Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87141
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊振義zh_TW
dc.contributor.advisorJehn-Yih Juangen
dc.contributor.author蔡硯丞zh_TW
dc.contributor.authorYan-Cheng Caien
dc.date.accessioned2023-05-10T16:12:07Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-10-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citationReference
Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600-604.
Aubinet, M., Vesala, T., & Papale, D. (2012). Eddy covariance: a practical guide to measurement and data analysis: Springer Science & Business Media.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., et al. (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82(11), 2415-2434.
Braswell, B. H., Sacks, W. J., Linder, E., & Schimel, D. S. (2005). Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Global change biology, 11(2), 335-355.
Desai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D. Y., Barr, A., et al. (2008). Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology, 148(6-7), 821-838.
Dou, X., & Yang, Y. (2018). Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Computers and Electronics in Agriculture, 148, 95-106.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., et al. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and forest meteorology, 107(1), 43-69.
Fares, S., Conte, A., & Chabbi, A. (2018). Ozone flux in plant ecosystems: new opportunities for long-term monitoring networks to deliver ozone-risk assessments. Environmental Science and Pollution Research, 25. doi:10.1007/s11356-017-0352-0
Gleick, P. H. (1989). The implications of global climatic changes for international security. Climatic Change, 15(1), 309-325.
Gove, J., & Hollinger, D. (2006). Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface‐atmosphere exchange. Journal of Geophysical Research: Atmospheres, 111(D8).
Granata, F. (2019). Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural Water Management, 217, 303-315.
Gu, R. Y., Lo, M. H., Liao, C. Y., Jang, Y. S., Juang, J. Y., Huang, C. Y., et al. (2021). Early Peak of Latent Heat Fluxes Regulates Diurnal Temperature Range in Montane Cloud Forests. Journal of Hydrometeorology, 22(9), 2475-2487. doi:10.1175/jhm-d-21-0005.1
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Huang, I., & Hsieh, C.-I. (2020). Gap-Filling of Surface Fluxes Using Machine Learning Algorithms in Various Ecosystems. Water, 12(12), 3415.
Hung, L.-S., & Li, M.-H. (2020). Extreme weather events and health responses in Taiwan. In Extreme Weather Events and Human Health (pp. 197-207): Springer.
Janssen, P., & Heuberger, P. (1995). Calibration of process-oriented models. Ecological Modelling, 83(1-2), 55-66.
Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and irrigation water requirements.
Khan, M. S., Jeon, S. B., & Jeong, M. H. (2021). Gap-Filling Eddy Covariance Latent Heat Flux: Inter-Comparison of Four Machine Learning Model Predictions and Uncertainties in Forest Ecosystem. Remote Sensing, 13(24). doi:10.3390/rs13244976
Kim, S., Shiri, J., Kisi, O., & Singh, V. P. (2013). Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water resources management, 27(7), 2267-2286.
Kim, Y., Johnson, M. S., Knox, S. H., Black, T. A., Dalmagro, H. J., Kang, M., et al. (2020). Gap‐filling approaches for eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component analysis. Global change biology, 26(3), 1499-1518.
Menzer, O., Moffat, A. M., Meiring, W., Lasslop, G., Schukat-Talamazzini, E. G., & Reichstein, M. (2013). Random errors in carbon and water vapor fluxes assessed with Gaussian Processes. Agricultural and Forest Meteorology, 178, 161-172.
Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., et al. (2007). Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147(3-4), 209-232.
Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., & Aubinet, M. (2006). Annual net ecosystem carbon exchange by a sugar beet crop. Agricultural and Forest Meteorology, 139(1), 25-39. doi:https://doi.org/10.1016/j.agrformet.2006.05.009
Nourani, V., & Fard, M. S. (2012). Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Advances in Engineering Software, 47(1), 127-146.
Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., et al. (2006). Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3(4), 571-583.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., et al. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific data, 7(1), 1-27.
