請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87208
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 溫在弘 | zh_TW |
dc.contributor.advisor | Tzai-Hung Wen | en |
dc.contributor.author | 徐品翰 | zh_TW |
dc.contributor.author | Pin-Han Hsu | en |
dc.date.accessioned | 2023-05-18T16:22:37Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-05-10 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-16 | - |
dc.identifier.citation | 楊芝青 (2018) 因應氣候變遷氣候變遷之健康衝擊政策白皮書, 台北市: 衛生福利部。
Aburas, H. M., Cetiner, B. G., and Sari, M. (2010) Dengue confirmed-cases prediction: A neural network model, Expert Systems with Applications, 37: 4256-4260. Ackley, D. H., Hinton, G. E., and Sejnowski, T. J.(1988).'A learning algorithm for boltzmann machines.' in, Connectionist models and their implications: Readings from cognitive science (Ablex Publishing Corp.). Adams, B., and Kapan, D. D. (2009) Man bites mosquito: Understanding the contribution of human movement to vector-borne disease dynamics, PLoS One, 4: e6763. Aggarwal, R., and Yonghua, S. (1998) Artificial neural networks in power systems. Iii. Examples of applications in power systems, Power Engineering Journal, 12: 279-287. Althouse, B. M., Ng, Y. Y., and Cummings, D. A. T. (2011) Prediction of dengue incidence using search query surveillance, PLoS Negl Trop Dis, 5: e1258. Amâncio, F. F., Ferraz, M. L., Almeida, M. C. d. M., Pessanha, J. E. M., Iani, F. C. M., Fraga, G. L., Lambertucci, J. R., and Carneiro, M. (2014) Dengue virus serotype 4 in a highly susceptible population in southeast brazil, Journal of Infection and Public Health, 7: 547-552. Bação, F., Lobo, V., and Painho, M. (2005) The self-organizing map, the geo-som, and relevant variants for geosciences, Computers & Geosciences, 31: 155-163. Baquero, O. S., Santana, L. M. R., and Chiaravalloti-Neto, F. (2018) Dengue forecasting in são paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models, PLoS One, 13: e0195065. Barreto, F. R., Teixeira, M. G., Costa, M. d. C. N., Carvalho, M. S., and Barreto, M. L. (2008) Spread pattern of the first dengue epidemic in the city of salvador, brazil, BMC Public Health, 8: 51. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R. W., Simmons, C. P., Scott, T. W., Farrar, J. J., and Hay, S. I. (2013) The global distribution and burden of dengue, Nature, 496: 504. Birant, D., and Kut, A. (2007) St-dbscan: An algorithm for clustering spatial-temporal data 60: 208-221. C. LourenÇO, F., Lobo, V., and Bação, F.(2018) Exploratory geospatial data analysis using self-organizing maps case study of portuguese mainland regions. Calderón-Arguedas, O., Troyo, A., Solano, M. E., Avendaño, A., and Beier, J. C. (2009) Urban mosquito species (diptera: Culicidae) of dengue endemic communities in the greater puntarenas area, costa rica revista de biología tropical, 57: 1223-1234. Campbell, L. P., Luther, C., Moo-Llanes, D., Ramsey, J. M., Danis-Lozano, R., and Peterson, A. T. (2015) Climate change influences on global distributions of dengue and chikungunya virus vectors, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370: 20140135. Carvalho, S., Magalhães, M. d. A. F. M., and Medronho, R. d. A. (2017) Analysis of the spatial distribution of dengue cases in the city of rio de janeiro, 2011 and 2012, Revista de saude publica, 51: 79-79. Chan, M., and Johansson, M. A. (2012) The incubation periods of dengue viruses, PLoS One, 7: e50972-e50972. Chang, F.-J., Chang, L.-C., Kao, H.-S., and Wu, G.-R. (2010) Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network, Journal of Hydrology, 384: 118-129. Chang, L.-C., Shen, H.-Y., and Chang, F.-J. (2014) Regional flood inundation nowcast using hybrid som and dynamic neural networks, Journal of Hydrology, 519: 476-489. Changal, K. H., Raina, A. H., Raina, A., Raina, M., Bashir, R., Latief, M., Mir, T., and Changal, Q. H. (2016) Differentiating secondary from primary dengue using igg to igm ratio in early dengue: An observational hospital based clinico-serological study from north india, BMC Infectious Diseases, 16: 715-715. Cheong, Y. L., Burkart, K., Leitão, P. J., and Lakes, T. (2013) Assessing weather effects on dengue disease in malaysia, International journal of environmental research and public health, 10: 6319-6334. Chien, L. C., and Yu, H. L. (2014) Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence, Environ Int, 73: 46-56. Chin, W.-C.-B., Wen, T.-H., Sabel, C. E., and Wang, I. H. (2017) A geo-computational algorithm for exploring the structure of diffusion progression in time and space, Scientific Reports, 7: 12565. Codeço, C. T., Villela, D. A. M., and Coelho, F. C. (2018) Estimating the effective reproduction number of dengue considering temperature-dependent generation intervals, Epidemics, 25: 101-111. Ebi, K. L., and Nealon, J. (2016) Dengue in a changing climate, Environmental Research, 151: 115-123. Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.(1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 226–231. Portland, Oregon: AAAI Press. Genest, C., and Zidek, J. V. (1986) Combining probability distributions: A critique and an annotated bibliography, Statistical Science, 1: 114-135, 22. Gomide, J., Veloso, A., Wagner Meira, J., Almeida, V., Benevenuto, F., Ferraz, F., and Teixeira, M.(2011) Dengue surveillance based on a computational model of spatio-temporal locality of twitter. In Proceedings of the 3rd International Web Science Conference, 1-8. Koblenz, Germany: ACM. Gubler, D. J. (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends in Microbiology, 10: 100-103. Guo, P., Liu, T., Zhang, Q., Wang, L., Xiao, J., Zhang, Q., Luo, G., Li, Z., He, J., Zhang, Y., and Ma, W. (2017) Developing a dengue forecast model using machine learning: A case study in china, PLoS Negl Trop Dis, 11: e0005973. Guzzetta, G., Marques-Toledo, A., C., Rosà, R., Teixeira, M., and Merler, S. (2018) Quantifying the spatial spread of dengue in a non-endemic brazilian metropolis via transmission chain reconstruction, Nature Communications, 9: 2837. Haydon, D. T., Chase-Topping, M., Shaw, D. J., Matthews, L., Friar, J. K., Wilesmith, J., and Woolhouse, M. E. J. (2003) The construction and analysis of epidemic trees with reference to the 2001 uk foot-and-mouth outbreak, Proceedings. Biological sciences, 270: 121-127. Hii, Y. L., Rocklöv, J., Wall, S., Ng, L. C., Tang, C. S., and Ng, N. (2012) Optimal lead time for dengue forecast, PLoS Negl Trop Dis, 6: e1848. Hii, Y. L., Rocklöv, J., Ng, N., Tang, C. S., Pang, F. Y., and Sauerborn, R. (2009) Climate variability and increase in intensity and magnitude of dengue incidence in singapore, Global health action, 2: 10.3402/gha.v2i0.2036. Hii, Y. L., Zhu, H., Ng, N., Ng, L. C., and Rocklöv, J. (2012) Forecast of dengue incidence using temperature and rainfall, PLoS Negl Trop Dis, 6: e1908. Ho, C. C., and Yee, T.(2015) Time series analysis and forecasting of dengue using open data. Honório, N. A., Silva Wda, C., Leite, P. J., Gonçalves, J. M., Lounibos, L. P., and Lourenço-de-Oliveira, R. (2003) Dispersal of aedes aegypti and aedes albopictus (diptera: Culicidae) in an urban endemic dengue area in the state of rio de janeiro, brazil, Mem Inst Oswaldo Cruz, 98: 191-198. Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the United States of America, 79: 2554-2558. Hsieh, Y.-H. (2018) Dengue outbreaks in taiwan, 1998-2017: Importation, serotype and temporal pattern, Asian Pacific Journal of Tropical Medicine, 11: 460-466. Hsu, J. C., Hsieh, C.-L., and Lu, C. Y. (2017) Trend and geographic analysis of the prevalence of dengue in taiwan, 2010–2015, International Journal of Infectious Diseases, 54: 43-49. Ioffe, S., and Szegedy, C.(2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, 448-456. Lille, France: JMLR.org. Kalayanarooj, S. (2011) Clinical manifestations and management of dengue/dhf/dss, Trop Med Health, 39: 83-87. Kan, C. C., Lee, P. F., Wen, T. H., Chao, D. Y., Wu, M. H., Lin, N. H., Huang, S. Y., Shang, C. S., Fan, I. C., Shu, P. Y., Huang, J. H., King, C. C., and Pai, L. (2008) Two clustering diffusion patterns identified from the 2001-2003 dengue epidemic, kaohsiung, taiwan, Am J Trop Med Hyg, 79: 344-352. Kohonen, T. (1990) The self-organizing map, Proceedings of the IEEE, 78: 1464-1480. ——— (2001) Self-organizing maps, 3rd: 105-176. Kuo, F.-Y., Wen, T.-H., and Sabel, C. E. (2018) Characterizing diffusion dynamics of disease clustering: A modified space–time dbscan (mst-dbscan) algorithm, Annals of the American Association of Geographers, 108: 1168-1186. Lambrechts, L., Paaijmans, K. P., Fansiri, T., Carrington, L. B., Kramer, L. D., Thomas, M. B., and Scott, T. W. (2011) Impact of daily temperature fluctuations on dengue virus transmission by aedes aegypti, Proc Natl Acad Sci U S A, 108: 7460-7465. Laureano-Rosario, E. A., Duncan, P. A., Mendez-Lazaro, A. P., Garcia-Rejon, E. J., Gomez-Carro, S., Farfan-Ale, J., Savic, A. D., and Muller-Karger, E. F. (2018) Application of artificial neural networks for dengue fever outbreak predictions in the northwest coast of yucatan, mexico and san juan, puerto rico, Tropical Medicine and Infectious Disease, 3. Li, M., Shi, X., Li, X., Ma, W., He, J., and Liu, T. (2019) Epidemic forest: A spatiotemporal model for communicable diseases, Annals of the American Association of Geographers, 109: 812-836. Liebig, J., Jansen, C., Paini, D., Gardner, L., and Jurdak, R. (2019) A global model for predicting the arrival of imported dengue infections, PLoS One, 14: e0225193. Liew, C., and Curtis, C. (2005) Horizontal and vertical dispersal of dengue vector mosquitoes, aedes aegypti and aedes albopictus, in singapore, Medical and veterinary entomology, 18: 351-360. Lippmann, R. (1987) An introduction to computing with neural nets, IEEE ASSP Magazine, 4: 4-22. Lowe, R., Bailey, T. C., Stephenson, D. B., Graham, R. J., Coelho, C. A. S., Sá Carvalho, M., and Barcellos, C. (2011) Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in brazil, Computers & Geosciences, 37: 371-381. Méndez-Lázaro, P., Muller-Karger, F. E., Otis, D., McCarthy, M. J., and Peña-Orellana, M. (2014) Assessing climate variability effects on dengue incidence in san juan, puerto rico, International journal of environmental research and public health, 11. Matangkasombut, P., Manopwisedjaroen, K., Pitabut, N., Thaloengsok, S., Suraamornkul, S., Yingtaweesak, T., Duong, V., Sakuntabhai, A., Paul, R., and Singhasivanon, P. (2020) Dengue viremia kinetics in asymptomatic and symptomatic infection, International Journal of Infectious Diseases, 101: 90-97. Morelli, M. J., Thébaud, G., Chadœuf, J., King, D. P., Haydon, D. T., and Soubeyrand, S. (2012) A bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data, PLOS Computational Biology, 8: e1002768. Morin, C. W., Comrie, A. C., and Ernst, K. (2013) Climate and dengue transmission: Evidence and implications, Environ Health Perspect, 121: 1264-1272. Mu-Chun, S., DeClaris, N., and Ta-Kang, L.(1997) Application of neural networks in cluster analysis. In 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 1-6 vol.1. Napp, S., Allepuz, A., Purse, B. V., Casal, J., García-Bocanegra, I., Burgin, L. E., and Searle, K. R. (2016) Understanding spatio-temporal variability in the reproduction ratio of the bluetongue (btv-1) epidemic in southern spain (andalusia) in 2007 using epidemic trees, PLoS One, 11: e0151151. Nishiura, H., and Halstead, S. B. (2007) Natural history of dengue virus (denv)—1 and denv—4 infections: Reanalysis of classic studies, The Journal of Infectious Diseases, 195: 1007-1013. Ong, J., Liu, X., Rajarethinam, J., Kok, S. Y., Liang, S., Tang, C. S., Cook, A. R., Ng, L. C., and Yap, G. (2018) Mapping dengue risk in singapore using random forest, PLoS Negl Trop Dis, 12: e0006587-e0006587. Othman, W. N., Ahmad Nazni, W., Noramiza, S., Shafa'ar-Ko'ohar, S. e., Sock Kiang, H., Halim Nor-Azlina, A., Khairul-Asuad, M., and Lim Lee, H.(2012) Distribution of aedes mosquitoes in three selected localities in malaysia. Pan, C.-Y., Liu, W.-L., Su, M.-P., Chang, T.-P., Ho, H.-P., Shu, P.-Y., Huang, J.-J., Lin, L.-J., and Chen, C.-H. (2020) Epidemiological analysis of the kaohsiung city strategy for dengue fever quarantine and epidemic prevention, BMC Infectious Diseases, 20: 347. Parimala, M., Lopez, D., and N C, S. (2011) A survey on density based clustering algorithms for mining large spatial databases, International Journal of Advanced Science and Technology, 31. Platt, K. B., Linthicum, K. J., Myint, K. S., Innis, B. L., Lerdthusnee, K., and Vaughn, D. W. (1997) Impact of dengue virus infection on feeding behavior of aedes aegypti, Am J Trop Med Hyg, 57: 119-125. Regilme, M. A. F., Carvajal, T. M., Honnen, A. C., Amalin, D. M., and Watanabe, K. (2021) The influence of roads on the fine-scale population genetic structure of the dengue vector aedes aegypti (linnaeus), PLoS Negl Trop Dis, 15: e0009139. Schmidt, W.-P., Suzuki, M., Dinh Thiem, V., White, R. G., Tsuzuki, A., Yoshida, L.-M., Yanai, H., Haque, U., Huu Tho, L., Anh, D. D., and Ariyoshi, K. (2011) Population density, water supply, and the risk of dengue fever in vietnam: Cohort study and spatial analysis, PLOS Medicine, 8: e1001082. Semenza, J. C., Sudre, B., Miniota, J., Rossi, M., Hu, W., Kossowsky, D., Suk, J. E., Van Bortel, W., and Khan, K. (2014) International dispersal of dengue through air travel: Importation risk for europe, PLoS Negl Trop Dis, 8: e3278. Shah, S. A., Sani, J. A. M., Hassan, M. R., Safian, N., Aizuddin, A. N., and Hod, R. (2013) Relationships between aedes indices and dengue outbreaks in selangor, malaysia, Dengue Bulletin, 36: 166-174. Shannon, R. C., and Davis, N. C. (1930) The flight of stegomyia aegypti (l.)1, American Journal of Tropical Medicine and Hygiene, 10: 151-156. Shaukat, K., Masood, N., Shafaat, A. B., Jabbar, K., Shabbir, H., and Shabbir, S. J. C. (2015) Dengue fever in perspective of clustering algorithms, abs/1511.07353. Shaw, G. L.(1986) Donald hebb: The organization of behavior. In Brain Theory, edited by Günther Palm and Ad Aertsen, 231-233. Berlin, Heidelberg: Springer Berlin Heidelberg. Simmons, C. P., Farrar, J. J., van Vinh Chau, N., and Wills, B. (2012) Dengue, New England Journal of Medicine, 366: 1423-1432. Sipser, M.(2006) Introduction to the theory of computation (International Thomson Publishing: Boston, Massachusetts). Sitepu, M. S., Kaewkungwal, J., Luplerdlop, N., Soonthornworasiri, N., Silawan, T., Poungsombat, S., and Lawpoolsri, S. (2013) Temporal patterns and a disease forecasting model of dengue hemorrhagic fever in jakarta based on 10 years of surveillance data, Southeast Asian J Trop Med Public Health, 44: 206-217. Smith, A. J. (2002) Applications of the self-organising map to reinforcement learning, Neural Networks, 15: 1107-1124. Sun, B., Wang, C., Yang, C., Xu, B., Zhou, G., Li, X., Xie, J., Xu, S., Liu, B., Xie, T., Kuai, J., and Zhang, J. (2021) Retrieval of rapeseed leaf area index using the prosail model with canopy coverage derived from uav images as a correction parameter, International Journal of Applied Earth Observation and Geoinformation, 102: 102373. Sung-Bae, C. (1997) Neural-network classifiers for recognizing totally unconstrained handwritten numerals, IEEE Transactions on Neural Networks, 8: 43-53. Thavara, U., Tawatsin, A., Chansang, C., Kong-ngamsuk, W., Paosriwong, S., Boon-Long, J., Rongsriyam, Y., and Komalamisra, N. (2001) Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on samui island, thailand, J Vector Ecol, 26: 172-180. Tsai, P.-J., and Teng, H.-J. (2016) Role of aedes aegypti (linnaeus) and aedes albopictus (skuse) in local dengue epidemics in taiwan, BMC Infectious Diseases, 16: 662. Verdonschot, P. F. M., and Besse-Lototskaya, A. A. (2014) Flight distance of mosquitoes (culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands, Limnologica, 45: 69-79. Vesanto, J., and Alhoniemi, E. (2000) Clustering of the self-organizing map, IEEE Transactions on Neural Networks, 11 3: 586-600. Wang, M., Wang, A., and Li, A.(2006) Mining spatial-temporal clusters from geo-databases. In Proceedings of the Second international conference on Advanced Data Mining and Applications, 263-70. Xi'an, China: Springer-Verlag. Wang, S.-F., Chang, K., Loh, E.-W., Wang, W.-H., Tseng, S.-P., Lu, P.-L., Chen, Y.-H., and Chen, Y.-M. A. (2016) Consecutive large dengue outbreaks in taiwan in 2014-2015, Emerging microbes & infections, 5: e123-e123. Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E., and Nisalak, A. (1987) Effect of temperature on the vector efficiency of aedes aegypti for dengue 2 virus, Am J Trop Med Hyg, 36: 143-152. Wen, T.-H., Lin, M.-H., and Fang, C.-T. (2012) Population movement and vector-borne disease transmission: Differentiating spatial–temporal diffusion patterns of commuting and noncommuting dengue cases, Annals of the Association of American Geographers, 102: 1026-1037. Wen, T.-H., and Tsai, Y.-S.(2015).'Analyzing the patterns of space-time distances for tracking the diffusion of an epidemic.' in Mei-Po Kwan, Douglas Richardson, Donggen Wang and Chenghu Zhou (eds.), Space-time integration in geography and giscience: Research frontiers in the us and china (Springer Netherlands: Dordrecht). WHO.(2009a) Dengue guidelines for diagnosis, treatment, prevention and control : New edition. In. Geneva: World Health Organization. WHO.(2009b).'Who guidelines approved by the guidelines review committee.' in, Dengue: Guidelines for diagnosis, treatment, prevention and control: New edition (World Health Organization World Health Organization.: Geneva). WHO.(2012) Global strategy for dengue prevention and control, 2012–2020, Geneva, 6: 43. WHO.(2015) Global alert and response–impact of dengue. In. Winkler, R. L. (1981) Combining probability distributions from dependent information sources, Management Science, 27: 479-488. Wu, P.-C., Guo, H.-R., Lung, S.-C., Lin, C.-Y., and Su, H.-J. (2007) Weather as an effective predictor for occurrence of dengue fever in taiwan, Acta Tropica, 103: 50-57. Wu, Y., Lee, G., Fu, X., and Hung, T. G. G.(2008) Detect climatic factors contributing to dengue outbreak based on wavelet, support vector machines and genetic algorithm. Yamaguchi, M., Akiyama, K., Tsukagoshi, T., Muto, T., Kataoka, A., Tazaki, F., Ikeda, S., Fukagawa, M., Honma, M., and Kawabe, R. (2020) Super-resolution imaging of the protoplanetary disk hd 142527 using sparse modeling, The Astrophysical Journal, 895: 84. Yang, C.-F., Hou, J.-N., Chen, T.-H., and Chen, W.-J. (2014) Discriminable roles of aedes aegypti and aedes albopictus in establishment of dengue outbreaks in taiwan, Acta Tropica, 130: 17-23. Yuan, H.-Y., Liang, J., Lin, P.-S., Sucipto, K., Tsegaye, M. M., Wen, T.-H., Pfeiffer, S., and Pfeiffer, D. (2020) The effects of seasonal climate variability on dengue annual incidence in hong kong: A modelling study, Scientific Reports, 10: 4297. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87208 | - |
dc.description.abstract | 發展登革熱每日滾動預測擴散模式目的,掌握登革熱疫情傳染的動向,採用時空預測的框架,達到精準匡列登革熱高風險區,縮小打擊範圍的進程,以2010年至2015年臺灣臺南市和高雄市的登革熱疫情作為研究案例。
我們將疫情分成兩個階段,疫情前期發病的登革熱病例資料作為訓練資料集,疫情中後期發病的登革熱病例資料作為測試資料集,為了發展預測模式,而建構時空擴散區的概念,並提出四種時空擴散每日滾動預測模式,模式一預設固定時空邊界、模式二歸納時空邊界、模式三利用空間異質性與模式四利用氣候、環境與空間異質性,模式三與模式四時空擴散區滾動預測模式都採用MST-DBSCAN (Modified space time DBSCAN algorithm)與自組織對映類神經網路採用共識決演算法,我們定義擴散預測的綜合指標,挑選最佳的登革熱滾動擴散預測模式。 根據研究模式預測成果,在登革熱疫情非爆發年份之2010年至2012年,模式四利用氣候、環境與空間異質性的綜合指標表現最佳,該模式在疫情中後期,每日預測高達80%的登革熱病例,在登革熱疫情爆發年份之2014年與2015年,模式三利用空間異質性的綜合指標表現最佳,該模式在疫情中後期,每日預測高達90%的登革熱病例,彙整上述模式預測細節,發現登革熱的傳染半徑約800公尺,在疫情非爆發年份發病間距是從6至11日,在疫情爆發年份發病間距是從6至9日。 最後我們開發動態地圖,視覺化呈現登革熱每日滾動預測的擴散特徵,根據最佳模式生成的時空擴散區細節,協助我們歸納登革熱的傳染半徑與發病間距。 | zh_TW |
dc.description.abstract | The objectives of the study are to develop the daily rolling prediction models for the diffusion of dengue fever and to track the spread of the epidemic. The spatiotemporal prediction framework would accurately estimate the high-risk areas of dengue fever in near future for effective spatially targeting of epidemic control. Dengue fever epidemics in Tainan and Kaohsiung Cities of Taiwan from 2010 to 2015 were used for the case study.
Our approach divided the epidemic into two stages: an early stage for data training and a middle-late stage for data testing. To develop our predictions, we incorporated the concept of spatial-time diffusion zone. Four models for daily rolling predictions of dengue fever diffusion are proposed. Model I is based on a fixed spatial-time boundary, while Model II summarizes the spatial-time boundary. Model III utilizes the concept of spatial heterogeneity, and Model IV integrates the concepts of climate, environment, and spatial heterogeneity. Both Models III and IV utilized MST-DBSCAN (Modified Space Time Density-Based Spatial Clustering of Applications with Noise) and a self-organizing map modified by consensus decision-making algorithm. A comprehensive indicator also defined for determining the best daily rolling prediction model for dengue fever diffusion. Our results show that, for the non-outbreak years of dengue fever (2010-2012), Mode IV, incorporating climate, environment, and spatial heterogeneity, performed the best with the comprehensive indicators. This model accurately predicted up to 80% of daily dengue cases during the middle-late stage of the epidemic. Conversely, for the outbreak years of dengue fever (2014-2015), Model III, considering spatial heterogeneity, performed the best with the comprehensive indicators. This model achieved daily prediction accuracy of up to 90% of dengue cases during the middle-late stage of the epidemic. Our model analysis also found that the infection radius of dengue fever was approximately 800 meters. In the non-outbreak years, the serial intervals ranged from 6 to 11 days, while in the outbreak years, the serial intervals ranged from 6 to 9 days. Finally, we created dynamic mapping animations for visualizing the diffusion patterns generated by the daily rolling prediction models of dengue fever. It provided detailed spatial-time diffusion zones, enabling us to summarize the infection radius and serial intervals of dengue fever. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:22:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-05-18T16:22:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 第一節 介紹 1 第二節 登革熱的傳播 2 第三節 研究動機 3 第四節 研究目的 4 第二章 文獻回顧 6 第一節 登革熱的擴散模式 6 第二節 登革熱的預測模式 7 第三節 登革熱擴散與預測模式結合 10 第四節 小結 13 第三章 研究區與資料 15 第一節 研究區概述 15 第二節 資料來源 21 第四章 研究方法 23 第一節 研究架構 23 第二節 預測模式的資料集 24 第三節 模式共同項目 25 第四節 模式一 30 第五節 模式二 31 第六節 模式三 42 第七節 模式四 51 第八節 驗證研究成果 56 第五章 研究成果 62 第一節 綜合指標評量 63 第二節 時空擴散區滾動預測 70 第三節 正規化均方根誤差 77 第四節 時空擴散區細節 81 第五節 成果統整 93 第六章 討論 95 第一節 擴散預測模式 95 第二節 時空擴散區的特色 97 第三節 研究限制 99 第七章 結論 100 參考文獻 101 附錄 110 附錄一 研究成果補充 110 附錄二 平台 116 附錄三 演算法 117 附錄四 證明最佳化密度方程式 126 附錄五 門檻 127 附錄六 機器學習系統效能評估 129 | - |
dc.language.iso | zh_TW | - |
dc.title | 建立共識自組織對映於預測登革熱擴散的時空範圍 | zh_TW |
dc.title | Creating a consensus self-organizing map for predicting dengue diffusion in time and space | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 郭巧玲;蔡宇軒;黃崇源 | zh_TW |
dc.contributor.oralexamcommittee | Chiao-Ling Kuo;Yu-Shiuan Tsai;Chung-Yuan Huang | en |
dc.subject.keyword | 登革熱,自組織對映,DBSCAN,時空模式,滾動預測,共識決, | zh_TW |
dc.subject.keyword | Dengue fever,Self-organizing map,DBSCAN,Spatial-time model,Rolling prediction,Consensus, | en |
dc.relation.page | 133 | - |
dc.identifier.doi | 10.6342/NTU202300534 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-02-17 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf | 4.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。