Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87194
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋聖榮zh_TW
dc.contributor.advisorSheng-Rong Songen
dc.contributor.author廖偉勝zh_TW
dc.contributor.authorWei-Sheng Liaoen
dc.date.accessioned2023-05-18T16:17:51Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-10-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citation中文部分:
丁聪、赵志丹、杨金豹、周红芳、盛丹、侯青叶、胡兆初 (2015)福建石狮白垩纪花岗岩与中基性脉岩的年代学与地球化学,岩石学报,第31卷,第1433-1447頁。
尤崇極、施清芳、張坤城、宋國良、鄧仁杰、張福麟、劉建麟 (1991)結晶岩區地質驗證(金門地區)報告書,原子能委員會核能研究所。
市村毅 (1941)金門島的地質(概要),台灣地學記事。
张贵山、温汉捷、胡瑞忠、裘愉卓、许成 (2007)闽东南基性岩脉成因及动力学背景研究:Sr-Nd同位素、元素地球化学,岩石学报,第23卷,第793-804頁。
张贵山、温汉捷、裘愉卓 (2004)闽西晚中生代基性岩脉的地球化学研究,地球化學,第33卷,第3期,第243-253頁。
李寄嵎 (1994)澎湖地區玄武岩類與福建地區基性岩脈之定年學與地球化學研究兼論中生代晚期以來中國東南地函之演化,國立臺灣大學地質科學研究所博士論文,共226頁。
李寄嵎、蔡榮浩、何孝桓、楊燦堯、鍾孫霖、陳正宏 (1997)應用X光螢光分析儀從事岩石樣本之定量分析(I)主要元素,中國地質學會八十六年年會暨學術研討會論文摘要,第418-420頁。
林蔚 (1994)金門地區燕山晚期花崗岩類之地球化學及熱歷史研究,國立臺灣大學地質科學研究所碩士論文,共108頁。
林蔚 (2001)華南沿海地區晚燕山期侵入岩漿活動及大地構造意義,國立臺灣大學地質科學研究所博士論文,共237頁。
林蔚、李寄嵎、楊小青、陳正宏 (2011)五萬分之一台灣地質圖說明書-金門地區,中央地質調查所,共57頁。
莊文星、何恭算、張郇生 (1991)金門火成岩之鉀氬定年法初步探討,經濟部中央地質調查所特刊,第5號,第284頁。
陳炳權 (2017)造山運動期間地殼動力演化:以華南沿海金門島為例,國立台灣師範大學地球科學研究所碩士論文,共117頁。
陳培源 (1970)金門島及烈嶼地質說明書,經濟部金門地質礦產測勘隊工作報告,第7-19頁。
陳慶瀚與蔡龍珆 (1986)金門島地質調查,台灣地區地球物理研討會,第541-554頁。
董传万、张登荣、徐夕生、闫强、竺国强 (2006)福建晋江中-基性岩墙群的锆石SHRIMP U-Pb 定年和岩石地球化学,岩石学报,第22卷,第1696-1702頁。
董传万、周超、顾虹艳、马骁雄、吕青 (2011)福建湄州岛镁铁质岩墙群与寄主花岗岩的形成时差、地球化学及成因,吉林大学学报(地球科学版),第41卷,第3期,第735-744頁。
鄭遠昌 (2016)金門海岸的特殊地景,地景保育通訊第42期,第29-33頁。
賴昱銘 (2012)北呂宋島弧的火山與岩漿演化,國立臺灣大學地質科學研究所博士論文,共216頁。
英文部分:
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., (2000). Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, Vol. 102, P. 67-95.
Chappell, B.W. and White, A.J.R., (1992). I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, Vol. 83, P. 1-26.
Chappell, B.W. and White, A.J.R., (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, Vol. 48, P. 489-499.
Chen, C. H., Lin, W., Lu, H. Y., Lee, C. Y., Tien, J. L., and Lai, Y. H., (2000). Cretaceous fractionated I-type granitoids and metaluminous A-type granites in SE China: the Late Yanshanian post-orogenic magmatism. Transactions of the Royal Society of Edinburgh: Earth Sciences, Vol. 91(1-2), P.195-205.
Chen, C. H., Lee, C. Y., Lu, H. Y., and Hsieh, P. S. (2008). Generation of Late Cretaceous silicic rocks in SE China: Age, major element and numerical simulation constraints. Journal of Asian Earth Sciences, Vol. 31, P.479-498.
Chen, C. H., Lee, C. Y., and Shinjo, R., (2016). The epilog of the western paleo-Pacific subduction: Inferred from spatial and temporal variations and geochemistry of the Late Cretaceous to Early Cenozoic silicic magmatism in coastal South China. Journal of Asian Earth Sciences, Vol. 115, P.520-546.
Chen, C. H., Lee, C. Y., Tien, J. L., Xiang H., Walia M., and Lin J. W., (2020). Post-orogenic thermal reset of the Pingtan-Dongshan metamorphic belt (SE China): Insights from zircon fission track and U-Pb double dating. Journal of Asian Earth Sciences, Vol. 201, 13pp.
DePaolo, D. J., (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, Vol. 53(2), P.189-202.
Ewart, A., (1982). The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. Andesites: Orogenic Andesites and Related Rocks, Vol. 7, P.25-98.
François, C., Pubellier, M., Robert, C., Bulois, C., Jamaludin, S. N. F., Oberhänsli, R., Faure, M., Marc R. St-Onge., and the IGCP 667 Team., (2022). Temporal and spatial evolution of orogens: a guide for geological mapping. Episodes Journal of International Geoscience, Vol. 45(3), P.265-283.
Gao, S., Luo, T.C., Zhang, B.R., Zhang, H.F., Han, Y.W., Zhao, Z.D., and Hu, Y.K., (1998). Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, Vol.62(11), P.1959-1975.
Irvine T. N. and Baragar W. R. A., (1971). A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, Vol. 8(5), P.523-548.
Jahn, B. M., Zhou, X. H., and Li, J. L., (1990). Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints. Tectonophysics, Vol. 183, P.145-160.
Mao, J. W., Cheng, Y. B., Chen, M. H., and Pirajno, F., (2013). Major types and time–spacedistribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, Vol. 48, P.267-294.
Mathieu, L., Vries, B. V. W. De , Holohan E. P., and Troll V. R., (2008). Dykes, cups, saucers and sills: Analogue experiments on magma intrusion into brittle rocks. Earth and Planetary Science Letters, Vol. 271, P. 1-13.
Middlemost, E. A. K., (1994). Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, Vol. 37, P.215-224.
Lan, C. Y., Chung, S. L., Mertzman, S. A., and Chen, C. H., (1995). Mafic dikes from Chinmen and Liehyu islands, off Southeast China: petrochemical characteristics and tectonic implications. Journal of the geological society of China, Vol. 38(3), P.183-213.
Lan, C. Y., Chung, S. L., and Mertzman, S. A., (1997). Mineralogy and geochemistry of granitic rocks from Chinmen, Liehyu and Dadan Islands, Fujian. J. Geol. Soc. China Vol. 40, P.527-558.
Le Maitre, R. W. (2002). Igneous rocks a Classification and Glossary of Terms, Cambridge University Press, 236 pp.
Lei, Z. L., Zeng, G., Liu, J. Q., Wang, X. J., Chen, L. H., Zhang, X. Y., and Shi1, J. H., (2020). Melt-Lithosphere Interaction Controlled Compositional Variations in Mafic Dikes from Fujian Province, Southeastern China. Journal of Earth Science, online 2020. 9pp.
Li, X. H., and McCulloch, M. T., (1998). Geochemical Characteristics of Cretaceous Mafic Dikes from Northern Guangdong, SE China: Age, Origin and Tectonic Significance. Mantle Dynamics and Plate Interactions in East Asia, Vol. 27, P.405-419.
Li, Z. X., and Li, X. H., (2007). Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, Vol. 35, P.179–182
Lin, I. J., Chung, S. L., Chu, C. H., Lee, H. Y., Gallet, S., Wu, G. Y., Ji, J. Q., and Zhang, Y. Q., (2012). Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, Vol. 53, P131-150.
Mathieu, L., De Vries, B. V. W., Holohan, E. P., and Troll, V. R., (2008). Dykes, cups, saucers and sills: Analogue experiments on magma intrusion into brittle rocks. Earth and Planetary Science Letters, Vol. 271(1-4), P.1-13.
Pearce, J. A., and Norry, M. J., (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, Vol. 69, P.33-47.
Pearce, J. A., (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. Hawkesworth, C.J. and Norry, M.J., Eds., Continental Basalts and Mantle Xenoliths, Shiva Cheshire, UK, P.230-249.
Pitcher, W. S., (1997). The Nature and Origin of Granite. Springer Science & Business Media, 387pp.
Plank, T., (2014). The Chemical Composition of Subducting Sediments. Treatise on Geochemistry, Vol. 4, P.607-629.
Rollinson, H., and Pease, V., (2021). Using Geochemical Data To Understand Geological Processes 2nd edition. Cambridge University Press, 346pp.
Rudnick, R. L., (1995). Making continental crust. Nature, Vol.378, P. 573-578.
Salters, V. J. M. and Stracke, A., (2004). Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, Vol. 5(5), 27pp.
Sen, G., (2013). Petrology: Principles and practice. Springer Science & Business Media, 368pp.
Streckeisen, A., (1979). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: Recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, Vol. 7, P.331-335.
Sun, S. S., and McDonough, W. F., (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D., Norry, M. J. (eds.), Magmatism in ocean basins. Geological Society Special Publication, Vol, 42. P.313-345.
Tang, G. J., Chung, S. L., Wang, Q., Wyman D. A., Dan, W., Chen, H. Y., and Zhao, Z. H., (2014). Petrogenesis of a Late Carboniferous mafic dike-granitoid association in the western Tianshan: Response to the geodynamics of oceanic subduction. Lithos, Vol. 202-203, P.85-99.
Van der Plas, L., and Tobi, A. C., (1965). A chart for determining the reliability of point counting results, American Journal of Science, Vol. 263, P.87-90.
Verma, S. P., Guevara, M., and Agrawal, S., (2006). Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Science, Vol.115(5), P.485-528.
Verma S. P., and Verma S. K., (2013). First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, Vol. 22(6), P.931-995.
Wang, G. C., Jiang, Y. H., Liu, Z., Ni, C. Y., Qing, L., Zhang, Q., and Zhu, S. Q., (2016). Multiple origins for the Middle Jurassic to Early Cretaceous high-K calc-alkaline I-type granites in northwestern Fujian province, SE China and tectonic implications. Lithos, Vol. 246-247, P.197-211.
White, A. J. R., and Chappell, B. W., (1983). Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America, Vol. 159, P.21-34.
Wilson, J. T., (1966). Did the Atlantic close and thenre-open? Nature, Vol.211, P.676-681.
Winchester, J. A., and Floyd, P. A., (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, Vol. 20, P.325-343.
Woodhead, J. D., Hergt, J. M., Davidson, J. P., and Eggins, S. M., (2001). Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth and Planet Science Letters, Vol. 192, P.331-346.
Wong W. H., (1927). Crustal movements and igneous activities in Eastern China since Mesozoic time. Bulletin of the Geological Society of China, Vol.6, P.9-37.
Yang, J. B., Zhao, Z. D., Hou, Q. G., Niu, Y. L., Mo, X. X., Sheng, D., and Wang, L. L., (2018). Petrogenesis of Cretaceous (133–84 Ma) intermediate dykes and host granites in southeastern China: Implications for lithospheric extension, continental crustal growth, and geodynamics of Palaeo-Pacific subduction. Lithos, Vol. 296-299, P.195-211.
Yan, Q. H., Wang, H., Wu, Y. M., and Chi, G. X., (2021). Simultaneous development of arc-like and OIB-like mafic dikes in eastern Guangdong, SE China: Implications for late Jurassic - early Cretaceous tectonic setting and deep geodynamic processes of South China. Lithos, Vol. 388-389, 13pp.
Yui, T. F., Heaman, L. and Lan, C. Y., (1996). U-Pb and Sr isotopic studies on granitoids from Taiwan and Chinmen-Leiyu and their tectonic implications. Tectonophysics, Vol. 263, P.61-76.
Zhao, J. H., Hu, R. Z., and Liu, S., (2004). Geochemistry, Petrogenesis, and Tectonic Significance of Mesozoic Mafic Dikes, Fujian Province, Southeastern China. International Geology Review, Vol. 46(6), P.542-557.
Zhao, J. H., Hu, R. Z., Zhou, M. F., and Liu, S., (2007). Elemental and Sr–Nd–Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: implications for lithospheric mantle evolution. Geological Magazine, Vol. 144(6), P.937-952.
Zhou, X.M., and Li, W.X., (2000). Origin of late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, Vol. 326, P.269-287.
Zhou, X. M., Sun, T., Shen, W. Z., Shu, L. S., and Niu, Y. L., (2006). Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes Journal of International Geoscience, Vol. 29(1), P.26-33.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87194-
dc.description.abstract  金門及烈嶼島分布著許多位態以東北走向為主、傾角近乎垂直的未變形基性岩脈群侵入花崗岩中。前人研究認為這些基性岩脈是中生代晚期非造山張裂環境下最後一次的岩漿侵入事件。然而經由野外探勘觀察到這些基性岩脈有互相截切情形,走向及岩性也不盡相同,暗示其年代、母岩漿或岩漿演化可能有所差異。本研究以烈嶼東崗地區出露的基性岩脈群做為研究材料,藉由野外調查和岩象學等方法,以截切關係、位態、岩性、礦物組成和組織將這些基性岩脈進行分組,並以岩石地球化學之全岩主量和微量元素地球化學分析進一步探討其地質演化的意義。
  野外觀察發現岩脈位態分為東北與近南北走向,其中兩條岩脈有與圍岩混雜的現象。岩象分析結果顯示多數岩脈樣本具斑狀組織,礦物組成顯示岩性為安山岩、黑安山岩或石英閃長岩,基質礦物及斑晶礦物多為斜長石及角閃石,部分樣本含少量黑雲母、石英等礦物,礦物顆粒整體而言較細,依照截切關係、位態及岩象學分析結果將之分為具相對年代關係的五大期,其中兩個大期可再細分,一共八個小組。
  由全岩主量和微量元素的分析結果得知,大部分樣本落於玄武岩質安山岩的範圍中,屬於中鉀至高鉀鈣鹼性系列岩石,蛛網圖中有明顯的島弧岩漿特徵,且有相似的結晶分異趨勢,部分主量和微量元素呈現較凌亂的分布趨勢,暗示岩漿源區性質不同,源區可能較接近尖晶石二輝橄欖岩的部分熔融曲線,且部分熔融程度不同並有受到隱沒板塊帶來物質的影響。除了最老的分期之外,這些地球化學變化特徵與年代分期似乎沒有太大關聯。
  本區基性岩脈與華南沿海一帶的I型花崗岩和基性岩脈比較,顯示出相似的島弧地球化學特性,A型花崗岩相對較無島弧特徵,但三者均屬張裂環境。綜合上述結果及前人研究,認為花崗岩岩漿源區主要與地殼熔融有關,基性岩脈源區與受隱沒改造的岩石圈地函熔融有關,且源區成分不均質和部分熔融程度也有所變化。
zh_TW
dc.description.abstract  Many mainly NE in strike and near vertical in dip, intruded into granite, non metamorphic mafic dikes are distributed in Kinmen and Liehyu island. Previous studies suggested that these mafic dikes were the last magma intrusion event in the late Mesozoic anorogeny extension environment. However, field trip observation observed that these mafic dikes are cross cut each other, and have different orientations and lithology, suggesting that their age, parent magma is different or undergone different evolution. In this study, we use mafic dikes in Dongang, Liehyu as the study materials, and group these mafic dikes by cross cutting relationship, orientation, mineral composition and rock texture, and further discuss their geological significance by whole-rock major and trace element geochemical analysis data.
  These dikes orientation divide into NE or near NS trend, two of the dikes are mingling with the host rocks. Petrographic analysis shows that most dike samples are porphyritic, the lithology is andesite, mela-andesite or quartz-diorite. The samples are generally fine grained, groundmass and phenocryst are mainly compose by plagioclase and hornblende, some samples contain a small amount of biotite or quartz etc. According to cross cutting relationships, orientations and petrographic analysis, these mafic dikes are divided into five major stages with relative chronological relationships, two stage can be further subdivided, eight groups in total.
  The results of whole-rock major and trace element analyses show that most of the samples fall in the area of basaltic andesite, belong to the medium to high potassium calc-alkaline series. All samples reveals arc-like characteristic in spider diagram, and similar fractional crystallization trend. However, some of the major and trace elements show a more scattered distribution, suggesting that the magma source characteristic is different. Magma source closer to the partial melting curve of the spinel lherzolite, have varying partial melting degree, and also influenced by subduction materials. Except earliest stage dikes, these geochemistry variation do not appear to correlate with relative age staging.
  These mafic dikes show similar arc-like geochemical characteristics compared with the I type granite and mafic dikes along the coast of Southeast China, the A-type granite no apparent arc-like characteristics, but all are in extension environment. The magma source of granite is mainly related to crustal melting, and the magma source area of mafic dikes is related to partial melting of lithospheric mantle modify by subduction materials, the composition of the source magma area is not homogeneous and the degree of partial melting also have variation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:17:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T16:17:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
一、緒論 1
1.1 研究動機 1
1.2 前人研究 5
二、地質背景 6
三、研究方法 10
3.1 野外調查 10
3.2 岩象學 10
3.3 岩脈分組 11
3.4 全岩地球化學分析 11
四、研究結果 13
4.1 岩脈野外產狀及岩象學觀察結果 13
4.1.1 野外調查結果簡述 13
4.1.2 岩象學觀察結果簡述 20
4.1.3 岩脈野外產狀及岩象總結 24
4.2 岩脈分組過程及結果 31
4.3 全岩主量元素分析結果 44
4.4 全岩微量、稀土元素分析結果 51
五、討論 58
5.1 基性岩脈的結晶分異、地殼混染 58
5.2 基性岩脈的岩漿源區及部分熔融 62
5.3 基性岩脈侵入時的地體構造環境 67
5.4 東崗基性岩脈與金門地區花崗岩的比較 71
5.5 東崗基性岩脈與華南沿海一帶基性岩脈的比較 73
六、結論 75
七、參考文獻 76
-
dc.language.isozh_TW-
dc.subject岩象學zh_TW
dc.subject烈嶼zh_TW
dc.subject基性岩脈zh_TW
dc.subject造山運動zh_TW
dc.subject地球化學zh_TW
dc.subjectorogenyen
dc.subjectmafic dikeen
dc.subjectgeochemistryen
dc.subjectLiehyuen
dc.subjectpetrographyen
dc.title烈嶼東崗地區基性岩脈群之活動與地球化學研究zh_TW
dc.titleActivities and Geochemistry Researches of Mafic Dike Swarms in Dongang, Liehyuen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉恩肇;賴昱銘;林蔚zh_TW
dc.contributor.oralexamcommitteeEn-Chao Yeh;Yu-Ming Lai;Wayne Linen
dc.subject.keyword烈嶼,基性岩脈,造山運動,岩象學,地球化學,zh_TW
dc.subject.keywordLiehyu,mafic dike,orogeny,petrography,geochemistry,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202300544-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-16-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf11.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved