請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87222完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱美妃 | zh_TW |
| dc.contributor.advisor | Mei-Fei Chu | en |
| dc.contributor.author | 江品萱 | zh_TW |
| dc.contributor.author | Pin-Xuan Jiang | en |
| dc.date.accessioned | 2023-05-18T16:27:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-16 | - |
| dc.identifier.citation | 江紹平(2007)臺灣中部早期前陸盆地的地層紀錄。國立中央大學地球物理研究所碩士論文,共87頁。
安藤昌三郎(1930)臺灣苗栗油田の地質及構造。地質學雜誌,第37卷,第447號,第799-803頁。(日文) 吳宜儒(2018)臺灣中部頭嵙山層與卓蘭層之碎屑鋯石核飛跡與鈾鉛定年及其構造意涵。國立中正大學地球與環境科學研究所碩士論文,共77頁。 沈姿岑(2019)臺灣中央山脈北段核飛跡年代的熱構造意義。國立臺灣大學地質科學研究所博士論文,共137頁。 李時全(2018)利用碎屑鋯石鈾鉛定年探討臺灣中北部晚中新世至更新世沉積物來源及山脈剝蝕歷史。國立臺灣大學地質科學研究所碩士論文,共173頁。 周南、劉聰桂(1997)核飛跡(FT)定年法。地質,第16卷,第1-2期,第97-111頁。 林荷雅(2012)西北太平洋ODP1210站位上中新統至下更新統鈣質超微化石生物地層研究與應用。國立臺灣大學地質科學研究所碩士論文,共84頁。 林朝棨(1954)臺灣之地質。臺灣新誌,中國文化事業出版委員會,第17-47頁。 洪崇勝、謝凱旋(2007)臺灣第四紀磁生物地層及蓬萊造山運動事件。經濟部中央地質調查所特刊,第18號,第51-83頁。 徐士捷(2017)晚中新世以來沉積岩岩象分析探討臺灣南部山脈剝蝕歷史。國立臺灣大學地質科學研究所碩士論文,共139頁。 陳文山(1998)臺灣海岸山脈沉積盆地之演化及其在地體構造上之意義。國立臺灣大學地質科學研究所博士論文,共304頁。 陳文山、何信昌、王源、楊昭男、高銘健、張益生、鄂忠信、陳勉銘(1994)臺灣西南部上新統至更新統的岩象學研究與地層對比。經濟部中央地質調查所特刊,第8號,第83-99頁。 陳文山、林朝宗、楊志成、費立沅、謝凱旋、龔慧敏、林佩儀、楊小青(2008)晚期更新世以來臺北盆地沉積環境與構造演化的時空演變。經濟部中央地質調查所彙刊,第21號,第61-106頁。 陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民、王國龍(2016)臺灣地質概論。社團法人中華民國地質學會出版,共204頁。 陳文山、陳于高、劉聰桂、黃能偉、林清正、宋時驊、李昆杰(2000b)九二一集集大地震的地震斷層特性與構造意義。經濟部中央地質調查所特刊,第12號,第139-154頁。 陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰桂、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉(2000a)上-更新世臺灣西部前陸盆地的演化:沉積層序與沉積物組成的研究。經濟部中央地質調查所彙刊,第13號,第137-156頁。 鳥居敬造(1935)東勢圖幅說明書(五萬分之一)。臺灣總督府殖產局出版第732號,共26頁。(日文) 陳振華、陳文山、王源、陳勉銘(1992)由臺灣中部前陸砂岩之岩象研究看褶皺逆衝帶之剝蝕歷史。地質,第12卷,第2期,第147-165頁。 陳肇夏、王京新(1995)臺灣變質相圖說明(第二版)。經濟部中央地質調查所特刊,第2號,第1-60頁。 黃廷章、丁志興(1981)臺灣晚第三紀淺海沉積超微化石生物地層。地質,第3卷,第105-119頁。 黃重謀(1992)臺灣中南部變質岩地區葉蠟石等變質度線之研究。國立成功大學地球科學研究所碩士論文,共79頁。 楊志成(1997)臺灣中部地區錦水頁岩、卓蘭層與頭嵙山層的沉積環境研究。國立臺灣大學地質科學研究所碩士論文,共120頁。 楊宏儀、黃重謀、羅遠謀(1994)臺灣變質地區葉蠟石等變質度線之研究。經濟部中央地質調查所彙刊,第9號,第123-135頁。 葉家志(2017)晚中新世以來沉積岩岩象分析探討臺灣中北部山脈剝蝕歷史。國立臺灣大學地質科學研究所碩士論文,共104頁。 賴旆綺(2011)臺灣北部麓山帶的磷灰石核飛跡定年分析及其大地構造隱示。國立臺灣大學地質科學研究所碩士論文,共116頁。 羅遠謀(1992)臺灣中北部變質岩地區葉蠟石等變質度線之研究。國立成功大學地球科學研究所碩士論文,共72頁。 Bernet, M. (2002). Exhuming the Alps through time: Clues from detrital zircon fission-track ages [ Ph.D. dissertation ]. University of Yale, 268 pp. Bernet, M. (2019). Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. Fission-Track Thermochronology and its Application to Geology (pp. 269-277). Springer Cham. https://doi.org/10.1007/978-3-319-89421-8. Bernet, M., & Garver, J. I. (2005). Fission-track Analysis of Detrital Zircon. Reviews in Mineralogy and Geochemistry, 58(1), 205-238. https://doi.org/10.2138/rmg.2005.58.8. Beyssac, O., Simoes, M., Avouac, J. P., Farley, K. A., Chen, Y. G., Chan, Y. C., & Goffé, B. (2007). Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26(6), TC6001. https://doi.org/10.1029/2006TC002064. Brandon, M. (2002). Decomposition of mixed grain age distributions using Binomfit. On Track, 24, 13-18. Brandon, M. T., Roden-Tice, M. K., & Garver, J. I. (1998). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin, 110(8), 985-1009. https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2. Chen, W. S., Ridgway, K. D., Horng, C. S., Chen, Y. G., Shea, K. S., & Yeh, M. G. (2001). Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. Geological Society of America Bulletin, 113(10), 1249-1271. https://doi.org/10.1130/0016-7606(2001)113<1249:SAMAIV>2.0.CO;2. Chen, W. S., Yeh, J. J., & Syu, S. J. (2019). Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56-69. https://doi.org/10.1016/j.tecto.2018.09.003. Chi, W. R., & Huang, H. M. (1981). Nannobiostratigraphy and paleoenvironments of the late Neogene sediments and their tectonic implications in the Miaoli area, Taiwan. Petroleum Geology of Taiwan, 18, 111-129. Chou, J. T. (1971). A sedimentologic and paleogeographic study of the Neogene formations in the Taichung region, western Taiwan. Petroleum Geology of Taiwan, 9, 43-66. Chou, J. T. (1977). Sedimentology and paleogeography of the Pleistocene Toukoshan Formation in western Taiwan. Petroleum Geology of Taiwan, 14, 25-36. Chou, J. T. (1980). Stratigraphy and sedimentology of the Miocene in western Taiwan. Petroleum Geology of Taiwan, 17, 33-52. Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259-274. https://doi.org/10.1007/BF00373790. Dorsey, R. J. (1988). Provenance evolution and unroofing history of a modern arc-continent collision; evidence from petrography of Plio-Pleistocene sandstones, eastern Taiwan. Journal of Sedimentary Research, 58(2), 208-218. https://doi.org/10.1306/212F8D5A-2B24-11D7-8648000102C1865D. Dunkl, I. (2002). Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), 3-12. https://doi.org/10.1016/S0098-3004(01)00024-3. Ehlers, T. A., Chaudhri, T., Kumar, S., Fuller, C. W., Willett, S. D., Ketcham, R. A., Brandon, M. T., Belton, D. X., Kohn, B. P., Gleadow, A. J. W., Dunai, T. J., & Fu, F. Q. (2005) Computational tools for low-temperature thermochronometer interpretation. Reviews in Mineralogy and Geochemistry, 58(1), 589-622. https://doi.org/10.2138/rmg.2005.58.22. Ernst, W. G. (1983). Mineral parageneses in metamorphic rocks exposed along Tailuko Gorge, Central Mountain Range, Taiwan*. Journal of Metamorphic Geology, 1(4), 305-329. https://doi.org/10.1111/j.1525-1314.1983.tb00277.x. Fleischer, R. L., Price, P. B., & Walker, R. M. (1965a). Ion explosion spike mechanism for formation of charged-particle tracks in solids. Journal of Applied Physics, 36(11), 3645-3652. https://doi.org/10.1063/1.1703059. Fleischer, R. L., Price, P. B., & Walker, R. M. (1965b). Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. Journal of Geophysical Research, 70(6), 1497-1502. https://doi.org/10.1029/JZ070i006p01497. Fleischer, R. L., Price, P. B., & Walker, R. M. (1975). Nuclear Tracks in Solids: Principles and Applications. University of California Press, 605 pp. Fuller, C. W., Willett, S. D., Fisher, D., & Lu, C. Y. (2006). A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425, 1-24. https://doi.org/10.1016/j.tecto.2006.05.018. Galbraith, R. F. (1981). On statistical models for fission track counts. Journal of the International Association for Mathematical Geology, 13, 471-478. https://doi.org/10.1007/BF01034498. Galbraith, R. F., & Laslett, G. M. (1985). Some remarks on statistical estimation in fission-track dating. Nuclear Tracks and Radiation Measurements, 10(3), 361-363. https://doi.org/10.1016/0735-245X(85)90125-5. Garver, J. I. (2003). Etching zircon age standards for fission-track analysis. Radiation Measurements, 37, 47-53. https://doi.org/10.1016/S1350-4487(02)00127-0. Garver, J. I., Brandon, M. T., Roden-Tice, M., & Kamp, P. J. J. (1999). Exhumation history of orogenic highlands determined by detrital fission-track thermochronology. Geological Society, London, Special Publications, 154, 283-304. https://doi.org/10.1144/GSL.SP.1999.154.01.13. Gleadow, A. J. W., & Brooks, C. K. (1979). Fission track dating, thermal histories and tectonics of igneous intrusions in East Greenland. Contributions to Mineralogy and Petrology, 71, 45-60. https://doi.org/10.1007/BF00371880. Gleadow, A. J. W., & Lovering, J. F. (1978a). Thermal history of granitic rocks from western Victoria: A fission-track dating study. Journal of the Geological Society of Australia, 25(5-6), 323-340. https://doi.org/10.1080/00167617808729039. Gleadow, A. J. W., & Lovering, J. F. (1978b). Fission track geochronology of King Island, Bass Strait, Australia: Relationship to continental rifting. Earth and Planetary Science Letters, 37(3), 429-437. https://doi.org/10.1016/0012-821X(78)90058-4. Graham, S. A., Tolson, R. B., DeCelles, P. G., Ingersoll, R. V., Bargar, E., Caldwell, M., Cavazza, W., Edward, D. P., Follo, M. F., Handschy, J. F., Lemke, L., Moxon, I., Rice, R., Smith, G. A., & White, J. (1986). Provenance modelling as a technique for analysing source terrane evolution and controls on foreland sedimentation. Foreland Basins, 8, 425-436. https://doi.org/10.1002/9781444303810.ch23. Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W., & Lovering, J. F. (1989). Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology: Isotope Geoscience section, 79(2), 155-182. https://doi.org/10.1016/0168-9622(89)90018-3. Haack, U. (1977). The closing temperature for fission track retention in minerals. American Journal of Science, 277(4), 459-464. https://doi.org/10.2475/ajs.277.4.459. Horng, C. S., Huh, C. A., Chen, K. H., Lin, C. H., Shea, K. S., & Hsiung, K. H. (2012). Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13(8), 1-12. https://doi.org/10.1029/2012GC004195. Hsieh, H. H., Chen, C. H., Lin, P. Y., & Yen, H. Y. (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90, 26-33. https://doi.org/10.1016/j.jseaes.2014.04.007. Hsu, W. H., Byrne, T. B., Ouimet, W., Lee, Y. H., Chen, Y. G., Soest, M. V., & Hodges, K. (2016). Pleistocene onset of rapid, punctuated exhumation in the eastern Central Range of the Taiwan orogenic belt. Geology, 44(9), 719-722. https://doi.org/10.1130/G37914.1. Huang, S. Y., Lee, Y. H., Mesalles, L., Horng, C. S., Lu, H. Y., Tsai, Y. L., Wu, Y. J., Chen, F. Y., & Tan, X. B. (2022). Plio-Pleistocene fluvial dynamics in the pro-foreland basins of Taiwan: Thermochronological constraints and tectonic implications from the syn-orogenic deposits. Tectonophysics, 838, 229486. https://doi.org/10.1016/j.tecto.2022.229486. Huang, T. C. (1976). Neogene calcareous nannoplankton biostratigraphy viewed from the Chuhuangkeng section, northwestern Taiwan. Proceedings of the Geological Society of China, 19, 7-24. Hurford, A. J. (1986). Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92, 413-427. https://doi.org/10.1007/BF00374424. Hurford, A. J. (1998). Zeta: The Ultimate Solution to Fission-Track Analysis Calibration or Just an Interim Measure? Advances in Fission-Track Geochronology (pp. 19-32). Springer Dordrecht. https://doi.org/10.1007/978-94-015-9133-1_2. Hurford, A. J., & Carter, A. (1991). The role of fission track dating in discrimination of provenance. Geological Society, London, Special Publications, 57, 67-78. https://doi.org/10.1144/GSL.SP.1991.057.01.07. Hurford, A. J., & Green, P. F. (1982). A users’ guide to fission track dating calibration. Earth and Planetary Science Letters, 59, 343-354. https://doi.org/10.1016/0012-821X(82)90136-4. Hurford, A. J., & Green, P. F. (1983). The zeta age calibration of fission-track dating. Chemical Geology, 41, 285-317. https://doi.org/10.1016/S0009-2541(83)80026-6. Jonckheere, R., Van den haute, P., & Ratschbacher, L. (2015). Standardless fission-track dating of the Durango apatite age standard. Chemical Geology, 417, 44-57. https://doi.org/10.1016/j.chemgeo.2015.09.014. Kirstein, L. A., Carter, A., & Chen, Y. G. (2013). Impacts of arc collision on small orogens: new insights from the Coastal Range detrital record, Taiwan. Journal of the Geological Society, 171, 5-8. https://doi.org/10.1144/jgs2013-046. Kirstein, L. A., Fellin, M. G., Willett, S. D., Carter, A., Chen, Y. G., Garver, J. I., & Lee, D. C. (2010). Pliocene onset of rapid exhumation in Taiwan during arc-continent collision: new insights from detrital thermochronometry. Basin Research, 22(3), 270-285. https://doi.org/10.1111/j.1365-2117.2009.00426.x. Lee, Y. H., Byrne, T., Wang, W. H., Lo, W., Rau, R. J., & Lu, H. Y. (2015). Simultaneous mountain building in the Taiwan orogenic belt. Geology, 43(5), 451-454. https://doi.org/10.1130/G36373.1. Lee, Y. H., Chen, C. C., Liu, T. K., Ho, H. C., Lu, H. Y., & Lo, W. (2006). Mountain building mechanisms in the southern Central Range of the Taiwan orogenic belt-from accretionary wedge deformation to arc-continental collision. Earth and Planetary Science Letters, 252, 413-422. https://doi.org/10.1016/j.epsl.2006.09.047. Liu, C., Hu, B., Shi, J., Li, J., Zhang, X., & Chen, H. (2011). Determination of uranium isotopic ratio (235U/238U) using extractive electrospray ionization tandem mass spectrometry. Journal of Analytical Atomic Spectrometry, 26, 2045-2051. https://doi.org/10.1039/C1JA10054H. Liu, T. K. (1982). Tectonic implication of fission track ages from the Central Range, Taiwan. Proceedings of the Geological Society of China, 25, 22-37. Liu, T. K. (1988). Fission track dating of the Hsuehshan Range: thermal record due to arc-continent collision in Taiwan. Science Reports of the National Taiwan University ACTA Geologica Taiwanica, 26, 279-290. Liu, T. K., Chen, Y. G., Chen, W. S., & Jiang, S. H. (2000). Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission-track constraints. Tectonophysics, 320, 69-82. https://doi.org/10.1016/S0040-1951(00)00028-7. Liu, T. K., Hsieh, S., Chen, Y. G., & Chen, W. S. (2001). Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters, 186, 45-56. https://doi.org/10.1016/S0012-821X(01)00232-1. Lock, J. (2007). Interpreting low-temperature thermochronometric data in fold-and-thrust belts: An example from the Western Foothills, Taiwan [ Ph.D. dissertation ]. University of Washington, 196 pp. Malusà, M. G., & Fitzgerald, P. G. (2019). Fission-Track Thermochronology and its Application to Geology, From Cooling to Exhumation: Setting the Reference Frame for the Interpretation of Thermochronologic Data (pp. 147-164). Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_8. Marshak, S. (2013). Essentials of Geology (4th ed.). W. W. Norton & Company, Inc, 650 pp. Mesalles, L., Mouthereau, F., Bernet, M., Chang, C. P., Lin, T. S., Fillon, C., & Sengelen, X. (2014). From submarine continental accretion to arc-continent orogenic evolution: The thermal record in southern Taiwan. Geology, 42(10), 907-910. https://doi.org/10.1130/G35854.1. McDowell, F. W., & Keizer, R. P. (1977). Timing of mid-Tertiary volcanism in the Sierra Madre Occidental between Durango City and Mazatlan, Mexico. Geological Society of America Bulletin, 88(10), 1479-1487. https://doi.org/10.1130/0016-7606(1977)88<1479:TOMVIT>2.0.CO;2. McDowell, F. W., McIntosh, W. C., & Farley, K. A. (2005). A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission track dating standard. Chemical Geology, 214, 249-263. https://doi.org/10.1016/j.chemgeo.2004.10.002. Murakami, M., & Svojtka, M. (2007). Zircon fission-track technique: a laboratory procedure adopted at the Institute of Geology, Academy of Sciences of the Czech Republic v.v.i. Murrell, G. R., Sobel, E. R., Carrapa, B., & Andriessen, P. (2009). Calibration and comparison of etching techniques for apatite fission-track thermochronology. Geological Society, London, Special Publications, 324, 73-85. https://doi.org/10.1144/SP324.6. Nagel, S., Castelltort, S., Garzanti, E., Lin, A. T., Willett, S. D., Mouthereau, F., Limonta, M., & Adatte, T. (2014). Provenance evolution during arc-continent collision: Sedimentary petrography of Miocene to Pleistocene sediments in the western foreland basin of Taiwan. Journal of Sedimentary Research, 84(7), 513-528. https://doi.org/10.2110/jsr.2014.44. Rahl, J. M., Ehlers, T. A., & Van der Pluijm, B. A. (2007). Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth and Planetary Science Letters, 256(1-2), 147-161. https://doi.org/10.1016/j.epsl.2007.01.020. Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Geological Society of China Memoirs, 4, 67-89. Swanson, E. R., Keizer, R. P., Lyons, J. I., & Clabaugh, S. E. (1978). Tertiary volcanism and caldera development near Durango City, Sierra Madre Occidental, Mexico. Geological Society of America Bulletin, 89(7), 1000-1012. https://doi.org/10.1130/0016-7606(1978)89<1000:TVACDN>2.0.CO;2. Tagami, T., Carter, A., & Hurford, A. J. (1996). Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature. Chemical Geology, 130(1-2), 147-157. https://doi.org/10.1016/0009-2541(96)00016-2. Teng, L. S. (1979). Petrographical study of the Neogene sandstones of the Coastal Range, eastern Taiwan (I. Northern Part). Science Reports of the National Taiwan University ACTA Geologica Taiwanica, 20, 129-156. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76. https://doi.org/10.1016/0040-1951(90)90188-E. Tsao, S., Li, T. C., Tien, J. L., Chen, C. H., Liu, T. K., & Chen, C. H. (1992). Illite crystallinity and fission-track ages along the east Central Cross-Island Highway of Taiwan. Science Reports of the National Taiwan University ACTA Geologica Taiwanica, 30, 45-64. Wagner, G. A. (1972). Geological interpretation of fission track ages. Transactions of the American Nuclear Society, 15, 117. Wagner, G. A., & Reimer, G. M. (1972). Fission track tectonics: The tectonic interpretation of fission track apatite ages. Earth and Planetary Science Letters, 14(2), 263-268. https://doi.org/10.1016/0012-821X(72)90018-0. Wagner, G. A., & Van den haute, P. (1992). Fission-Track Dating. Solid Earth Sciences Library, 6. Springer Dordrecht, 285 pp. https://doi.org/10.1007/978-94-011-2478-2. Wagner, M., Altherr, R., & Van den haute, P. (1992). Apatite fission-track analysis of Kenyan basement rocks: constraints on the thermotectonic evolution of the Kenya dome. A reconnaissance study. Tectonophysics, 204, 93-110. https://doi.org/10.1016/0040-1951(92)90272-8. Warneke, L. A., & Ernst, W. G. (1984). Progressive Cenozoic metamorphism of rocks cropping out along The Southern East-West Cross-Island Highway, Taiwan*. Memoir of the Geological Society of China (Taiwan), 6, 105-132. Willett, S. D., Fisher, D., Fuller, C., Yeh, E. C., & Lu, C. Y. (2003). Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948. https://doi.org/10.1130/G19702.1. Yamada, R., Tagami, T., Nishimura, S., & Ito, H. (1995). Annealing kinetics of fission tracks in zircon: an experimental study. Chemical Ceology, 122(1-4), 249-258. https://doi.org/10.1016/0009-2541(95)00006-8. Zaun, P. E., & Wagner, G. A. (1985). Fission-track stability in zircons under geological conditions. Nuclear Tracks and Radiation Measurements, 10(3), 303-307. https://doi.org/10.1016/0735-245X(85)90119-X. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87222 | - |
| dc.description.abstract | 晚中新世以來,菲律賓板塊(呂宋島弧)與歐亞板塊發生碰撞,造成一系列北東走向的造山帶,同時在造山帶前緣形成前陸盆地。造山山脈歷經長時間抬升剝蝕,其碎屑沉積物會大量堆積於盆地中,透過分析盆地地層的沉積物得以揭露過去已剝蝕的造山帶之演育。本研究針對草湖溪剖面及大甲溪剖面的魚藤坪砂岩至頭嵙山層,進行磷灰石及鋯石核飛跡定年分析,並綜合前人岩象研究成果,探討中部造山帶與前陸盆地的剝蝕歷史。
本研究從魚藤坪砂岩至頭嵙山層依序採集10個砂岩樣本,砂岩中磷灰石及鋯石核飛跡年代頻譜呈現多峰值,代表源區變質度特性,所以可反映當時盆地接收的來源。當砂岩樣本曾經受抬升作用通過磷灰石及鋯石核飛跡封存溫度的地溫時,便開始累積核飛跡,因此,透過計算礦物中核飛跡數量,可得到冷卻年代頻譜。其中,若源區岩層埋藏溫度與礦物封存溫度相近,核飛跡年代則可以記錄岩層開始抬升的相近時間,並透過樣本的遲滯時間隨層序變化的趨勢來了解造山帶的冷卻速率及剝蝕速率演化。 本研究分析各層序中砂岩樣本的磷灰石及鋯石核飛跡年代頻譜結果,得知臺灣中部造山帶的剝蝕歷史:穩定剝蝕階段(從6.4 Ma至2.6-1.4 Ma),此時造山帶的冷卻速率約 25.7±12.7-42.9±18.4 ℃⁄Ma,剝蝕速率約 0.5±0.3-0.9±0.4 km⁄Ma。約4.2 Ma出露磷灰石完全癒合的沉積岩層,約2.6 Ma出露磷灰石完全癒合、鋯石部分癒合的硬頁岩層;加速剝蝕階段(從2.6-1.4 Ma至 0.9 Ma),造山帶的冷卻速率從 64.3±31.4 ℃⁄Ma 加速到 300.0±250.5 ℃⁄Ma,剝蝕速率從 1.3±0.7 km⁄Ma 加快到 6.0±5.3 km⁄Ma。約1.2 Ma出露磷灰石完全癒合、鋯石部分癒合的低度變質岩層。 | zh_TW |
| dc.description.abstract | Since late Miocene, the Philippine Plate (Luzon Arc) has collided with the Eurasian Plate, resulting in a series of north-east trending orogenic belts, while forming foreland basins at the front edge of the orogenic belts. The detrital sediments from the basin strata can be analyzed to reveal the evolution of the eroded orogenic belts in the past. In this study, we used apatite and zircon fission-track thermochronologies to investigate the exhumation history of the central orogenic belt and the foreland basin.
We collected ten sandstone samples from the Yutengping Sandstone to Tukoshan Formation in the Tsaohuchi section and the Tachia section. We find the spectrum of apatite and zircon fission-track dating ages in the sandstone showed multiple peaks, representing the metamorphic characteristics of the source area and the accumulation of orogenic detritus in foreland basins at that time. The cooling age spectrum can be obtained by counting the number of fission tracks in the mineral when the sandstone sample was subjected to uplift through the mineral closure temperature and started to accumulate fission tracks. The thermal history of each studied grain bears burial information of own sourced terrain and provides the constraints on thermal status of the exposed outcrops at that time, which reflects the emerging stages of the orogen. The result indicates that exhumation history of the central orogenic belt is divided into two stages: First, the stable exhumation stage ( from 6.4 Ma to 2.6-1.4 Ma ): the cooling rate of the orogenic belt is 25.7±12.7-42.9±18.4 ℃⁄Ma, and the exhumation rate is 0.5±0.3-0.9±0.4 km⁄Ma. Timeline wise, sedimentary formations with fully reset apatite were exposed about 4.2 Ma while argillite formations with fully reset apatite and partially reset zircon were not exposed until 2.6 Ma. Second, the accelerated exhumation stage ( from 2.6-1.4 Ma to 0.9 Ma ): the cooling rate of the orogenic belt is 64.3±31.4-300.0±250.5 ℃/Ma, and the exhumation rate is 1.3±0.7-6.0±5.3 km/Ma. During this period, low grade metamorphic formations with fully reset apatite and partially reset zircon were exposed about 1.2 Ma. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:27:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T16:27:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 I
致謝 II 中文摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 前人研究 4 1.3 研究動機與目的 6 第二章 研究地點及採樣 7 2.1 區域地質概述 7 2.2 採樣資訊 11 第三章 研究方法 13 3.1 核飛跡定年原理 13 3.1.1 核飛跡的形成 13 3.1.2 核飛跡的癒合作用 14 3.1.3 核飛跡年代公式 15 3.2 實驗流程 18 第四章 實驗結果 24 4.1 磷灰石核飛跡定年結果 24 4.2 鋯石核飛跡定年結果 28 第五章 討論 31 5.1 由核飛跡年代探討前陸盆地沉積物來源 31 5.1.1 源區岩層分區特性 31 5.1.2 核飛跡年代反映當時源區地層的變質度狀況 36 5.2 造山帶的冷卻與剝蝕速率 51 第六章 結論 58 參考文獻 60 附錄 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 剝蝕歷史 | zh_TW |
| dc.subject | 前陸盆地 | zh_TW |
| dc.subject | 草湖溪 | zh_TW |
| dc.subject | 鋯石 | zh_TW |
| dc.subject | 磷灰石 | zh_TW |
| dc.subject | 核飛跡定年 | zh_TW |
| dc.subject | Zircon | en |
| dc.subject | Foreland basin | en |
| dc.subject | Tsaohuchi | en |
| dc.subject | Fission-Track Dating | en |
| dc.subject | Exhumation history | en |
| dc.subject | Apatite | en |
| dc.title | 臺灣中部魚藤坪砂岩至頭嵙山層磷灰石及鋯石核飛跡定年:探討北部雪山山脈與前陸盆地的剝蝕歷史 | zh_TW |
| dc.title | Fission-Track Dating of detrital apatite and zircon from the Yutengping Sandstone to Toukoshan Formation in central Taiwan: Implications for exhumation history of the northern Hsuehshan Range and foreland basin | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳文山;黃韶怡;顏君毅 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Shan Chen;Shao-Yi Huang;Jiun-Yee Yen | en |
| dc.subject.keyword | 核飛跡定年,磷灰石,鋯石,草湖溪,前陸盆地,剝蝕歷史, | zh_TW |
| dc.subject.keyword | Fission-Track Dating,Apatite,Zircon,Tsaohuchi,Foreland basin,Exhumation history, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202300587 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
