請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87181完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡宛珊 | zh_TW |
| dc.contributor.advisor | Christina W. Tsai | en |
| dc.contributor.author | 洪毓茹 | zh_TW |
| dc.contributor.author | Yu-Ju Hung | en |
| dc.date.accessioned | 2023-05-18T16:13:19Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-10 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2023-02-14 | - |
| dc.identifier.citation | Absi, R. (2019). Eddy viscosity and velocity profiles in fully-developed turbulent channel flows. Fluid Dynamics, 54(1):137–147.
Absi, R. (2021). Analytical eddy viscosity model for velocity profiles in the outer part of closed- and open-channel flows. Fluid Dynamics, 56(4):577–586. Absi, R., Marchandon, S., and Lavarde, M. (2011). Turbulent diffusion of suspended particles: analysis of the turbulent Schmidt number. In Defect and diffusion forum, volume 312, pages 794–799. Trans Tech Publ. Agrawal, R., Ng, H. C.-H., Davis, E. A., Park, J. S., Graham, M. D., Dennis, D. J. C., and Poole, R. J. (2020). Low-and high-drag intermittencies in turbulent channel flows. Entropy, 22(10):1126. Ancey, C. and Pascal, I. (2020). Estimating mean bedload transport rates and their uncertainty. Argall, R., Sanders, B. F., and Poon, Y.-K. (2004). Random-walk suspended sediment transport and settling model. In Estuarine and Coastal Modeling (2003), pages 713– 730. Bagherimiyab, F. and Lemmin, U. (2018). Large-scale coherent flow structures in rough-bed open-channel flow observed in fluctuations of three-dimensional velocity, skin friction and bed pressure. Journal of Hydraulic Research, 56(6):806–824. Biagini, F., Hu, Y., Øksendal, B., and Zhang, T. (2008). Stochastic calculus for fractional Brownian motion and applications. Springer Science & Business Media. Borgas, M. S. and Sawford, B. L. (1994). A family of stochastic models for two-particle dispersion in isotropic homogeneous stationary turbulence. Journal of fluid mechanics, 279:69–99. Bose, S. K. and Dey, S. (2010). Universal probability distributions of turbulence in open channel flows. Journal of Hydraulic Research, 48(3):388–394. Bose, S. K. and Dey, S. (2013). Sediment entrainment probability and threshold of sediment suspension: exponential-based approach. Journal of Hydraulic Engineering, 139(10):1099–1106. Boussinesq, J. (1877). Essai sur la théorie des eaux courantes, volume 2. Imprimerie nationale. Brandt, L. and De Lange, H. C. (2008). Streak interactions and breakdown in boundary layer flows. Physics of fluids, 20(2):24107. Cellino, M. and Lemmin, U. (2004). Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow. Journal of Hydraulic Engineering, 130(11):1077–1088. Chen, X., Iwano, K., Sakai, Y., and Ito, Y. (2021). Effect of large-scale structures on bursting phenomenon in turbulent boundary layer. International Journal of Heat and Fluid Flow, 89:108811. Cheng, N.-S. and Chiew, Y.-M. (1998). Modified logarithmic law for velocity distribution subjected to upward seepage. Journal of Hydraulic Engineering, 124(12):1235–1241. Chien, N. and Wan, Z. (1999). Mechanics of sediment transport. Coleman, N. L. (1986). Effects of suspended sediment on the open-channel velocity distribution. Water Resources Research, 22(10):1377–1384. Coles, D. (1956). The law of the wake in the turbulent boundary layer. Journal of Fluid Mechanics, 1(2):191–226. Davidson, L. (2015). Fluid mechanics, turbulent flow and turbulence modeling. Delignières, D. (2015). Correlation Properties of (Discrete) Fractional Gaussian Noise and Fractional Brownian Motion. Mathematical Problems in Engineering, 2015:485623. Dennis, D. J. C. (2015). Coherent structures in wall-bounded turbulence. Anais da Academia Brasileira de Ciências, 87:1161–1193. Dey, S. (2014). Turbulence in open-channel flows BT - fluvial hydrodynamics: hydrodynamic and sediment transport phenomena. pages 95–187. Springer Berlin Heidelberg, Berlin, Heidelberg. Dimou, K. N. and Adams, E. E. (1993). A random-walk, particle tracking model for wellmixed estuaries and coastal waters. Estuarine, Coastal and Shelf Science, 37(1):99–110. Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows, volume 1026. Citeseer. Einstein, H. A. and El-Samni, E.-S. A. (1949). Hydrodynamic forces on a rough wall. Reviews of Modern Physics, 21(3):520–524. Elder, J. W. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of fluid mechanics, 5(04):544–560. Elhakeem, M., Papanicolaou, A. N. T., and Tsakiris, A. G. (2017). A probabilistic model for sediment entrainment: The role of bed irregularity. International Journal of Sediment Research, 32(2):137–148. Fischer, H. B. (1966). Longitudinal dispersion in laboratory and natural streams. California Institute of Technology. Flandrin, P. (1992). Wavelet analysis and synthesis of fractional Brownian motion. IEEE Transactions on information theory, 38(2):910–917. Follett, E., Chamecki, M., and Nepf, H. (2016). Evaluation of a random displacement model for predicting particle escape from canopies using a simple eddy diffusivity model. Agricultural and Forest Meteorology, 224:40–48. Furbish, D. J., Fathel, S. L., Schmeeckle, M. W., Jerolmack, D. J., and Schumer, R. (2017). The elements and richness of particle diffusion during sediment transport at small timescales. Earth Surface Processes and Landforms, 42(1):214–237. Gardiner, C. W. and others (1985). Handbook of stochastic methods, volume 3. springer Berlin. Heemink, A. W. (1990). Stochastic modelling of dispersion in shallow water. Stochastic Hydrology and hydraulics, 4(2):161–174. Hu, Y., Liu, Y., and Nualart, D. (2016). Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions. 26(2). Hurst, H. E. (1957). A suggested statistical model of some time series which occur in nature. Nature, 180(4584):494. Israelsson, P. H., Kim, Y. D., and Adams, E. E. (2006). A comparison of three Lagrangian approaches for extending near field mixing calculations. Environmental Modelling & Software, 21(12):1631–1649. Jackson, R. G. (1976). Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows. Journal of Fluid Mechanics, 77(3):531– 560. Jiménez, J. (2018). Coherent structures in wall-bounded turbulence. Journal of Fluid Mechanics, 842. Kaftori, D., Hetsroni, G., and Banerjee, S. (1995a). Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Physics of Fluids, 7(5):1095– 1106. Kaftori, D., Hetsroni, G., and Banerjee, S. (1995b). Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Physics of Fluids, 7(5):1107– 1121. Keylock, C. J., Lane, S. N., and Richards, K. S. (2014). Quadrant/octant sequencing and the role of coherent structures in bed load sediment entrainment. Journal of Geophysical Research: Earth Surface, 119(2):264–286. Klebaner, F. C. (2012). Introduction to stochastic calculus with applications. World Scientific Publishing Company. Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W. (1967). The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30(4):741–773. Lee, J., Lee, J. H., Choi, J.-I., and Sung, H. J. (2014). Spatial organization of large- and very-large-scale motions in a turbulent channel flow. Journal of Fluid Mechanics, 749:818–840. Liu, W.-J. (2021). Incorporating backward forward stochastic particle tracking model into the EFDC model for probable sedimentation source identification in typhoon event. Technical Report 2021, National Taiwan University. Liu, Y. and Tindel, S. (2019). First-order Euler scheme for SDEs driven by fractional Brownian motions: The rough case. The Annals of Applied Probability, 29(2):758– 826. Lu, S. S. and Willmarth, W. W. (1973). Measurements of the structure of the Reynolds stress in a turbulent boundary layer. Journal of Fluid Mechanics, 60(3):481–511. Man, C. and Tsai, C. W. (2007). Stochastic partial differential equation-based model for suspended sediment transport in surface water flows. Journal of engineering mechanics, 133(4):422–430. Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM review, 10(4):422–437. Mandelbrot, B. B. and Wallis, J. R. (1969). Some long-run properties of geophysical records. Water resources research, 5(2):321–340. Martin, R. L., Jerolmack, D. J., and Schumer, R. (2012). The physical basis for anomalous diffusion in bed load transport. Journal of Geophysical Research: Earth Surface, 117(F1). Mathieu, A., Chauchat, J., Bonamy, C., Balarac, G., and Hsu, T.-J. (2021). A finite-size correction model for two-fluid large-eddy simulation of particle-laden boundary layer flow. Journal of Fluid Mechanics, 913. McKeon, B. J. (2017). The engine behind (wall) turbulence: perspectives on scale interactions. Journal of Fluid Mechanics, 817:P1. Metzler, R. and Klafter, J. (2004). The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General, 37(31):R161. Muste, M., Yu, K., Fujita, I., and Ettema, R. (2005). Two-phase versus mixed-flow perspective on suspended sediment transport in turbulent channel flows. Water Resources Research, 41(10). Muste, M., Yu, K., Fujita, I., and Ettema, R. (2009). Two-phase flow insights into openchannel flows with suspended particles of different densities. Environmental fluid mechanics, 9(2):161–186. Nakagawa, H. and Nezu, I. (1981). Structure of space-time correlations of bursting phenomena in an open-channel flow. Journal of Fluid Mechanics, 104:1–43. Nezu, I. (1993). Turbulence in open-channel flows. IAHR-monograph. Nikora, V., Habersack, H., Huber, T., and McEwan, I. (2002). On bed particle diffusion in gravel bed flows under weak bed load transport. Water Resources Research, 38(6):11– 17. Nikuradse, J. (1932). Gesetzmassigkeiten der turbulenten Stromung in glatten Rohren. Ver Deutsch. Ing. Forschungsheft, 356. Ninto, Y. and Garcia, M. H. (1996). Experiments on particle—turbulence interactions in the near–wall region of an open channel flow: Implications for sediment transport. 326:285–319. Noguchi, K. and Nezu, I. (2009). Particle-turbulence interaction and local particle concentration in sediment-laden open-channel flows. Journal of Hydro-environment Research, 3(2):54–68. Oh, J. and Tsai, C. W. (2010). A stochastic jump diffusion particle‐tracking model (SJD‐ PTM) for sediment transport in open channel flows. Water Resources Research, 46(10). Oksendal, B. (2013). Stochastic differential equations: an introduction with applications. Springer Science & Business Media. Ölçmen, S. M., Simpson, R. L., and Newby, J. W. (2006). Octant analysis based structural relations for three-dimensional turbulent boundary layers. Physics of Fluids, 18(2):025106. Pierce, J. K. and Hassan, M. A. (2020). Back to Einstein: Burial-induced threerange diffusion in fluvial sediment transport. Geophysical Research Letters, 47(15):e2020GL087440. Pipiras, V. and Taqqu, M. S. (2017). Long-range dependence and self-similarity, volume 45 of Cambridge Series in Statistical and Probabilistic Mathematics. Prandtl, L. (1925). Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 5(2):136–139. Pusey, P. N. (2011). Brownian motion goes ballistic. Science, 332(6031):802–803. Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London. (A.), 186:123–164. Risken, H. (1989). The Fokker-Planck equation. Methods of solution and applications. Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23(1):601–639. Salim, S. and Pattiaratchi, C. (2020). Sediment resuspension due to near-bed turbulent coherent structures in the nearshore. Continental Shelf Research, 194:104048. Salim, S., Pattiaratchi, C., Tinoco, R., Coco, G., Hetzel, Y., Wijeratne, S., and Jayaratne, R. (2017). The influence of turbulent bursting on sediment resuspension under unidirectional currents. Earth Surface Dynamics, 5(3):399–415. Shin, J., Seo, J. Y., and Seo, I. W. (2020). Longitudinal dispersion coefficient for mixing in open channel flows with submerged vegetation. Ecological Engineering, 145:105721. Smith, C. R. and Metzler, S. P. (1983). The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. Journal of Fluid Mechanics, 129:27– 54. Smith C (1996). Coherent flow structures in smooth-wall turbulent boundary layers: Facts, mechanisms and speculation. Coherent Flow Structures in Open Channels, page 1. Subhasish, D., Zeeshan, A. S., and Ellora, P. (2020). Hydrodynamic lift on sediment particles at entrainment: Present status and its prospect. Journal of Hydraulic Engineering, 146(6):3120001. Thomson, D. J. (1987). Criteria for the selection of stochastic models of particle trajectories in turbulent flows. Journal of Fluid Mechanics, 180:529–556. Tsai, C. W. and Huang, S. (2019). Modeling suspended sediment transport under influence of turbulence ejection and sweep events. Water Resources Research, 55(7):5379–5393. Tsai, C. W., Huang, S.-H., and Hung, S. Y. (2021). Incorporating the memory effect of turbulence structures into suspended sediment transport modeling. Water Resources Research, 57(3):e2020WR028475. Tsai, C. W., Hung, S. Y., and Oh, J. (2018). A stochastic framework for modeling random-sized batch arrivals of sediment particles into open channel flows. Stochastic Environmental Research and Risk Assessment, 32(7):1939–1954. Tsai, C. W., Hung, S. Y., and Wu, T.-H. (2020). Stochastic sediment transport: anomalous diffusions and random movement. Stochastic Environmental Research and Risk Assessment, 34(2):397–413. Volino, R. J. and Simon, T. W. (1994). An application of octant analysis to turbulent and transitional flow data. Wu, F.-C. and Chou, Y.-J. (2003). Rolling and lifting probabilities for sediment entrainment. Journal of Hydraulic Engineering, 129(2):110–119. Wu, F.-C. and Lin, Y.-C. (2002). Pickup probability of sediment under log-normal velocity distribution. Journal of Hydraulic Engineering, 128(4):438–442. Yeragani, V. K., Pohl, R., Berger, R., Balon, R., Ramesh, C., Glitz, D., Srinivasan, K., and Weinberg, P. (1993). Decreased heart rate variability in panic disorder patients: A study of power-spectral analysis of heart rate. Psychiatry Research, 46(1):89–103. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87181 | - |
| dc.description.abstract | 工程實務上,懸浮泥砂的濃度為水質和水庫管理的重要因子。汙染物會附著於懸浮泥砂上,藉由紊流的擴散機制造成汙染的傳播,而懸浮泥砂本身亦會對水質造成影響,其沉降後對水庫造成的淤積也是一大工程問題。若對懸浮泥砂顆粒的運動機制有更深入的探討,便能更準確地估計懸浮泥砂濃度,並且藉由了解泥砂顆粒的運動軌跡,便能對潛在的汙染區域提前進行預防及整治。在科學理論中,泥砂受水流作用發生運動,泥砂運動又會影響水流性質,兩者相互影響,運動機制複雜。在過往研究中,懸浮泥砂顆粒一般使用平流擴散方程(advection-diffusion equation, ADE)或泥砂率定曲線(sediment rating curves)來做定率的懸浮泥砂濃度估計。然而,由於紊流的不穩定,水流中的泥砂不僅僅會順著水流方向運動,也會在水體中進行隨機的擴散。本研究利用序率隨機模擬,更深入地以機率方法描述泥砂顆粒在明渠流中,受到紊流影響的運動行為,並以科學方法量化泥砂濃度和其運輸率的變化及不確定性。本研究考量不同尺度紊流結構對懸浮泥砂運動所造成的影響,提出一序率模型: 非整數布朗運動驅動之隨機擴散粒子追蹤模型(fractional stochastic differential diffusion particle tracking model, FSD-PTM),此模型旨在模擬明渠流中懸浮泥砂顆粒的隨機運動軌跡,並利用蒙地卡羅方法計算紊流中懸浮泥砂的濃度與輸砂率。此模型為一進階的隨機拉格朗日模型(Lagrangian model),可以描述底床邊界附近,受到在時間上具有持續性之紊流擬序結構(time-persistent turbulent coherent structures)的影響,懸浮泥砂粒子所反映出的隨機運動行為。本研究利用實驗數據與模型模擬結果(系統平均速度和泥砂濃度等)進行模型驗證。模擬結果除一般定率模型能模擬之懸浮泥砂濃度和輸砂率外,還可量化濃度與輸砂率的變化率及其相對應之不確定性。在水質泥砂濃度標準已知的情況下,方能提供時間和空間上所對應的超越機率值,即為水質汙染風險機率,應用於風險管理範疇中評估風險容忍度與制定應對政策時,可提供決策者有效的風險評估依據。 | zh_TW |
| dc.description.abstract | The study focuses on the Lagrangian particle tracking of suspended sediment particles whose motions are strongly coupled with surrounding turbulent flows. The diffusion of suspended particles is often linked to turbulence diffusion theories. The high irregularity and protean properties of turbulence generally lead to the usage of Brownian diffusion. It implies that the spreading of suspended sediment particles is normally distributed and embeds independent properties in particle motions. However, the non-Gaussian phenomenon in sediment movements has been observed and recognized during the last decades. The sediment-laden flow experiments have suggested that coherent structures in turbulent shear flow strongly impact particles' suspension near the boundary. This study proposes an advanced Lagrangian particle tracking model, whose driven fluctuation process is the fractional Brownian motion (FBM). By introducing the fractional stochastic process to the PTM, the correlated increments aim to describe anomalous suspended sediment particles' movements resulting from intermittent and time-persistent coherent turbulent structures near the boundary. The proposed model is applied to simulate suspended sediment transport in two-dimensional open channel flow. Via Monte Carlo simulation, the ensemble statistics results are presented, including mean, variance, skewness of particle positions, and particle velocity fluctuations. The anisotropic sediment behaviors can be found in the probability density function (PDF) of particle velocity fluctuations at different water depths. Simulation results show improvements in the streamwise particle velocity profiles and in predicting sediment concentrations near the boundary. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:13:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T16:13:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Anomalous diffusion in suspended sediment transport . . . . . . . . 1 1.2 Research aim and research objectives . . . . . . . . . . . . . . . . . 4 1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Overview of the physical processes in suspended sediment transport in open channel turbulent flows 9 2.1 Turbulence in open-channel flow . . . . . . . . . . . . . . . . . . . 9 2.1.1 Reynold’s decomposition and RANS equation . . . . . . . . . 10 2.1.2 Flow field in open-channel flows . . . . . . . . . . . . . . . 15 2.2 Coherent structures in turbulent shear flow . . . . . . . . . . . . . . 23 2.2.1 Formation of coherent structures . . . . . . . . . . . . . . . . 24 2.2.2 Quadrant analysis . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Lagrangian Particle tracking models . . . . . . . . . . . . . . . . . . 29 2.3.1 Stochastic diffusion particle tracking model (SD-PTM) . . . . 30 2.3.2 Analysis of particle diffusive behaviors . . . . . . . . . . . . 34 Chapter 3 Fractional stochastic diffusion particle tracking model (FSD-PTM) 37 3.1 Anomaly in suspended sediment transport . . . . . . . . . . . . . . . 37 3.1.1 Fractional Brownian motion . . . . . . . . . . . . . . . . . . 39 3.1.2 Memory in correlated increments . . . . . . . . . . . . . . . 41 3.2 Conceptual model of the research . . . . . . . . . . . . . . . . . . . 43 3.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Fractional stochastic diffusion particle tracking model (FSD-PTM) . 46 3.3.1 Governing equation of the FSD-PTM . . . . . . . . . . . . . 47 3.3.2 Determination of the coefficients of drift and random terms . 51 3.3.3 Numerical scheme for FSD-PTM . . . . . . . . . . . . . . . 53 Chapter 4 Fractional suspended sediment transport in open channel flows 55 4.1 Application to suspended sediment transport in fully-developed open-channel flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 Flow conditions and sediment particle characteristics . . . . . 58 4.1.2 Particle diffusion coefficient . . . . . . . . . . . . . . . . . . 61 4.1.3 Occurrence of coherent structures . . . . . . . . . . . . . . . 64 4.2 Simulation results and discussions . . . . . . . . . . . . . . . . . . . 66 4.2.1 Ensemble statistics of particle positions . . . . . . . . . . . . 67 4.2.2 Anomalous particle diffusion . . . . . . . . . . . . . . . . . . 68 4.2.3 Model validation: sediment concentration . . . . . . . . . . . 73 4.2.4 Model validation: streamwise particle velocity profile . . . . 76 4.2.5 Distributions of particle velocity fluctuations . . . . . . . . . 78 Chapter 5 Interpretation of Hurst parameter value 81 5.1 Estimation of Hurst value . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Application to suspended sediment transport in a geophysical-scaled flow event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.1 Simulation assumptions . . . . . . . . . . . . . . . . . . . . 87 5.2.2 Simulation results and discussions . . . . . . . . . . . . . . . 92 5.2.3 Summaries of the application . . . . . . . . . . . . . . . . . . 97 Chapter 6 Conclusions 99 6.1 Advantages and limitations of the proposed FSD-PTM . . . . . . . . 100 Appendix A — Definition 103 A.1 Markovian property: Memorylessness . . . . . . . . . . . . . . . . . 103 A.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Appendix B — Stochastic process 105 B.1 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 B.2 Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 B.3 Fractional Brownian motion process (FBM) . . . . . . . . . . . . . . 109 B.4 Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Appendix C — Stochastic differential equation (SDE) 115 C.1 SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 C.1.1 Ito-Stratonovich dilemma . . . . . . . . . . . . . . . . . . . 116 C.1.2 Ito-Stratonovich drift correction formula . . . . . . . . . . . . 118 Appendix D — SDE simulation 119 D.1 Convergence of numerical scheme . . . . . . . . . . . . . . . . . . . 119 D.2 Common numerical scheme . . . . . . . . . . . . . . . . . . . . . . 120 D.2.1 Euler-Maruyama scheme . . . . . . . . . . . . . . . . . . . . 120 D.2.2 Euler-Heun scheme . . . . . . . . . . . . . . . . . . . . . . . 121 D.2.3 Milstein scheme . . . . . . . . . . . . . . . . . . . . . . . . 121 Notation. . . . . . . . 123 Abbreviation. . . . . . . . 129 References. . . . . . . . 131 | - |
| dc.language.iso | en | - |
| dc.subject | 紊流擬序結構 | zh_TW |
| dc.subject | 隨機泥砂傳輸模型 | zh_TW |
| dc.subject | 隨機擴散粒子追蹤模型 | zh_TW |
| dc.subject | 非整數布朗運動 | zh_TW |
| dc.subject | fractional Brownian motion | en |
| dc.subject | turbulent coherent structure | en |
| dc.subject | particle tracking model | en |
| dc.subject | stochastic suspended sediment transport | en |
| dc.subject | anomalous transport by fractional process | en |
| dc.title | 非整數動力學之下的隨機泥砂傳輸 | zh_TW |
| dc.title | Stochastic Suspended Sediment Transport by Fractional Dynamics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | Rafik Absi;謝平城;周逸儒;余化龍;游景雲;何昊哲 | zh_TW |
| dc.contributor.oralexamcommittee | Rafik Absi;Ping-Cheng Hsieh;Yi-Ju Chou;Hwa-Lung Yu;Gene Jiing-Yun You;Hao-Che Ho | en |
| dc.subject.keyword | 隨機泥砂傳輸模型,隨機擴散粒子追蹤模型,非整數布朗運動,紊流擬序結構, | zh_TW |
| dc.subject.keyword | particle tracking model,turbulent coherent structure,stochastic suspended sediment transport,anomalous transport by fractional process,fractional Brownian motion, | en |
| dc.relation.page | 141 | - |
| dc.identifier.doi | 10.6342/NTU202300192 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-02-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 6.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