Peng, D., Zhang, B., & Liu, L. (2012). Comparing spatiotemporal patterns in Eurasian FPAR derived from two NDVI-based methods. International Journal of Digital Earth, 5(4), 283-298.
Ramachandran, P., Zoph, B., & Le, Q. V. (2018). Searching for Activation Functions. ArXiv, abs/1710.05941.
Schmidt, A., Wrzesinsky, T., & Klemm, O. (2008). Gap filling and quality assessment of CO 2 and water vapour fluxes above an urban area with radial basis function neural networks. Boundary-Layer Meteorology, 126(3), 389-413.
Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
Stauch, V. J., & Jarvis, A. J. (2006). A semi‐parametric gap‐filling model for eddy covariance CO2 flux time series data. Global change biology, 12(9), 1707-1716.
Ueyama, M., Ichii, K., Iwata, H., Euskirchen, E. S., Zona, D., Rocha, A. V., et al. (2013). Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. Journal of Geophysical Research: Biogeosciences, 118(3), 1266-1281.
Wang, H. J., Riley, W. J., & Collins, W. D. (2015). Statistical uncertainty of eddy covariance CO2 fluxes inferred using a residual bootstrap approach. Agricultural and Forest Meteorology, 206, 163-171. doi:10.1016/j.agrformet.2015.03.011
Wang, S.-C. (2003). Interdisciplinary computing in Java programming (Vol. 743): Springer Science & Business Media.
Wang, T., Brender, P., Ciais, P., Piao, S., Mahecha, M. D., Chevallier, F., et al. (2012). State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecological Modelling, 246, 11-25.
Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742), 1844-1846. doi:10.1126/science.1116448
Yu, G.-R., Wen, X.-F., Sun, X.-M., Tanner, B. D., Lee, X., & Chen, J.-Y. (2006). Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 137(3-4), 125-137.
Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks:: The state of the art. International journal of forecasting, 14(1), 35-62.
Zhao, L., LI, Y., XU, S., ZHOU, H., GU, S., YU, G., et al. (2006). Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology, 12(10), 1940-1953. doi:https://doi.org/10.1111/j.1365-2486.2006.01197.x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87141-
dc.description.abstract摘要
在過去的幾十年裡,渦流相關係數技術已經被廣泛運用於觀測不同的地表-大氣交互作用,然而,由於設備故障或者低風速所造成的弱渦流現象,目前仍有大約20~60%的通量測量數據的缺失,在所有資料補遺的方法當中,機器學習(machine learning, ML)是一個強大的工具,可以簡單地建立輸入和輸出之間的非線性關係,並在許多通量的研究上面被廣泛利用。
本研究中,選擇以台灣亞熱帶地區棲蘭通量站,以探討機器學習在該地區的效能,本研究以溫度,土壤溫度,相對溼度,淨輻射通量四個參數作為主要分析對象,但也加入風速、風向、能見度、光合有效輻射做進一步的討論,其中主要使用人工神經網絡(ANN)和長短期記憶(LSTM)來預測生態系統當中的CO2交換和潛熱通量(LE)。並使用決定係數R2、平均絕對誤差MAE、均方根誤差RMSE等指標對於機器學習進行分析,後續研究使用偏微分(PaD)來探討不同參數的貢獻,以了參數之間的關係,最後將缺漏值進行填補,並和未填補資料進行比較及分析,以了解是否在季節性或或者整體上面有落差。
ANN和LSTM的初步結果顯示,在各種參數的組合之下使用八個參數可以得到較高的R2,CO2的部分分別為0.74和0.71,LE的部分為0.71和0.67,在日夜分開測量可以發現夜間無法有效預測,然而在PaD當中顯示Rn對於兩個參數的貢獻量最大,分別為62%和35%,而在填補後可以發現在冬季缺值較多的季節四分位明顯縮小,機器學習對於棲蘭地區有良好的預測能力。
zh_TW
dc.description.abstractAbstract
The eddy-covariance technique has been widely applied to quantify the surface-atmosphere interactions over different landscapes in the past decades. However, nowadays there are still about 20 to 60% missing data in the flux measurement because of equipment failure or the weak turbulence caused by low wind speed. Among all the gap-filling methods, machine learning (ML) is a powerful tool to simply establish the non-linear relationship between the input and output parameters and has been broadly utilized in many flux studies. However, very little attention to ML was given to the analysis of multi-landscape comparison.
In this study, the CLM flux station in the subtropical region of Taiwan is chosen to investigate the effectiveness of machine learning in this region. This study uses artificial neural networks (ANN) and long short-term memory (LSTM) to predict the CO2 exchange and latent heat flux (LE) in the ecosystem. In the subsequent study, partial derivation (PaD) was used to investigate the contribution of different parameters to understand the relationship between parameters, and finally, the missing plants were filled and compared with the unfilled data to understand whether there is any seasonal or overall discrepancy.
The preliminary results of ANN and LSTM show that using eight parameters under various combinations of parameters can obtain higher R2, 0.74 and 0.71 for CO2 and 0.71
and 0.67 for LE, respectively, and in separate measurements of day and night it can be found that nighttime is not effectively predicted, however, in PaD it shows that Rn has the largest contribution to two parameters, 62%, and the PaD shows that Rn contributes the most to both parameters, with 62% and 35% respectively, and after filling the quartiles, it can be found that the quartiles shrink significantly in the winter season when there are more missing values, and the machine learning has good prediction ability in CLM.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-10T16:12:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-10T16:12:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContent
謝誌 i
摘要 ii
Abstract iii
Figure Content vii
Table Content x
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Research objectives 6
Chapter 2 Literature Review 8
2.1 Gap-filling techniques 8
2.1.1 Non – linear regressions (NLRs) 9
2.1.2 Unscented Kalman filter (UKF) 10
2.1.3 Look-up tables and further developments 10
2.1.4 The semi-parametric model technique(SPM) 11
2.1.5 Mean diurnal variation (MDV) 12
2.1.6 Machine learning 12
2.2 CO2 gap-filling method 15
2.2.1 The concept of the CO2 gap-filling method 15
2.2.2 Friction Velocity Correction (u* correction) 15
Chapter 3 Material and Method 17
3.1 Workflow 17
3.2 Study Site and Observation Data 18
3.3 Machine learning algorithms 26
3.3.1 Artificial neural network 26
3.3.2 Long short-term memory (LSTM) 27
3.3.3 Performance Metrics 29
3.4 Input Variables for Training the ML Models 31
3.5 Partial Derivation (PaD) 40
Chapter 4 Results and discussions 41
4.1 Correlation coefficients for input parameters 41
4.2 Machine learning results 46
4.2.1 Compare the R2 relationship between different inputs 46
4.2.2 The R2 between the different periods 52
4.2.3 ANN model plus LSTM model 57
4.3 Results of sensitivity analysis 60
4.3.1 Formulation of sensitivity analysis 60
4.3.2 Results of the sensitivity analysis 66
4.4 Analysis of the gap-filling data 70
4.4.1 Monthly data before and after filling 70
4.4.2 Heat map before and after filling 77
4.4.3 Cumulative chart 81
Chapter 5 Conclusions 83
Reference 86
-
dc.language.isoen-
dc.title人工神經網絡和長短期記憶模型探討森林生態系通量特徵zh_TW
dc.titleInvestigating fluxes characteristics of forest ecosystem by using artificial neural networks and long short-term memory modelsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃倬英;羅敏輝zh_TW
dc.contributor.oralexamcommitteeChoy Huang;Min-Hui Loen
dc.subject.keyword二氧化碳通量,潛熱通量,渦度相關係數,缺值填補,偏微分,機器學習,zh_TW
dc.subject.keywordCarbon dioxide flux,Latent heat flux,Eddy covariance,Gap filling,Partial derivation,Machine learning,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202300497-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept地理環境資源學系-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf11.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved