Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林法勤zh_TW
dc.contributor.advisorFar-Ching Linen
dc.contributor.author劉佳旻zh_TW
dc.contributor.authorChia-Min Liuen
dc.date.accessioned2023-05-05T17:35:55Z-
dc.date.available2023-11-10-
dc.date.copyright2023-05-05-
dc.date.issued2023-
dc.date.submitted2023-02-09-
dc.identifier.citation王松永、塗三賢(2007)木材利用、木構建築對溫室氣體減量貢獻。林業研究專訊。14(6): 1–5。
王松永、夏榮生(1990)臺灣主要經濟樹種材質之基礎研究(11):長尾尖櫧,光腊樹及臺灣櫸之單面與全面水分移動速度之變異性。林產工業。9(4): 13-29。
王松永(1986)柳杉及杉木之材質與利用(II)。林產工業。5(1): 66–76。
王松永(2001)木材物理學。國立編譯館。816頁。
中國國家標準(2013)木材抗彎試驗法。CNS454,經濟部中央標準局。7頁。
伊原惠司(2000)修理技法。原台南州廳修復技術研討暨研習資料彙編。國立文化資產保存研究中心籌備處。250頁。
李有豐(1999)FRP複合材料補強橋墩設計準則。交通部科技顧問室。3-1–3-19頁。
李佳如、楊德新(2010)應用非破壞檢測技術評估杉木集成元之抗彎性質。林業研究季刊。32(4): 45-59。
李佳如、蔡明哲、莊閔傑(2019)評估臺灣櫸木作為柳杉建築木料之補強材料性質。國立臺灣大學生物資源暨農學院實驗林研究報告。33(3): 171-182.
吳卓夫、葉基棟(2011)。營造法與施工(上冊)。茂榮書局。 460頁。
吳惠玄(2010)影響臺灣本土私人的低層木構造住宅推廣關鍵成功因素之研究。國立高雄大學都市發展與建築研究所碩士論文。
周惠娟(2003)CFRP補強木材複合材靜曲效能改善之研究。國立臺灣大學森林學研究所碩士論文。72頁。
徐耀賜(2001)複合材料(FRP) –混凝土橋樑結構補強加固之利器。土木技術 4(3): 135–154。
陳誠直、李中彥(1998)連續纖維補強複合材於混凝土結構之應用。化工技術 6(4): 162–169.
陳載永、葉政翰(1996)樹種對三種非破壞性測定儀檢測木材彈性係數之影響。林產工業。15(2): 285-294。
楊德新(2007)中小徑木製造構造用集成材及其工程性能之研究。國立臺灣大學森林學研究所碩士論文。155頁。
楊茜諭(2018)以臺灣櫸作為柳杉結構材之補強材料探討。國立臺灣大學森林學研究所碩士論文。91頁。
蔡明哲、周惠娟、謝耀明、李有豐、林蘭東(2005)碳纖維強化木質複合材料之加速劣化研究。林產工業24(3): 237–246。
蔡育昇(2017)以生命週期評估方法探討高層木構造建築的可行性-比較木構造與 RC 構造集合住宅的環境效益。成功大學建築學系學位論文
劉錦源(2003)用轉移矩陣法做破壞樑結構之振動分析與研究。大葉大學車輛工程學研究所碩士論文。
賴政彥、葉民權(2002)不同樑腹材料對杉木複合工字樑靜曲性質之影響。臺灣林業科學。17(2): 219-230。
AITC 108–93. Standard for heavy timber construction. American Institute of Timber Construction. 1993. 4pp.
Baar, J., Tippner, J., and Rademacher, P. (2015) Prediction of mechanical properties-modulus of rupture and modulus of elasticity-of five tropical species by nondestructive methods. Maderas. Ciencia y tecnología. 17(2): 239-252.
Basterra, L. A., J. A. Balmori, L. Morillas, L. Acuña and M. Casado (2017) Internal reinforcement of laminated duo beams of low-grade timber with GFRP sheets. Construction and Building Materials. 154: 914–920.
Bauchau, O. A. and J.I. Craig (2009) Structural analysis-With applications to aerospace structures. Solid Mechanics and its Applications. Springer Dordrecht Heidelberg. London New York. 163: 943pp.
Bohannan, B. (1962) Prestressed wood members. Forest Products Journal 12(12):596-602.
Börjesson, P and L. Gustavsson (2000) Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land–use perspectives. Energy Policy 28: 575–588.
Borri, A., M. Corradi and A. Grazini (2005) A method for flexural reinforcement of old wood beams with CFRP materials. Composites Part B: Engineering 36(2): 143–153.
Carr, W. R. (1962) An Investigation of steel reinforced wood laminated beams. Master Thesis. The University of Montana. 50pp.
Connor, M. L. (2008) Characterization of recycled carbon fibers and their formation of composites using injection molding. Master Thesis. North Carolina State University. 100pp.
Deshpande, V. S. and N. A. Fleck (2001) Collapse of truss core sandwich beams in 3-point bending. International Journal of Solids and Structures 38: 6275–6305.
Fathi, A., F. Wolff–Fabris, V. Altstädt and R. Gätzi (2013) An investigation on the flexural properties of balsa and polymer foam core sandwich structures: Influence of core type and contour finishing options. Journal of Sandwich Structures and Materials 15(5): 487–508.
Fleck, N. A. and V. S. Deshpande (2004) The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics 71(3): 386–401.
García, P. R, A. C. Escamilla and M. N. G. García (2013) Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Composites: Part B 55: 528–536.
Gentile, C., D. Svecova and S. H. Rizkalla (2002) Timber Beams Strengthened with GFRP Bars: Development and Applications. J. Compos. Constr. 6(1): 11-20.
Gordaninejad, F. and C. W. Bert (1989) A new theory for bending of thick sandwich beams. International Journal of Mechanical Sciences. 31(11-12): 925-934.
Gutkowski, R., K. Brown, A. Shigidi and J. Natterer (2008) Laboratory tests of composite wood-concrete beams. Construction and Building Materials 22: 1059–1066.
Gustavsson, L, A. Joelsson and R. Sathre (2010) Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy and Buildings 42: 230–242.
Gustavsson, L and A. Joelsson (2010) Life cycle primary energy analysis of residential buildings. Energy and Buildings 42: 210–220.
Gustavsson, L and R. Sathre (2006) Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment 41: 940–951.
Hibbeler, R. C. (2011) Mechanics of materials. Pearson Education, Inc., 862pp.
Hildebrandt, J., N. Hagemann and D. Thrän (2017) The contribution of wood–based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society 34: 405–418.
Huang YS, Hsiung TC, Chen SS (1990) The feasibility of FFT spectrum analysis by tap tone as applied to the quality evaluation of woods. Forest Product Industry 9(1): 43-54.
Jacob, J. and O. L. G. Barragán (2007) Flexural strengthening of glued laminated timber beams with steel and carbon fiber reinforced polymers. Master Thesis. Chalmers University of Technology. 152pp.
Johnson, G. R. and B. L. Gartner (2006) Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir. Tree Genetics & Genomes 3: 25–33.
Krajcinovic, D. (1972) Sandwich beam analysis. Journal of Applied Mechanics 39(3): 773–778.
Liu, Y., B. Zwingmann and M. Schlaich (2015) Carbon fiber reinforced polymer for cable structures – A review. Polymers 7(10): 2078–2099.
Lu, H. R., A. E. Hanandeh and B. P. Gilbert (2017) A comparative life cycle study of alternative materials for Australian multi-storey apartment building frame constructions: Environmental and economic perspective. Journal of Cleaner Production 166: 458–473.
Mark, R. (1961) Wood-aluminum beams within and beyond the elastic range. Part Ⅰ: Rectangular sections. Forest Products Journal 11(10): 477–484.
Mark, R. (1963) Wood-aluminum beams within and beyond the elastic range. Part Ⅱ: Trapezoidal sections. Forest Products Journal 13(11): 508–516.
Mishiro, A. (1996) Effect of density on ultrasonic velocity in wood. Mokuzai Gakkaishi. 42(9): 887–894.
Moaveni, S. (2015) Finite element analysis: Theory and application with ANSYS, Pearson Education, Inc. 936pp.
Monahan, J. and J. C. Powell (2011) An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy and Buildings 43: 179–188.
Oudjenea, M., E. M. Meghlat, H. Ait-Aider, P. Lardeur, M. Khelifa and J-L. Batoz (2018) Finite element modelling of the nonlinear load-slip behaviour of full-scale timber-to-concrete composite T-shaped beams. Composite Structures 196: 117–126.
Peterson, J. (1965) Wood beams prestressed with bonded tension elements. J. Struct. Eng 91(1): 103-119.
Qi, Y., H. Fang, H. Shi, W. Liu, Y. Qi and Y. Bai (2017) Bending performance of GFRP–wood sandwich beams with lattice–web reinforcement in flatwise and sidewise directions. Construction and Building Materials 156: 532–545.
Raftery, G. M., A. M. Harte (2011) Low-grade glued laminated timber reinforced with FRP plate. Composites: Part B 42: 724–735.
Shi, H., W. Liu, H. Fang, Y. Bai and D. Hui (2017) Flexural responses and pseudo-ductile performance of lattice-web reinforced GFRP-wood sandwich beams. Composites Part B 108: 364–376.
Sliker, A. (1962) Reinforced wood laminated beams. Forest Products Journal 12(2): 91–96.
Sliker, A. (1962) Reinforced wood laminated beams. Forest Products Journal 12(1): 91-96.
Smulski, S. J (1991) Relationship of stress wave and static bending determined properties of four northeastern hardwood. Wood and Fiber Science. 23(1): 44-57.
Triantafillou, T. C., N. Deskovic (1992) Pretressed FRP sheets as external reinforcement of wood members. Journal of Structural Engineering 118(5): 1270–1284.
Wang, C. M. (1995) Timoshenko beam-bending solutions in terms of Euler–Bernoulli solutions. Journal of Engineering Mechanics 763–765.
Whisler, D, A. Chen, H. Kim, P. Huson and R. Asaro (2012) Methodology for exciting dynamic shear and moment failure in composite sandwich beams. Journal of Sandwich Structures and Materials 14(4): 365–396.
Young, D. and R. P. Felgar (1949) Tables of charcteristic funtions representing normal modes of vibration of a beam. Engineering Research Series No.44 Bureau of Engineering Research. 31pp.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87115-
dc.description.abstract本研究利用小尺寸之臺灣櫸(Zelkova serrata)作為柳杉(Cryptomeria japonica)集成樑結構用材之裝飾補強材之探討。試材先以應力波法及抗彎彈性模數試驗評估集成元狀況,並計算出集成樑之抗彎彈性模數預測值(Ebp),再依據抗彎彈性模數預測值進行集成樑之配置膠合,後針對集成樑進行抗彎強度性質、膠合剪斷性質、剝離性質之分析與評估;另外再針對集成樑之強度相關性質進行分析外,亦依據補強斷面積分析補強成本效益。
實驗先以集成元抗彎彈性模數(Modulus of elasticity, MOE),進行強度配置,再利用彎曲剛性(Bending stiffness, EI)相等之原則,計算配置後之集成樑之Ebp,並與抗彎彈性模數真實值(Ebr)做相關性分析。理論上Ebr與Ebp應要能成正相關,然若不分組之Ebp及Ebr兩者進行相關性分析,結果指出其R²僅有為0.33,顯示相關性不如預期,推測為補強方式及補強面積會影響其推估兩數值之公式係數,然組別依貼合補強及鑲嵌補強分組分析後可發現Ebp及Ebr兩者相關性可大幅提升,除G5組(以寬15 mm 之臺灣櫸貼合補強於柳杉上下側)及G6組(以寬10 mm 之臺灣櫸貼合補強於柳杉上下側)之R²未達0.50外,其餘皆高於0.50,其中又以G8組(以寬10 mm 之臺灣櫸鑲嵌補強於柳杉上側)之R²為最佳(0.93),顯示預測值具有參考價值,可達到預測效果。
根據抗彎試驗結果可知,若僅考慮抗彎強度(Modulus of rupture, MOR)時,以G4組之以寬20 mm之臺灣櫸貼合補強於柳杉上下側及G10組之以寬15 mm 之臺灣櫸鑲嵌補強於柳杉上下側者,有顯著之強度提升,而若只考慮Ebr時,G1 組之以寬20 mm 之臺灣櫸貼合補強於柳杉上側者、G2組之以寬15 mm 之臺灣櫸貼合補強於柳杉上側者、G5組之以寬15 mm 之臺灣櫸貼合補強於柳杉上下側者、G6組之以寬10 mm 之臺灣櫸貼合補強於柳杉上下側者及G10組之以寬15 mm 之臺灣櫸鑲嵌補強於柳杉上下側者皆相對於對照組,有顯著提升其Ebr值,因此綜合兩者可發現G10組之以寬15 mm 之臺灣櫸鑲嵌補強於柳杉上下側者可同時獲得顯著之Ebr與MOR值,Ebr值為12.1 GPa,較柳杉對照組提升了24.7%,MOR值為75.5 MPa,較柳杉對照組提升了20.2%。
zh_TW
dc.description.abstractThis study is discussed using the small-scaled Taiwan Zelkova (Zelkova serrata) as a decorative reinforcement for Japanese ceder (Cryptomeria japonica) beam structures. The material used the stress wave method and the flexural elastic modulus method to evaluate the condition of the integrated element and then calculated the predicted value of the flexural elastic modulus (Ebp). The glulam is configured according to the predicted value of the flexural elastic modulus. After gluing, we analyzed and evaluated the properties of bending test, gluing shear, and peeling of glulams. Also, based on the analysis of basic properties, we analyze the strength-related properties of glulams. To facilitate future practical applications, this research also compared the cost-effectiveness of reinforcement in different reinforce area.
In the experiment, we configured the integrated element into the beam based on the Modulus of elasticity (MOE). And according to the principle of equal bending rigidity (EI) calculated the Ebp of the glulam, and compare it with the actual value of the flexural elastic modulus (Ebr) by correlation analysis. The results said that while analyzed without separating data into the group, Ebr will increase with the increment of Ebp, but its R² is only 0.33, which shows that the reinforcement method and reinforcement area will affect the values. Analyzed according to the groups, shows that the correlation between Ebp and Ebr can be greatly improved. Except for the G5 reinforced with a width of 15 mm with both sidesa nd the G6 group reinforced with a width of 10 mm on both side, in which R² is less than 0.50, the rest are higher than 0.50, the R² of the G8 group reinforced with 15 mm wide Taiwan Zelkova on the upside is the best (0.93), indicating that the predicted value could be a reference for the prediction. According to the flexural test results, considered the Modulus of rupture (MOR), the G4 group was reinforced with Taiwan Zelkova with a width of 20 mm on both sides of the Japanese ceder and the G10 group reinforced with Taiwan Zelkova with a width of 15 mm on both sides have significant increment. About Ebr, the G1 group reinforced with a 20 mm wide Taiwan Zelkova patch on the upside, the G2 group reinforced with 15 mm wide Taiwan Zelkova on the upside, the G5 group reinforced with a width of 15 mm with both sides, the G6 group reinforced with a width of 10 mm on both side, and the G10 group reinforced with 15 mm wide on both side, are significantly improved. Therefore, the G10 group has well improved in both Ebr and MOR values. The Ebr value is 12.1 GPa, which is 24.7% higher than that of the control group, and the MOR value is 75.5 MPa, which is 20.2% higher than the control group.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-05T17:35:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-05T17:35:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
第一章、 前言 1
第二章、 文獻回顧 3
2.1木構建築概論 3
2.2木樑概論 5
2.3木樑補強理論 8
2.4臺灣櫸對柳杉結構樑補強 13
第三章、 材料與方法 14
3.1試驗流程 14
3.2試驗材料 15
3.3集成元試驗 16
3.4集成元配置 18
3.5集成樑之膠合 23
3.6集成樑之性質檢測 23
3.7統計分析 25
第四章、 結果與討論 26
4.1集成元性質 26
4.2集成元各項性質之關係 41
4.3集成樑之抗彎性質 49
4.4集成樑之膠合剪斷性質 67
4.5剝離性質 70
第五章、 結論 73
第六章、參考文獻 74
-
dc.language.isozh_TW-
dc.subject臺灣櫸zh_TW
dc.subject補強zh_TW
dc.subject柳杉zh_TW
dc.subject集成樑zh_TW
dc.subject結構用材zh_TW
dc.subjectCryptomeria japonicaen
dc.subjectReinforcmenten
dc.subjectGlulamsen
dc.subjectZelkova serrataen
dc.subjectStructural materialen
dc.title以臺灣櫸作為柳杉結構材之裝飾補強材料探討zh_TW
dc.titleThe Study on Taiwan Zelkova as Decoration and Reinforcement Material in Structural Lumber of Japanese Cedaren
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊閔傑;羅盛峰zh_TW
dc.contributor.oralexamcommitteeMin-Jay Chung;Sheng-Fong Loen
dc.subject.keyword臺灣櫸,柳杉,補強,集成樑,結構用材,zh_TW
dc.subject.keywordZelkova serrata,Cryptomeria japonica,Reinforcment,Glulams,Structural material,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202300307-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2027-01-02-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
2.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved