Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87229
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭宇翔zh_TW
dc.contributor.advisorYu-Hsiang Chengen
dc.contributor.author李冠勇zh_TW
dc.contributor.authorKuan-Yung Lien
dc.date.accessioned2023-05-18T16:30:01Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-11-
dc.date.issued2023-
dc.date.submitted2023-02-16-
dc.identifier.citationC. Sirtori, "Bridge the terahertz gap", Nature, vol. 417, pp. 132-133, May 2002.
P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, et al., "Terahertz pulsed spectroscopy of freshly excised human breast cancer", Opt. Exp., vol. 17, pp. 12444-12454, 2009.
S. Koenig et al., "Wireless sub-THz communication system with high data rate", Nat. Photon., vol. 7, no. 12, pp. 977-981, 2013.
J. F. Federici et al., "THz imaging and sensing for security applications-explosives weapons and drugs", Semicond. Sci. Technol., vol. 20, no. 7, pp. S266, 2005.
A. Dobroiu, C. Otani and K. Kawase, "Terahertz-wave sources and imaging applications", Meas. Sci. Technol., vol. 17, pp. R161-R174, 2006.
K. M. K. H. Leong et al., "A 340-380 GHz integrated CB-CPW-to-waveguide transition for sub millimeter-wave MMIC Packaging", IEEE Microwave and Wireless Component Letters, vol. 19, no. 6, pp. 413-415, June 2009.
Kim, W. Choe and J. Jeong, "Submillimeter-Wave Waveguide-to-Microstrip Transitions for Wide Circuits/Wafers," in IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 4, pp. 440-445, July 2017.
V. Hurm et al., "GaAs microstrip-to-waveguide transition operating in the WR-1.5 waveguide band (500–750 GHz)", Proc. Asia–Pacific Microw. Conf., pp. 145-147, Dec. 2012.
K. Takano et al., "300-GHz CMOS transmitter module with built-in waveguide transition on a multilayered glass epoxy PCB," 2018.
A. Mozharovskiy, A. Artemenko, V. Ssorin, R. Maslennikov and A. Sevastyanov, "Wideband tapered antipodal fin-line waveguide-to-microstrip transition for E-band applications," 2013.
J. Wang, Z. -C. Hao and Kui-Kui Fan, "A 110–150 GHz SIW-rectangular waveguide transition for terahertz applications," 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2016.
E. S. Li, G. -X. Tong and D. C. Niu, "Full W -band Waveguide-to-microstrip Transition With New E-plane Probe," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 1, pp. 4-6, Jan. 2013.
C. Cui, S. -K. Kim, R. Song, J. -H. Song, S. Nam and B. -S. Kim, "A 77-GHz FMCW Radar System Using On-Chip Waveguide Feeders in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 11, pp. 3736-3746, Nov. 2015.
E. Topak, J. Hasch and T. Zwick, "Compact Topside Millimeter-Wave Waveguide-to-Microstrip Transitions," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 12, pp. 641-643, Dec. 2013.
Y. Dong, V. Zhurbenko, P. S. Hanberg and T. K. Johansen, "A D-Band Rectangular Waveguide-to-Coplanar Waveguide Transition Using Metal Ridge", 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019.
J. M. Párez-Escudero, A. E. Torres-Garcéa, R. Gonzalo and I. Ederra, "A simplified design inline microstrip-to-waveguide transition", Electronics, vol. 7, no. 10, pp. 215, 2018.
G. E. Ponchak and R. N. Simons, "A new rectangular waveguide to coplanar waveguide transition", IEEE International Digest on Microwave Symposium, vol. 1, pp. 491-492, 1990.
Y. Zhang et al., "BroadBand and high gain dielectric-rod end-fire antenna fed by a tapered ridge waveguide for K/Ka bands applications", IET Microwaves Antennas Propag., vol. 14, no. 8, pp. 743-751, 2020.
W.-L. Tsai, I. Ocket, J. Vaes, M. Cauwe, P. Reynaert and B. Nauwelaers, "Novel broadBand transition for rectangular dielectric waveguide to planar circuit board at D band", IEEE MTT-S Int. Microw. Symp. Dig., pp. 386-389, Jun. 2018.
Pollard, Roger D. "Millimetre wave and terahertz waveguides and measurements." New Directions in Terahertz Technology. Springer, Dordrecht, 1997. 63-78.
P. A. Rizzi, Microwave Engineering, NJ, Upper Saddle River:Prentice-Hall, Inc., 1988.
D. M. Pozar, Microwave Engineering, Hoboken, NJ, USA:Wiley, 2005.
E. O. Hammerstad, "Equations for microstrip circuit design", Proc. 5th Eur. Microwave Conf., pp. 268-272, Sep. 1975.
Li, Huilin, "Waveguide flange design and characterization of misalignment at submillimeter wavelengths”, Diss. Doctoral Dissertation, Feb, 2013.
J. M. Perez-Escudero, A. E. Torres-Garcia, R. Gonzalo and I. Ederra, "A chebyshev transformer-based microstri-to-groove-gap-waveguide inline transition for MMIC packaging", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 9, no. 8, pp. 1595-1602, Aug. 2019.
T. Yuasa, T. Oba, Y. Tahara, Y. Morimoto, T. Owada and M. Miyazaki, "A millimeter wave wideband differential line to waveguide transition using short ended slot line", 2014 44th European Microwave Conference, pp. 1004-1007, Oct 2014.
S. B. Cohn, "Optimum design of stepped transmission-line transformers", IRE Trans. Microw. Theory Techn, vol. 3, no. 3, pp. 16-20, Apr. 1955.
R. E. Collin, "Theory and design of wide-band multisection quarter-wave transformers", Proc. IRE, vol. 43, no. 2, pp. 179-185, Feb. 1955.
https://www.qsl.net/va3iul/Microstrip_Stripline_CPW_Design/Microstrip_Stripline_and_CPW_Design.pdf.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87229-
dc.description.abstract本論文探討於300 GHz操作的波導管至平面式傳輸線轉接器,並先後提出兩種轉接結構。第一種是於波導管內設置金屬脊,調整脊高度使之漸變式遞減,將能量傳入以電路板中微帶線,微帶線上無須額外的匹配網絡。第二種是基於切比雪夫阻抗匹配法的轉接器,由波導管內的三階特徵阻抗轉換器組成,與四種電路板傳輸線(微帶線、基板合成波導、漸變式基板合成波導與背接金屬共平面波導)相接量測。
太赫茲電路較微波電路精密,需要非常重視尺寸與連接的問題。本論文在波導管的設計上,討論了法蘭設計,螺絲孔與定位銷設置等相關細節。坊間標準印刷電路板製程之傳輸線品質也在顯微鏡下仔細觀察分析。本論文採用了三種拋光方式,來改善電路板邊界粗糙之問題,並且藉由粗糙度量測及S參數量測,來比較拋光後的電路板狀態,並驗證轉接器之性能。
zh_TW
dc.description.abstractThis thesis discusses waveguide-to-planar transmission line transitions operating at 300 GHz, and proposes two transition structures successively. The first transition structure is done by gradually decreasing the height of the ridge in the waveguide so that the energy can efficiently feed into the microstrip line in the printed circuit board. No additional matching network is required on the microstrip line. The second transition structure is based on the Chebyshev impedance matching method, which is composed of a third-order impedance converter in the waveguide. Four kinds of transmission lines (microstrip line, substrate-integrated waveguide, tapered substrate-integrated waveguide and grounded coplanar waveguide) are tested.
Terahertz circuits require more fabrication precision than microwave circuits, so we need to pay more attention to the size and connection issues. In the design of the waveguide, this thesis discusses the design details of flange, screw hole, positioning pin, etc. The transmission line quality of the standard printed circuit board manufacturing process in the market is also carefully analyzed under a microscope. Three polishing methods are applied to improve the roughness of the circuit board boundary. The performances of the polished transmission lines are verified by the surface roughness measurement and S parameter measurement.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:30:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T16:30:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致 謝 ii
摘 要 iii
Abstract iv
目 錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究貢獻 2
1.3 轉接器的設計要點 3
1.4 轉接器的相關文獻 4
1.4.1 WR-3頻段以上轉接器的相關現況 4
1.4.2 WR-3頻段以下轉接器的相關現況 6
1.5 波導管在太赫茲頻段的重要性 9
第二章 漸變式脊型波導管至微帶線轉接器 10
2.1 傳輸線的設計參數簡介 10
2.1.1 矩形波導管的設計參數 10
2.1.2 矩形波導管的波阻抗與特徵阻抗 11
2.1.3 微帶線的設計參數 14
2.2 轉接器的設計架構 16
2.2.1 波導管的金屬脊分析 16
2.2.2 波導管側面金屬脊的尺寸設計 18
2.2.3 波導管金屬脊寬度的尺寸設計 20
2.3 漸變式脊型波導管的金屬模塊設計 21
2.3.1 金屬模塊的上構件設計 22
2.3.2 金屬模塊的下構件設計 23
2.3.3 金屬模塊的支撐座設計 23
2.4 與漸變式波導管連接的微帶線電路 24
2.5 轉接器實作 25
2.5.1 金屬模塊的實作成品 25
2.5.2 微帶線的實作成品 27
2.6 電路的量測 28
2.6.1 量測的步驟與方法 28
2.6.3 微帶線背對背量測結果 30
2.6.3 微帶線的路徑損失量測 32
2.6.4 量測問題 32
2.7 量測討論 35
第三章 步階式波導管至平面式傳輸線轉接器 36
3.1 切比雪夫阻抗匹配法的設計簡介 36
3.2 SIW的設計參數簡介 38
3.3 接地共平面波導的特性分析 39
3.4 步階式波導管的金屬模塊設計 40
3.4.1 步階式波導管的內部設計 41
3.4.2 步階式波導管的周邊設計 43
3.4.3 金屬模塊下構件的對位凹槽 44
3.5 與步階式波導管連接的平面式傳輸線 44
3.6 電路板的拋光處理 46
3.6.1 砂紙拋光法 46
3.6.2 雷射切割法 47
3.6.3 水砂輪拋光法 50
3.6.4 各拋光法的表面粗糙度比較 53
3.7 電路板的表面處理 56
3.8 步階式波導管的金屬模塊實作成品 56
3.9 電路的量測 57
3.9.1 微帶線結構背對背量測結果 58
3.9.2 SIW結構背對背量測結果 60
3.9.3 漸變式SIW結構背對背量測結果 63
3.9.4 GCPW結構背對背量測結果 65
3.9.5 瑕疵電路板的背對背量測結果 67
3.10 量測討論 69
第四章 結論 70
4.1 實作轉接器的性能評估 70
4.2 本研究之結論 72
參考文獻 73
-
dc.language.isozh_TW-
dc.subjectWR-3頻段zh_TW
dc.subject波導管zh_TW
dc.subject轉接器zh_TW
dc.subject太赫茲zh_TW
dc.subjectWR-3 banden
dc.subjectTerahertzen
dc.subjectTransitionen
dc.subjectWaveguideen
dc.title300 GHz波導管至平面式傳輸線轉接器zh_TW
dc.title300 GHz Waveguide-to-Planar Transmission Line Transitionen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳瑞北;王蒼容zh_TW
dc.contributor.oralexamcommitteeRuey-Beei Wu;Chun-long Wangen
dc.subject.keyword太赫茲,轉接器,波導管,WR-3頻段,zh_TW
dc.subject.keywordTerahertz,Transition,Waveguide,WR-3 band,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202300577-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf6.18 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved