請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87103完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張倉榮 | zh_TW |
| dc.contributor.advisor | Tsang-Jung Chang | en |
| dc.contributor.author | 粘朝順 | zh_TW |
| dc.contributor.author | Chao-Shun Nien | en |
| dc.date.accessioned | 2023-05-05T17:31:39Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-13 | - |
| dc.identifier.citation | Bai, F. P., Yang, Z. H., & Zhou, W. G., (2018), Study of total variation diminishing (TVD) slope limiters in dam-break flow simulation, Water Science and Engineering, 11(1), 68-74.
Chang, Y. S. & Chang, T. J., (2017), SPH simulations of solute transport in flows with steep velocity and concentration gradients, Water, 9(2), 132. Devkota, B. H. & Imberger, J., (2009), Lagrangian modeling of advection‐diffusion transport in open channel flow, Water resources research, 45(12). Danish Hydraulic Institute, (2017), MIKE 11: A modelling system for Rivers and Channels, User Guide. Danish Hydraulic Institute, Hørsholm. Gordillo, G., Morales-Hernández, M., Echeverribar, I., Fernández-Pato, J., & García-Navarro, P., (2020), A GPU-based 2D shallow water quality model, Journal of Hydroinformatics, 22(5), 1182-1197. Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjević, S., & Savić, D. A., (2016), A weighted cellular automata 2D inundation model for rapid flood analysis, Environmental Modelling & Software, 84, 378-394. Guo, W. D., Lai, J. S., Lin, G. F., Lee, F. Z., & Tan, Y. C., (2011), Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows, Journal of Mechanics, 27(3), 415-430. Hou, J., Liang, Q., Li, Z., Wang, S., & Hinkelmann, R., (2015), Numerical error control for second-order explicit TVD scheme with limiters in advection simulation, Computers & Mathematics with Applications, 70(9), 2197-2209. Hou, J. M., Shi, B. S., Liang, Q. H., Tong, Y., Kang, Y. D., Zhang, Z. A., Bai, G. G., Gao, X. J, & Yang, X., (2021), A graphics processing unit-based robust numerical model for solute transport driven by torrential flow condition, Journal of Zhejiang University-SCIENCE A, 22(10), 835-850. Hutter, K., Wang, Y., & Chubarenko, I. P., (2014), Comparing Numerical Methods for Convectively-Dominated Problems, In Physics of Lakes (pp. 91-127), Springer, Cham. Lee, M. E., & Seo, I. W., (2010), 2D finite element pollutant transport model for accidental mass release in rivers, KSCE Journal of Civil Engineering, 14, 77-86. Liang, D., Wang, X., Falconer, R. A., & Bockelmann-Evans, B. N., (2010), Solving the depth-integrated solute transport equation with a TVD-MacCormack scheme, Environmental Modelling & Software, 25(12), 1619-1629. Liang, Q., (2010), A well-balanced and non-negative numerical scheme for solving the integrated shallow water and solute transport equations, Communications in Computational Physics, 7(5), 1049. Lin, L., & Liu, Z., (2019), TVDal: Total variation diminishing scheme with alternating limiters to balance numerical compression and diffusion, Ocean Modelling, 134, 42-50. Milašinović, M., Ranđelović, A., Jaćimović, N., & Prodanović, D., (2019), Coupled groundwater hydrodynamic and pollution transport modelling using Cellular Automata approach, Journal of Hydrology, 576, 652-666. Murillo, J., García‐Navarro, P., & Burguete, J., (2008), Analysis of a second‐order upwind method for the simulation of solute transport in 2D shallow water flow, International journal for numerical methods in fluids, 56(6), 661-686. Popescu, I., (2014), Computational hydraulics, IWA Publishing. Sharma, D., Jiwari, R., & Kumar, S., (2011), Galerkin-finite element method for the numerical solution of advection-diffusion equation, International Journal of Pure and Applied Mathematics, 70(3), 389-399. Tian, L., Gu, S., Wu, Y., Wu, H., & Zhang, C., (2022)., Numerical Investigation of Pollutant Transport in a Realistic Terrain with the SPH-SWE Method, Frontiers in Environmental Science, 323. Toro, E. F., (2001), Shock-Capturing Methods for Free-Surface Shallow Flows, John Wiley, New York. Tóth, G., & Odstrčil, D., (1996), Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, Journal of Computational Physics, 128(1), 82-100. Versteeg, H. K., & Malalasekera, W., (2007), An introduction to computational fluid dynamics: the finite volume method, Pearson education. Wang, Y., & Hutter, K., (2001), Comparisons of numerical methods with respect to convectively dominated problems, International journal for numerical methods in fluids, 37(6), 721-745. Wang, Z., & Huang, G. P., (2002), An essentially nonoscillatory high-order Padé-type (ENO-Padé) scheme, Journal of Computational Physics, 177(1), 37-58. Yu, H. L., & Chang, T. J., (2022), Modeling particulate matter concentration in indoor environment with cellular automata framework, Building and Environment, 214, 108898. Zhang, R., Huang, K., & van Genuchten, M. T., (1993), An efficient Eulerian‐Lagrangian Method for solving solute transport problems in steady and transient flow fields, Water Resources Research, 29(12), 4131-4138. 朱佳仁,2003年,環境流體力學,科技圖書股份有限公司。 張佑聖,2012年,以平滑粒子動力法研析淺水波汙染物傳輸問題,國立臺灣大學生物環境系統工程學系碩士論文。 林孟郁、林彥廷、王安培,2016年,質點法應用於感潮河川污染物傳輸之模擬,中國土木水利工程學刊,28(1),67-76。 林吉堃,2018年,都會區快速淹水模擬模式之研發與應用,國立臺灣大學生物環境系統工程學系碩士論文。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87103 | - |
| dc.description.abstract | 為瞭解水體汙染物傳輸的過程,傳統上係以求解平流擴散方程式來模擬水體汙染物傳輸,其中基於Godunov-type的有限體積法(finite volume method, FVM)為相對較廣為使用的數值模式,然其應用於高空間解析度網格時,雖能達到良好的準確度但其計算時間仍然過長。另一方面,應用細胞自動機(Cellular Automata, CA)所發展的模式,以簡單的轉換規則取代過往傳統數值模式中複雜的數值方法,能達到與傳統數值模式相當接近的模擬結果但卻節省大量運算時間的模式,已應用於愈來愈多的領域上。
因此,本研究嘗試以細胞自動機為架構,來發展應用於穩態緩變量流況下之細胞自動機水體汙染物傳輸模式(CA模式),以簡單之代數方程式來模擬平流與擴散機制,其中平流機制的模擬以各細胞中心點的流速判斷汙染物被動(passive)傳輸的方向,而擴散機制的部分則以濃度為指標來劃定汙染物主動(active)傳輸的方向,並進一步以濃度差為權重值來簡化計算量。為了透過多個平流機制計算方法的優缺點選出一個較適合的方法,此CA模式在平流機制內發展了四個不同的濃度空間規則(upwind、central、QUICK與TVD規則),再搭配相同之擴散機制模擬方法下,得到CA-upwind、CA-central、CA-QUICK與CA-TVD模式等四個CA模式。 為評估此四個CA模式在準確度與演算效率上的表現,本研究選取四個包含有空間或時間上濃度不連續面之一維或二維穩態緩變量流的水體汙染物傳輸數值案例,將此四個CA模式與Godunov-type FVM模式(FVM模式)進行比較。而在此四個CA模式中,在平流主導下,在具有濃度不連續面的案例下(案例一至三),CA-upwind模式因有明顯的數值擴散、CA-central與CA-QUICK兩模式因皆有數值震盪等而使此三者準確度不佳,而CA-TVD模式的準確度則幾乎與FVM模式相同;而在案例四中,CA-upwind與CA-central皆有比較明顯的數值擴散,CA-QUICK與CA-TVD則與FVM結果相近。另一方面,在擴散主導下,四個CA模式的準確度則與FVM模式相近或幾乎一樣。至於演算效率部分,不論在平流主導或是擴散主導下,四個CA模式整體而言比FVM模式快約155.0%~246.6 %,且四個CA模式的計算時間差異不大,顯示CA模式均有良好的演算效率。綜合評估下,CA-TVD模式能達到與FVM模式幾乎一樣的準確度但卻能比FVM模式快155.0%~244.1%,可以在穩態緩變量流下水體汙染物傳輸之模擬上取代FVM模式。 | zh_TW |
| dc.description.abstract | Numerical models for predicting solute transport in water bodies are developed by solving the depth-averaged advection-diffusion equations. So far, among various numerical models, the Godunov-type finite volume models are the relatively popular approach. Despite having satisfactory accuracy, Godunov-type finite volume models can introduce high computational demands in high grid resolution. On the other hand, cellular automata (CA) has been applied in more and more fields because it can achieve satisfactory accuracy with significant reduction on computational time by using a set of generic equations instead of tedious numerical procedures of traditional numerical methods.
The present study builds a model to simulate solute transport in steady gradually varied flows based on the CA framework (hereinafter in short as the CA model). The CA model simulates the advection and diffusion transport mechanisms with a set of simple algebraic equations. To simulate the advection transport mechanism, the CA model uses the water velocity at the cell center to decide the direction of the transport. For the diffusion transport mechanism, the solute concentration is used as the key to delineate the direction of transport. Moreover, the solute concentration difference is used as the weight to further reduce the calculation involved in simulating the diffusion transport mechanism. To select a more suitable method through the advantages and disadvantages of multiple advection mechanism calculation methods, the CA model adopts four various computation rules (i.e., the upwind, central, QUICK, and TVD rules) to deal with spatial concentration relation. Consequently, there are four CA models, i.e., the CA-upwind, CA-central, CA-QUICK, and CA-TVD models. The accuracy and efficiency of the four CA models are then evaluated through four numerical cases including steady gradually varied flows with spatial/temporal solute concentration discontinuities and compared with a commonly used Godunov-type finite volume model (hereinafter short as the FVM model). From the simulated results, as to the performance of each CA model, concerning the advection-dominated scenarios, in cases with spatial solute concentration discontinuities (Cases 1 to 3), the CA-upwind model has significant numerical diffusions, and both the CA-central and CA-QUICK models have obvious numerical oscillations. Conversely, the CA-TVD model is almost as accurate as the FVM model. In Case 4 with temporal solute concentration discontinuity, both the CA-upwind and CA-central models have relatively obvious numerical diffusions, whereas the simulated results of the CA-QUICK and CA-TVD models are quite similar to the FVM model. In the aspect of the diffusion-dominated scenarios, the accuracy of the four CA modes is similar or almost the same as the FVM model. In terms of efficiency, the four CA models are 155.0%~246.6% faster than the FVM model, which demonstrates the benefit of using the CA framework. Also, it is found that the computational times of the four CA models are close. Comprehensively speaking, the CA-TVD model is found to achieve almost the same accuracy as the FVM model but can be faster than the latter one by 155.0%~244.1%. Thus, the CA-TVD model can replace the FVM model when simulating solute transport in steady gradually varied flows. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-05T17:31:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-05T17:31:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.2.1 水體汙染物傳輸模式 1 1.2.2 細胞自動機架構 7 1.3 研究目的 9 1.4 研究流程 10 第二章 研究方法 12 2.1 傳統水體汙染物傳輸模式 12 2.1.1 模式演算架構 12 2.1.2 穩定條件 18 2.2 細胞自動機水體汙染物傳輸模式 18 2.2.1 模式演算架構 19 2.2.2 穩定條件 31 2.3 模式評估方式 31 2.3.1 準確度評估(L2 norm) 31 2.3.2 演算效率評估(Speedup ratio) 31 2.4 CA模式與FVM模式演算效率分析 33 第三章 數值案例設置與結果 35 3.1 案例一:均勻流中持續施放之單位階梯波形示蹤劑 35 3.2 案例二:均勻流中瞬時施放之矩形波形示蹤劑 44 3.3 案例三:非均勻流中的瞬時施放之矩形波形示蹤劑 52 3.4 案例四:均勻流中的點源汙染物傳輸 60 第四章 結論與建議 72 4.1 結論 72 4.2 建議 73 參考文獻 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 斜率限制函數 | zh_TW |
| dc.subject | 細胞自動機 | zh_TW |
| dc.subject | 水體汙染物傳輸模式 | zh_TW |
| dc.subject | 平流擴散方程式 | zh_TW |
| dc.subject | Advection-diffusion equation | en |
| dc.subject | Solute transport model | en |
| dc.subject | Cellular automata | en |
| dc.subject | Slope limiter | en |
| dc.title | 細胞自動機應用於水體汙染物濃度場模擬之初探 | zh_TW |
| dc.title | An Exploratory Study on Solute Concentration Modelling based on Cellular Automata Framework | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳明志;張高華;王嘉和;游翔麟 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Chih Chen;Kao-Hua Chang;Chia-Ho Wang;Hsiang-Lin Yu | en |
| dc.subject.keyword | 水體汙染物傳輸模式,平流擴散方程式,細胞自動機,斜率限制函數, | zh_TW |
| dc.subject.keyword | Solute transport model,Advection-diffusion equation,Cellular automata,Slope limiter, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202300414 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 29.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
