Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87154
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻zh_TW
dc.contributor.advisorChih-Hung Chenen
dc.contributor.author何睿鈞zh_TW
dc.contributor.authorJui-Chun Hoen
dc.date.accessioned2023-05-18T07:24:20Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-10-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citationGregory V Samsonov. Handbook of the Physicochemical Properties of the Elements. Springer Science & Business Media, 2012.
Petr Vanysek. Electrochemical series. CRC Handbook of Chemistry and Physics, 8, 2000.
M Stanley Whittingham. Electrical energy storage and intercalation chemistry. Science, 192(4244):1126–1127, 1976.
J Broadhead and A D Butherus. Rechargeable nonaqueous battery. US Patent 3791867. 2 1974.
J Broadhead, F J Di Salvo, Jr, and F A Trumbore. Nonaqueous battery using chalcogenide electrode. US Patent 3864167. 2 1975.
Akira Yoshino. The birth of the lithium-ion battery. Angewandte Chemie International Edition, 51(24):5798–5800, 2012.
Wenzhuo Cao, Jienan Zhang, and Hong Li. Batteries with high theoretical energy densities. Energy Storage Materials, 26:46–55, 2020.
Wu Xu, Jiulin Wang, Fei Ding, Xilin Chen, Eduard Nasybulin, Yaohui Zhang, and Ji-Guang Zhang. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 7(2):513–537, 2014.
J-M Tarascon and Michel Armand. Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861):359–367, 2001.
Doron Aurbach, Ella Zinigrad, Yaron Cohen, and Hanan Teller. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 148(34):405–416, 2002.
Martin Winter. The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Zeitschrift für Physikalische Chemie, 223(1011):1395–1406, 2009.
Yuzhang Li, William Huang, Yanbin Li, Allen Pei, David Thomas Boyle, and Yi Cui. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule, 2(10):2167–2177, 2018.
Xue-Qiang Zhang, Xiang Chen, Xin-Bing Cheng, Bo-Quan Li, Xin Shen, Chong Yan, Jia-Qi Huang, and Qiang Zhang. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angewandte Chemie International Edition, 57(19):5301–5305, 2018.
Xiulin Fan, Long Chen, Xiao Ji, Tao Deng, Singyuk Hou, Ji Chen, Jing Zheng, Fei Wang, Jianjun Jiang, Kang Xu, and Chunsheng Wang. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem, 4(1):174-185, 2018.
Ziqi Zeng, Vijayakumar Murugesan, Kee Sung Han, Xiaoyu Jiang, Yuliang Cao, Lifen Xiao, Xinping Ai, Hanxi Yang, Ji-Guang Zhang, Maria L Sushko, and Jun Liu. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 3(8):674–681, 2018.
Ryoji Kanno and Masahiro Murayama. Lithium ionic conductor thio-LISICON: the Li2S GeS2 P2S5 system. Journal of The Electrochemical Society, 148(7):A742, 2001.
Juchuan Li, Cheng Ma, Miaofang Chi, Chengdu Liang, and Nancy J Dudney. Solid electrolyte: the key for high-voltage lithium batteries. Advanced Energy Materials, 5(4):1401408, 2015.
Jialiang Lang, Yuanzheng Long, Jiale Qu, Xinyi Luo, Hehe Wei, Kai Huang, Haitian Zhang, Longhao Qi, Qianfan Zhang, Zhengcao Li, and Hui Wu. One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Materials, 16:85–90, 2019.
Dusan Strmcnik, Ivano E Castelli, Justin G Connell, Dominik Haering, Milena Zorko, Pedro Martins, Pietro P Lopes, Bostjan Genorio, Thomas Østergaard, Hubert A Gasteiger, Filippo Maglia, Byron K Antonopoulos, Vojislav R Stamenkovic, Jan Rossmeisl, and Nenad M Markovic. Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. Nature Catalysis, 1(4):255–262, 2018.
Jie Zhao, Lei Liao, Feifei Shi, Ting Lei, Guangxu Chen, Allen Pei, Jie Sun, Kai Yan, Guangmin Zhou, Jin Xie, Chong Liu, Yuzhang Li, Zheng Liang, Zhenan Bao, and Yi Cui. Surface fluorination of reactive battery anode materials for enhanced stability. Journal of the American Chemical Society, 139(33):11550–11558, 2017.
Zhiao Yu, Yi Cui, and Zhenan Bao. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Reports Physical Science, 1(7):100119, 2020.
Rui Xu, Xin-Bing Cheng, Chong Yan, Xue-Qiang Zhang, Ye Xiao, Chen-Zi Zhao, Jia-Qi Huang, and Qiang Zhang. Artificial interphases for highly stable lithium metal anode. Matter, 1(2):317–344, 2019.
Charles Monroe and John Newman. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of The Electrochemical Society, 152(2):A396, 2005.
Mukul D Tikekar, Snehashis Choudhury, Zhengyuan Tu, and Lynden A Archer. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 1(9):1–7, 2016.
Lewis S Combes, Stanley S Ballard, and Kathryn A McCarthy. Mechanical and thermal properties of certain optical crystalline materials. Journal of the Optical Society of America, 41(4):215–222, 1951.
Jie Pan, Yang-Tse Cheng, and Yue Qi. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Physical Review B, 91(13):134116, 2015.
Jennifer Jones, Mérièm Anouti, Magaly Caillon-Caravanier, Patrick Willmann, and Daniel Lemordant. Thermodynamic of LiF dissolution in alkylcarbonates and some of their mixtures with water. Fluid Phase Equilibria, 285(12):62–68, 2009.
Zhe Peng, Ning Zhao, Zhenggang Zhang, Hao Wan, Huan Lin, Meng Liu, Cai Shen, Haiyong He, Xiangxin Guo, Ji-Guang Zhang, and Deyu Wang. Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy, 39:662–672, 2017.
Rui Xu, Xue-Qiang Zhang, Xin-Bing Cheng, Hong-Jie Peng, Chen-Zi Zhao, Chong Yan, and Jia-Qi Huang. Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Advanced Functional Materials, 28(8):1705838, 2018.
Lin Chen, Kan-Sheng Chen, Xinjie Chen, Giovanni Ramirez, Zhennan Huang, Natalie R Geise, Hans-Georg Steinrück, Brandon L Fisher, Reza Shahbazian-Yassar, Michael F Toney, Mark C Hersam, and Jeffrey W Elam. Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes. ACS Applied Materials & Interfaces, 10(32):26972–26981, 2018.
Dingchang Lin, Yayuan Liu, Wei Chen, Guangmin Zhou, Kai Liu, Bruce Dunn, and Yi Cui. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Letters, 17(6):3731–3737, 2017.
Tamar Schlick. Molecular modeling: an interdisciplinary guide. 2010.
Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1):1–19, 1995.
Alexander Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012, 2009.
Adri CT Van Duin, Siddharth Dasgupta, Francois Lorant, and William A Goddard. ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409, 2001.
Md Mahbubul Islam, Vyacheslav S Bryantsev, and Adri CT Van Duin. ReaxFF reactive force field simulations on the influence of teflon on electrolyte decomposition during Li/SWCNT anode discharge in lithium-sulfur batteries. Journal of The Electrochemical Society, 161(8):E3009, 2014.
Leandro Martínez, Ricardo Andrade, Ernesto G Birgin, and José Mario Martínez. PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13):2157–2164, 2009.
Vinodkumar Etacheri, Ortal Haik, Yossi Goffer, Gregory A Roberts, Ionel C Stefan, Rainier Fasching, and Doron Aurbach. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir, 28(1):965–976, 2012.
Zhixin Xu, Jiulin Wang, Jun Yang, Xiaowei Miao, Renjie Chen, Ji Qian, and Rong-rong Miao. Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte. Angewandte Chemie International Edition, 55(35):10372–10375, 2016.
Michael S Ding, Kang Xu, and T Richard Jow. Liquid-Solid Phase Diagrams of Binary Carbonates for Lithium Batteries. Journal of The Electrochemical Society, 147(5):1688, 2000.
Noritoshi Nanbu, Keita Suzuki, Nobuyoshi Yagi, Michimasa Sugahara, Masahiro Takehara, Makoto Ue, and Yukio Sasaki. Use of fluoroethylene carbonate as solvent for electric double-layer capacitors. Electrochemistry, 75(8):607–610, 2007.
Alexandre Ponrouch, Elena Marchante, Matthieu Courty, Jean-Marie Tarascon, and M Rosa Palacin. In search of an optimized electrolyte for Na-ion batteries. Energy & Environmental Science, 5(9):8572–8583, 2012.
Gerhard H Wrodnigg, Jürgen O Besenhard, and Martin Winter. Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes? Journal of Power Sources, 97:592–594, 2001.
Keisuke Ushirogata, Keitaro Sodeyama, Zdenek Futera, Yoshitaka Tateyama, and Yukihiro Okuno. Near-shore aggregation mechanism of electrolyte decomposition products to explain solid electrolyte interphase formation. Journal of The Electrochemical Society, 162(14):A2670, 2015.
Longwei Mei, Xiangzhou Cai, Dazhen Jiang, Jingen Chen, Wei Guo, and Wengang Xiong. Investigation of thermal neutron scattering data for BeF2 and LiF crystals. Journal of Nuclear Science and Technology, 50(4):419–424, 2013.
Yao Ren, Yue Zhou, and Ye Cao. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling. The Journal of Physical Chemistry C, 124(23):12195–12204, 2020.
Hao Chen, Allen Pei, Dingchang Lin, Jin Xie, Ankun Yang, Jinwei Xu, Kaixiang Lin, Jiangyan Wang, Hansen Wang, Feifei Shi, David Boyle, and Yi Cui. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Advanced Energy Materials, 9(22):1900858, 2019.
Clyde A Hutchison and Herrick L Johnston. Determination of crystal densities by the temperature of flotation method. Density and lattice constant of lithium fluoride. Journal of the American Chemical Society, 62(11):3165–3168, 1940.
Edward Lansing Cussler. Diffusion: mass transfer in fluid systems. Cambridge university press, 2009.
Tianhan Gao and Wei Lu. Mechanism and effect of thermal degradation on electrolyte ionic diffusivity in Li-ion batteries: A molecular dynamics study. Electrochimica Acta, 323:134791, 2019.
John C Slater. Atomic radii in crystals. The Journal of Chemical Physics, 41(10):3199–3204, 1964.
Jiale Fu, Xiao Ji, Ji Chen, Long Chen, Xiulin Fan, Daobin Mu, and Chunsheng Wang. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angewandte Chemie, 132(49):22378–22385, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87154-
dc.description.abstract近年來,鋰金屬電池之相關研究由於其擁有高理想電容量而備受各界關注。然而,介於鋰金屬負極與電解液之間的固態電解質介面(solid electrolyte interphase, SEI)將因其組成不均勻與表面不平穩而導致鋰枝晶生長並困擾著鋰金屬電池的實際應用。
為了解決這些問題,越來越多研究致力於製成一均勻、穩定且擁有高機械強度之人工固態電解質介面(artificial solid electrolyte interphase, ASEI)以取代自然生成之SEI。此次研究我們將選用擁有高機械強度的氟化鋰(lithium fluoride, LiF)作為主要塗層材料,並參照他人文獻中使用無毒氣體試劑與鋰金屬反應之製成技術,利用反應分子動力學(reactive molecular dynamics, RMD)之模擬方式放入氣相1,1,1,2-四氟乙烷(1,1,1,2-Tetrafluoroethane, Freon R134a)與鋰金屬基板反應形成富含LiF的ASEI薄膜並探討其生成結果、機械性質改善結果與溫度對其生成之影響。
本次研究採用反應力場(reactive force field, ReaxFF)描述分子間的化學成、斷鍵現象,並使用LAMMPS程式作為模擬工具。首先,我們透過反應分子動力學模擬生成了一富含LiF之ASEI並驗證了系統生成LiF之反應途徑。接著,我們在反應過程中發現副產物卡賓類化合物 (carbene) 與1,1-二氟乙烯氣體 (1,1-Difluoroethylene, C2H2F2) 的生成與堆積將可能會使LiF較難形成良好晶體並降低表面膜的穩定性,成為此製成方法的潛在風險。而透過拉伸試驗模擬我們可知,本次研究所生成之ASEI擁有比使用標準電解液所生成的SEI更好的極限應力、韌性值與楊氏模數,也證實了本次生成之ASEI雖並不足以完全抑制鋰枝晶生長,但仍能夠有效地改善SEI薄弱之機械性質。最後,我們探討了溫度對於生成結果之影響並發現調節系統反應溫度不但能控制欲生成之ASEI厚度,還能夠透過提升溫度以增加ASEI內的LiF數量,進而提升機械性質。本團隊也將在未來持續優化本模擬模型,以生成更加理想且更堅固之LiF-rich ASEI並針對反應途徑進行更加全面的探討。我們相信本研究方法不限於單一ASEI塗層材料的探討,也期望在不久的將來能夠將其實際運用在商業用途上。
zh_TW
dc.description.abstractResearch on lithium metal battery has been attracting high attention nowadays because of its high theoretical capacity. However, an unstable and accumulated solid electrolyte interphase (SEI) film, which is a layer between anode and electrolyte, will result in dendrite growth and ineluctably plaguing the practical applications of Li metal batteries. To solve these issues, efforts have been made to replace natural SEI with artificial SEI (ASEI), which is more stable, uniform and robust. Herein, we choose LiF which has high mechanical strength as the main coating material and present reactive molecular dynamics (RMD) simulations of the LiF-rich ASEI formation by using Freon R134a gas reagent and Li metal. We investigated the formation and the mechanical properties of the LiF-rich ASEI, and we explored the effect of temperature on ASEI formation by changing the simulated temperatures. Our RMD simulations were based on the reactive force field (ReaxFF) to simulate bond formation and bond breaking in chemical reactions. First of all, we successfully formed a LiF-rich ASEI by using reactive molecular dynamics simulation. Further, Our study shows that the formation and accumulation of the by-products (carbene and 1,1-difluoroethylene) may affect the structure of LiF and reduce the stability of the ASEI and become a potential risk of this method. From the tensile test results, we know that the LiF-rich ASEI we formed has better mechanical properties (ultimate stress, toughness and Young's modulus) than natural SEI, which proves that although the ASEI we formed is not robust enough to resist lithium dendrites growth comprehensively, but it can indeed improve the weak mechanical properties of SEI. Lastly, we found that increasing the reaction temperature of the system not only effectively increases the reaction rate of the system and LiF production, but also improves the thickness of ASEI to improve the mechanical properties of ASEI. In the future, we will keep on optimizing the simulation model to form a more ideal and robust LiF-rich ASEI and conduct a more comprehensive discussion on the reaction pathway. We believe this research method is not limited to the study of a single ASEI coating material, and we expect it to be practically used in commercial applications in the near future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T07:24:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T07:24:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 文獻回顧 5
第二章 研究方法與模擬系統設置 12
2.1 分子動力學 12
2.2 反應力場 (ReaxFF) 14
2.3 模擬系統設置 16
2.3.1 ASEI生成模擬系統設置 16
2.3.2 SEI生成模擬系統設置 18
2.4 拉伸試驗設置 21
2.5 維里應力 23
第三章 研究結果與討論 27
3.1 ASEI生成結果探討 27
3.1.1 ASEI生成過程 27
3.1.2 分子反應途徑與產物分布 29
3.1.3 ASEI相態與結構分析 35
3.1.4 ASEI各分層之組成與結構探討 36
3.2 ASEI機械性質探討 37
3.2.1 ASEI各層機械性質表現比較 37
3.2.2 ASEI與未改良之SEI的機械性質比較 40
3.3 溫度對於生成ASEI結果之影響 43
3.3.1 氟化鋰生成數量與反應速率 43
3.3.2 ASEI厚度與結構 45
3.3.3 ASEI分層組成與機械性質 46
第四章 結論與未來展望 50
4.1 結論 50
4.2 未來展望 52
參考文獻 54
附錄A-本研究所使用之相關程式碼 61
A.1 LAMMPS 61
A.2 Python 70
附錄B-理想氟化鋰結構之相關研究 74
B.1 氟化鋰晶體與薄膜之結構分析 74
B.2 氟化鋰薄膜之機械性質分析 75
附錄C-不同溫度系統之氣體試劑區域壓力值 77
附錄D-擴散係數 78
D.1 擴散係數與電導率之關係 78
D.2 透過LAMMPS得出目標物質之擴散係數 82
-
dc.language.isozh_TW-
dc.title反應分子動力學探討氟化鋰人工固態電解質之機械性質zh_TW
dc.titleMechanical properties of LiF-rich ASEI explored by reactive molecular dynamicsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周佳靚;張書瑋;詹楊皓zh_TW
dc.contributor.oralexamcommitteeChia-Ching Chou;Shu-Wei Chang;Yang-Hao Chanen
dc.subject.keyword鋰金屬電池,人工固態電解質介面,氟化鋰,反應分子動力學,反應力場,拉伸試驗,zh_TW
dc.subject.keywordLithium metal battery,ASEI,Lithium fluoride,RMD,ReaxFF,Tensile test,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202300099-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved