分析......110
(三) MES-13細胞分泌促發炎與促纖維化因子實驗......111
(四) HK-2人類腎小管上皮細胞株培養......111
(五) 細胞激素含量分析......111
二、探討葉酸缺乏對飲食誘發肥胖致腎臟病變的影響......112
(一) 飲食誘發肥胖致慢性腎病變動物模式......112
(二) 血液採集與處理......112
(三) 血清葉酸濃度測定......112
(四) 血清與尿液肌酸酐測定......112
(五) 血液尿素氮測定......112
(六) 尿蛋白與尿液肌酸酐比值測定......113
(七) 腎臟組織均質......113
(八) 酵素結合免疫吸附分析法......113
(九) 腎組織切片染色......114
三、葉酸缺乏影響慢性腎病變的機制探討......114
(一) 腎臟蛋白質表現量分析......115
(二) MES-13腎小球間質細胞株培養......115
(三) MES-13細胞mRNA表現量分析......115
(四) MES-13細胞蛋白質表現量分析......116
四、統計分析......116
第三節 結果......117
一、葉酸缺乏與瘦素對腎細胞株分泌促發炎與促纖維化因子的影響......117
(一) 葉酸缺乏培養對MES-13細胞分泌促發炎與促纖維化因子的影響......117
(二) 葉酸缺乏與瘦素對MES-13細胞株分泌促發炎與促纖維化因子的影響......118
(三) 葉酸缺乏培養對HK-2細胞分泌促發炎與促纖維化因子的影響......120
二、葉酸缺乏對慢性腎病變小鼠的影響......121
(一) 葉酸缺乏對飲食誘發肥胖致慢性腎病變小鼠腎功能指標的影響......121
(二) 葉酸缺乏對飲食誘發肥胖致慢性腎病變小鼠腎臟發炎反應的影響......127
(三) 葉酸缺乏對飲食誘發肥胖小鼠腎臟纖維化反應的影響......131
三、葉酸缺乏影響腎臟病變的機制探討......138
(一) 葉酸缺乏對飲食誘發肥胖小鼠腎促纖維化訊息路徑的影響......138
(二) 以MES-13腎細胞株探討葉酸缺乏影響腎纖維化的可能機制......139
第四節 總結......142
第七章 綜合討論與結論......143
第一節 綜合討論......143
一、餵食缺葉酸飲食對小鼠血清葉酸含量的影響......143
二、葉酸營養缺乏降低小鼠攝食量與存活率的可能原因......143
三、葉酸營養缺乏對肥胖的影響......144
四、葉酸缺乏與脂肪細胞C/EBPα與PPAR-γ功能......146
五、PPAR-γ降低與脂肪細胞發炎微環境的形成......146
六、葉酸缺乏增加脂肪細胞的脂質堆積與瘦素分泌與缺氧壓力有關......147
七、葉酸營養與果糖飲食對小鼠肝臟的影響......147
八、葉酸缺乏與高油或高油高果糖飲食對全身性免疫反應的影響......148
九、高同半胱胺酸血症與慢性腎病變......150
十、高血壓與慢性腎病變......150
十一、高膽固醇血症與慢性腎病變......151
十二、慢性發炎反應與腎衰竭相關指標......152
十三、瘦素與慢性腎病變......154
十四、TGF-β1與慢性腎病變......155
十五、研究限制......155
第二節 結論......156
未來研究工作......157
附錄......158
參考文獻......161

[圖目錄]
圖1-1 葉酸與單碳代謝反應......3
圖1-2 瘦素與先天性及適應性免疫反應......17
圖1-3 研究架構......30
圖2-1 氟化鈉誘導腎炎小鼠實驗設計與分組......31
圖2-2 氟化鈉誘導腎炎小鼠的腎臟組織病理變化......42
圖2-3 葉酸缺乏促進氟化鈉誘導腎炎小鼠的腎功能異常......43
圖3-1 葉酸營養狀況影響脂質代謝之實驗設計與分組......44
圖3-2 C57BL/6小鼠的血清葉酸變化與同半胱胺酸濃度......63
圖3-3 C57BL/6小鼠的體重變化與攝食狀況......64
圖3-4 高油或高油高果糖飲食增加小鼠禁食血糖濃度......66
圖3-5 葉酸缺乏增加正常油脂飲食小鼠禁食血清脂質濃度......67
圖3-6 葉酸缺乏增加正常油脂飲食小鼠禁食血清脂蛋白濃度......68
圖3-7 葉酸缺乏與高油高果糖飲食對小鼠血壓的影響......69
圖3-8 葉酸缺乏促進高油飲食誘發肥胖小鼠脂肪細胞增大......70
圖3-9 葉酸缺乏增加小鼠白色脂肪組織重量......71
圖3-10 葉酸缺乏增加小鼠血清瘦素濃度......72
圖3-11 血清瘦素濃度與體重呈相關性......72
圖3-12 血清瘦素濃度與白色脂肪組織重呈相關性......73
圖3-13 葉酸缺乏增加高油或高油高果糖飲食小鼠肝臟脂質堆積......74
圖3-14 葉酸缺乏增加高油高果糖飲食小鼠肝臟脂質合成相關基因表現......75
圖3-15 葉酸缺乏增加高油高果糖飲食小鼠血清轉胺酶活性......76
圖3-16 葉酸缺乏增加高油高果糖飲食小鼠非酒精性脂肪肝病程度......77
圖3-17 葉酸缺乏促進3T3-L1脂肪細胞脂質堆積與瘦素分泌......78
圖3-18 葉酸缺乏增加3T3-L1脂肪細胞內三酸甘油酯與瘦素基因表現......79
圖3-19 葉酸缺乏增加3T3-L1脂肪細胞脂質合成相關基因表現......80
圖3-20 葉酸缺乏促進3T3-L1脂肪細胞缺氧壓力......81
圖3-21 葉酸缺乏增加3T3-L1脂肪細胞的葡萄糖攝入利用......82
圖3-22 葉酸營養狀況影響脂質代謝......82
圖4-1 葉酸營養狀況影響脂肪細胞與巨噬細胞促發炎活性之實驗設計與分組......83
圖4-2 葉酸缺乏增加3T3-L1前脂肪細胞的NF-κB轉錄活性......90
圖4-3 葉酸缺乏增加3T3-L1前脂肪細胞的發炎活性......91
圖4-4 葉酸缺乏增加3T3-L1脂肪細胞的發炎活性......92
圖4-5 葉酸缺乏的脂肪細胞條件培養液增加RAW264.7巨噬細胞株分泌促發炎細胞激素......93
圖4-6 高奶油高蔗糖飲食又缺葉酸小鼠血清增加RAW264.7巨噬細胞株分泌促發炎細胞激素......94
圖4-7 葉酸缺乏與瘦素增加RAW264.7巨噬細胞株生成一氧化氮......95
圖4-8 葉酸缺乏與瘦素增加RAW264.7巨噬細胞株分泌促發炎細胞激素......96
圖4-9 葉酸缺乏後回補降低RAW264.7巨噬細胞株分泌促發炎細胞激素......96
圖4-10 葉酸缺乏增加初代腹腔巨噬細胞的促發炎活性......97
圖4-11 葉酸缺乏與瘦素增強脂肪細胞與巨噬細胞的發炎活性......97
圖5-1 葉酸營養狀況影響免疫調節之實驗設計與分組......98
圖5-2 葉酸缺乏對高油飲食小鼠脾臟細胞分泌調節型細胞激素的影響......101
圖5-3 葉酸缺乏降低高油飲食小鼠脾臟細胞分泌抗發炎性細胞激素......101
圖5-4 葉酸缺乏對高油飲食小鼠脾臟細胞分泌促發炎細胞激素的影響......102
圖5-5 葉酸缺乏對正常油脂或高油高果糖飲食小鼠脾臟細胞分泌調節型細胞激素的影響......103
圖5-6 葉酸缺乏降低小鼠脾臟細胞分泌抗發炎性細胞激素......104
圖5-7 葉酸缺乏對正常油脂或高油高果糖飲食小鼠脾臟細胞分泌細胞激素的影響......105
圖5-8 葉酸缺乏增加初代脾臟細胞的促發炎活性......106
圖5-9 葉酸缺乏增加高油或高油高果糖飲食小鼠血清促發炎細胞激素......107
圖5-10 葉酸營養狀況影響免疫調節作用......108
圖6-1 腎細胞株培養實驗設計與分組......110
圖6-2 飲食誘發肥胖致腎臟病變小鼠實驗設計與分組......112
圖6-3 葉酸營養狀況影響慢性腎病變的機制探討......114
圖6-4 葉酸缺乏增加MES-13腎間質細胞株分泌促發炎與纖維化細胞激素......117
圖6-5 葉酸缺乏與瘦素增加MES-13腎間質細胞株分泌促發炎與纖維化細胞激素......119
圖6-6 葉酸缺乏增加HK-2人類腎小管上皮細胞株分泌促發炎細胞激素......120
圖6-7 葉酸缺乏增加高油飲食小鼠尿蛋白濃度......121
圖6-8 葉酸缺乏增加正常油脂或高油高果糖飲食小鼠尿蛋白濃度......122
圖6-9 葉酸缺乏增加高油或高油高果糖飲食小鼠尿液腎損傷指標......123
圖6-10 葉酸缺乏增加高油或高油高果糖飲食小鼠血清促纖維化因子......124
圖6-11 正常油脂或高油飲食小鼠的血清TGF-β1與細胞激素及腎功能指標之相關性......125
圖6-12 正常油脂或高油高果糖飲食小鼠的血清TGF-β1與細胞激素及腎功能指標之相關性......126
圖6-13 葉酸缺乏增加高油飲食小鼠腎臟促發炎細胞激素......127
圖6-14 葉酸缺乏對高油飲食小鼠腎臟免疫調節細胞激素的影響......128
圖6-15 葉酸缺乏增加高油高果糖飲食小鼠腎臟促發炎細胞激素......129
圖6-16 葉酸缺乏對正常油脂或高油高果糖飲食小鼠腎臟基因表現的影響......130
圖6-17 葉酸缺乏增加高油飲食小鼠腎臟促纖維化因子......131
圖6-18 葉酸缺乏增加正常油脂或高油高果糖飲食小鼠腎臟促纖維化因子......132
圖6-19 正常油脂或高油飲食小鼠腎瘦素與腎促發炎細胞激素呈相關性......133
圖6-20 正常油脂或高油高果糖飲食小鼠腎瘦素與腎周脂肪重及腎細胞激素呈相關性......134
圖6-21 葉酸缺乏增加正常油脂或高油高果糖飲食小鼠腎臟TGF-β1......135
圖6-22 葉酸缺乏促進高油飲食小鼠腎臟纖維化......136
圖6-23 葉酸缺乏加劇高油高果糖飲食小鼠腎臟纖維化......137
圖6-24 葉酸缺乏加劇高油高果糖飲食小鼠腎臟促纖維化STAT3與Smad2/3的磷酸化......138
圖6-25 正常油脂或高油高果糖飲食小鼠腎纖維化訊息分子與腎促纖維化因子呈相關性......139
圖6-26 葉酸缺乏增加腎臟與MES-13細胞株的Hif1α基因表現量......140
圖6-27 葉酸缺乏增加MES-13細胞的HIF-1α蛋白質表現量......141
圖6-28 葉酸缺乏增加MES-13細胞的mTORc1活化......141
圖6-29 葉酸缺乏增加MES-13細胞的膠原蛋白基因表現量......142
圖6-30 葉酸缺乏對飲食誘發肥胖致腎病變的影響示意圖......142
圖7-1 果糖代謝......148
圖7-2 膳食葉酸缺乏加劇發炎反應而促進慢性腎病變......156
附錄圖1 比較2013~2016及2017~2020年之13歲以上國人葉酸邊緣缺乏盛行率......158
附錄圖2 比較1993~2020年之19歲以上國人體重過重、肥胖與腹部肥胖盛行率......158
附錄圖3 動物實驗2攝食NF-f0飲食小鼠的存活數目與時間......159
附錄圖4 葉酸缺乏抑制3T3-L1前脂肪細胞的分化......159

[表目錄]
表1-1 TGF-β對腎臟細胞與免疫細胞的影響......26
表2-1 葉酸缺乏降低小鼠的攝食量......38
表2-2 攝食缺葉酸飼料降低小鼠血清葉酸含量......38
表2-3 氟化鈉增加小鼠的脾臟絕對重量與腎臟相對重量......39
表2-4 葉酸缺乏與氟化鈉對小鼠白色脂肪組織重量的影響......39
表2-5 葉酸缺乏增加氟化鈉誘導腎炎小鼠的血清肌酸酐濃度......40
表2-6 葉酸缺乏與氟化鈉對小鼠血清細胞激素含量的影響......41
表2-7 葉酸缺乏與氟化鈉對小鼠腎臟細胞激素含量的影響......42
表3-1 飼料成份表......46
表3-2 NAFLD病情評分表......50
表3-3 mRNA反轉錄cDNA反應步驟與條件......53
表3-4 肝臟基因表現分析之引子序列......53
表3-5 即時定量聚合酶連鎖反應步驟......53
表3-6 脂肪細胞基因表現分析之引子序列......57
表3-7 SDS膠體組成分......60
表3-8 葉酸缺乏與高油飲食對小鼠器官重量的影響......65
表3-9 葉酸缺乏與高油高果糖飲食對小鼠器官重量的影響......65
表6-1 MES-13細胞引子序列......116
表7-1 小鼠血清同半胱胺酸與尿液腎功能指標之相關性......150
表7-2 小鼠體重與血壓之相關性......151
表7-3 小鼠血清膽固醇與腎功能或纖維化指標之相關性......152
表7-4 攝食NF與HF飲食小鼠的血清細胞激素與腎功能指標之相關性......153
表7-5 攝食NF與HFF飲食小鼠的血清細胞激素與腎功能指標之相關性......153
附錄表1 動物實驗2小鼠於8週齡時各項代謝指標......160
-
dc.language.isozh_TW-
dc.subject缺氧zh_TW
dc.subject腎纖維化zh_TW
dc.subject慢性腎病變zh_TW
dc.subject葉酸缺乏zh_TW
dc.subject肥胖zh_TW
dc.subject瘦素zh_TW
dc.subjectrenal fibrosisen
dc.subjecthypoxiaen
dc.subjectchronic nephropathyen
dc.subjectobesityen
dc.subjectfolate deficiencyen
dc.subjectleptinen
dc.title葉酸營養狀況對脂質代謝和慢性腎病變的影響之研究zh_TW
dc.titleStudy on folate nutritional status affecting lipid metabolism and chronic nephropathyen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee江孟燦;江伯倫;許瑞芬;謝佳倩;洪永瀚zh_TW
dc.contributor.oralexamcommitteeMeng-Tsan Chiang;Bor-Luen Chiang;Rwei-Fen S. Huang;Chia-Chien Hsieh;Yong-Han Hongen
dc.subject.keyword葉酸缺乏,肥胖,瘦素,缺氧,慢性腎病變,腎纖維化,zh_TW
dc.subject.keywordfolate deficiency,obesity,leptin,hypoxia,chronic nephropathy,renal fibrosis,en
dc.relation.page179-
dc.identifier.doi10.6342/NTU202300324-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-17-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2028-02-07-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
9.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved