Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87102
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李國譚zh_TW
dc.contributor.advisorKuo-Tan Lien
dc.contributor.author鄭揚曦zh_TW
dc.contributor.authorYang-Xi Zhengen
dc.date.accessioned2023-05-05T17:31:19Z-
dc.date.available2023-11-10-
dc.date.copyright2023-05-05-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citation中央氣象局. 2019. 中央氣象局108 年氣候年報.https://www.cwb.gov.tw/Data/service/notice/download/publish_20200506114401.pdf
中央氣象局. 2021. 中央氣象局110 年氣候年報.https://www.cwb.gov.tw/Data/service/notice/download/Publish_20220826110436.pdf
黃舜歆. 2014. 氮及磷肥對兔眼藍莓光合作用、生長與開花之影響. 國立臺灣大學園藝學系碩士論文. 台北.
昌佳致. 2016. 高溫環境之兔眼及高叢藍莓生理及型態觀察. 國立臺灣大學園藝學系碩士論文. 台北.
蔡明軒. 2016. 葉片顏色與人為遮陰對兔眼藍莓葉片氣體交換及植株生長之生理影響. 國立臺灣大學園藝學系碩士論文. 台北.
李岱耘. 2017. 葉面噴施尿素對‘Tifblue’兔眼藍莓休眠期落葉及其後續生長之影響. 國立臺灣大學園藝學系碩士論文. 台北.
歐錫坤. 1992. 臺灣本地種桃樹的低溫需求量評估. 中華農業研究. 41(3):251–260.
Anstey, T.H. 1966. Prediction of full bloom date for apple, pear, cherry, peach and apricot from air temperature data. Proc. Amer. Soc. Hortic. Sci. 88:57-66.
Antunes, L. E. C., E. D. Gonçalves, N. C. Ristow, S. Carpenedo., and R. Trevisan. 2008. Phenology, production and quality of blueberry cultivars. Pesquisa Agropecuária Brasileira 43:1011–1015.
Ballington, J.R., S.D. Rooks, R.D. Milholland. W.O. Cline, and J.R. Meyers. 1993. Breeding blueberries for pest resistance in North Carolina. Acta Hort. 346:87–94.
Bryla, D.R., B. Yorgey, and A.D. Shireman. 2009. Irrigation management effects on yield and fruit quality of highbush blueberry. Acta Hort. 810:649–656.
Byrne, D. H. and T.A. Bacon. 1992. Chilling estimation: its importance and estimation. Texas Horticulturist 18(8):5–8.
Camp, W.H. 1945. The North American blueberries with notes on other groups of Vacciniaceae. Brittonia 5:203–275.
Campoy, J.A., D. Ruiz, and J. Egea. 2011. Dormancy in temperate fruit trees in a global warming context: a review. Scientia Hort. 130(2):357–372.
Carlson, J.D. and J.F. Hancock. 1991. A methodology for determining suitable heat-unit requirements for harvest of highbush blueberry. J. Amer. Soc. Hortic.
Sci. 116(5):774–779. Chen, C. C., Y. R. Wang, Y. C. Wang, S. L. Lin, C. T. Chen, M. M. Lu, and Y. L.
L. Guo. 2021. Projection of future temperature extremes, related mortality, and adaptation due to climate and population changes in Taiwan. Sci. Total Environ. 760(143373):1–13
Chen, C. T. A. and D. D. Sheu. 2006. Does the Taiwan warm current originate in the Taiwan Strait in wintertime. J. Geophysical Research: Oceans. 111:1–8.
Chen J.M. and F.R. Wang. 2000. The long-term warming over Taiwan and its relationship with the Pacific SST variability. Atmos. Sci. 28(3):221–241.
Ciordia, M., M. Díaz, and J. C. García. 2000. Blueberry culture both in pots and under Italian-type tunnels. VII Intl. Symp. Vaccinium Cult. 574:123–127.
Darnell, R.L., G.W. Stutte, G.C. Martin, G.A. Lang, and J.D. Early. 1992. Developmental physiology of rabbiteye blueberry. Hort. Rev. 13:339–405.
Darnell, R.L. and Williamson, J.G. 1996. Feasibility of blueberry production in warm climates. VI Intl. Symp. Vaccinium Cult. 446. p. 251–256.
Darnell, R.L. 2006. Blueberry botany/environmental physiology. Blueberries, p.5–13. In: Childers, N.F and P.M Lyrene (eds). Blueberries for growers, gardeners and promoters. Dr. Norman F. Childers Publ., Gsinesville, Florida
DeJong, T. M. and J. Goudriaan. 1989. Modeling peach fruit growth and carbohydrate requirements: reevaluation of the double-sigmoid growth pattern. J. Amer. Soc. Hort. Sci. 114(5):800–804.
Druice, J. and D. Percival 2003. Trends in lowbush blueberry cultivar development. J. Amer. Pomol. Soc. 57(2):63-69.
Eck, P. 1988. Blueberry science. Rutgers University Press. New Brunswick, USA.
Erez, A., S. Lavee, and R.M. Samish. 1971. Improved methods for breaking rest in the peach and other deciduous fruit species. J. Amer. Soc. Hort. Sci. 96:519–522.
Erez, A. 2000. Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics. In Temperate fruit crops in warm climates. Springer, Dordrecht. 17–48.
Faust, M., A. Erez, L.J. Rowland, S.Y. Wang, and H.A. Norman. 1997. Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience 32(4):623–629.
Fishman, S., A. Erez, and G.A. Couvillon. 1987a. The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 124:473–483.
Fishman, S., A. Erez, and G.A. Couvillon. 1987b. The temperature dependence of dormancy breaking in plants-Computer simulation of processes studied under controlled temperatures. J. Theor. Biol. 126:309–321.
Flinn, C.L. and E.N. Ashworth. 1994. Seasonal changes in ice distribution and xylem development in blueberry flower buds. J. Amer. Soc. Hort. Sci. 119(6):1176–1184.
Galletta, G.J. and J.R. Ballington, 1996. Blueberries, cranberries and lingonberries. Plant Breed. 2:1–107.
Gilreath, P. R. and D. W. Buchanan. 1981. Temperature and Cultivar Influences on the Chilling Period of Rabbiteye Blueberry1. J. Amer. Soc. Hort. Sci. 106(5):625–628.
Godoy, C., G. Monterubbianesi, and J. Tognetti. 2008. Analysis of highbush blueberry (Vaccinium corymbosum L.) fruit growth with exponential mixed models. Scientia Hort. 115(4):368–376.
Gough, R.E. 1994. The highbush blueberry and its management. Food Products Press, New York, NY.
Gough, R. E. 1997. Blueberries-North and south. J. Small Fruit Viticulture 4(1-2):71–106.
Gu, S. 2016. Growing degree hours-a simple, accurate, and precise protocol to approximate growing heat summation for grapevines. Int. J. Biometeorol. 60(8):1123–1134.
Hancock J.F., M. Sakin, and P.W. Callow. 1991. Heritability of flowering and harvest dates in Vaccinium corymbosum. Fruit Var. J. 45:173–176.
Jackson, J.E., P.J.C. Hamer, and M.F. Wickenden. 1983. Effect of early spring temperatures on the set of fruit Cox’s Orange Pippin apple and year-to-year variation in its yields. Acta Hort. 139:75–82.
Kirk, A. K. and R. Isaacs. 2012. Predicting flower phenology and viability of highbush blueberry. HortScience 47(9):1291–1296.
Knight Jr, R.J. and Scott, D.H. 1964. Effects of temperatures on self and crosspollination and fruiting of four highbush blueberry varieties. J. Am. Soc. Hortic. Sci. 85:302–306.
Lang, G.A. 1993. Southern highbush blueberries: Physiological and cultural factors important for optimal cropping of these complex hybrids. VI Intl. Symp. Vaccinium Cult. 346:72–80.
Linsley-Noakes, G.C., P. Allan., and G. Matthee. 1994. Modification of rest completion prediction models for improved accuracy in South African stone fruit orchards. J. S. Afr. Soc. Hort. Sci. 4(1):13–15.
Linvill, D.E. 1990. Calculating chilling hours and chill units from daily maximum and minimum temperature observations. HortScience 25(1):14–16.
Li, K.T. 2009. BLUE FORMOSA-a blueberry initiative program in Taiwan. HortScience 44:1122.
Liu, S.C., C.J. Shiu, and J.P. Chen. 2007. Climate change in Taiwan-The regional and global effects. Cent. Advis. Commit. Acad. Sin. Newslet. 15(2):72–75
Lobos, G. A. and J.F. Hancock. 2015. Breeding blueberries for a changing global environment: a review. Front. Plant Sci. 6(782):1–14.
Luby, J.J., J.R. Ballington, A.D. Draper, K. Pliszka, and M.E. Austin. 1991. Blueberries and cranberries (Vaccinium). Genetic Resources Temp. Fruit Nut Crops. 290:393–458.
Luedeling, E., M. Zhang, V. Luedeling, and E.H. Girvetz. 2009. Sensitivity of winter chill models for fruit and nut trees to climatic changes expected in California’s Central Valley. Agr. Eco-syst. Environ. 133:23–31.
Lyrene, P. M. and W.B. Sherman. 1985. Breeding blueberry cultivars for the central Florida peninsula. Proc. Annu. Meet. Fla. State Hort. Soc. 98:158–161.
Lyrene, P. M. and W. B. Sherman. 2000. ‘Star’ Southern Highbush Blueberry. HortScience 35(5):956–957.
Lyrene, P. M. 2008. ‘Emerald’ southern highbush blueberry. HortScience 43(5):1606–1607.
Mainland, C. M. 1984. Some problems with blueberry leafing, flowering and fruiting in a warm climate. III International Symp. Vaccinium Cult. 165:29–34.
McIntyre G.N., W.M. Kliewer, and L.A. Lider. 1987. Some limitations of the degree day system as used in viticulture in California. Amer. J. Enol. Vitic. 38:128–132.
McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87(4):291–300.
Medeiros, J.G.S., C.M. De Bona, F.L. Cuquel, and L.A. Biasi. 2017. Performance of blueberry cultivars under mild winter conditions. Cienc. Rural. 47(9):1–8.
Medeiros, J.G.S., L.A. Biasi, C.M.D. Bona, and F.L. Cuquel. 2018. Phenology, production and quality of blueberry produced in humid subtropical climate. Rev Bras Frutic. 40(3):1–10.
Medeiros, J. G. S., L. A. Biasi, C. M. de Bona, and F. L. Cuquel. 2021. Production of blueberries in subtropical climate of altitude. Comunicata Scientiae, 12:1–8.
Medina, R. B., T. E. Cantuarias-Avilés, S. F. Angolini, and S.R.D. Silva. 2018. Performance of ‘Emerald’ and ‘Jewel’ blueberry cultivars under no-chill incidence. Pesqui. Agropecu. Trop. 48:147–152.
Milech, C.G.C., S. Scariotto, M. Dini, F.G. Herter, and M.D.C.B. Raseira, 2018. Models to estimate chilling accumulation under subtropical climatic conditions in Brazil. Rev. Bras. Climatol. 23:106–115.
Moon Jr, J.W., J.A. Flore, and J.F. Hancock Jr. 1987. A comparison of carbon and water vapor gas exchange characteristics between a diploid and highbush blueberry. J. Amer. Soc. Hort. Sci. 112(1):134–138.
NeSmith, D. S., and D. C. Bridges. 1992. Modeling Chilling Influence on Cumulative Flowering: A Case Study UsingTifblue Rabbiteye Blueberry. J. Amer. Soc. Hort. Sci. 117(5):698–702.
NeSmith, D. S. 2004. Fruit development period of several rabbiteye blueberry cultivars. VIII Intl. Symp. Vaccinium Cult. 715:137–142.
Norvell, D. J. and J.N. Moore. 1982. An evaluation of chilling models for estimating rest requirements of highbush blueberries (Vaccinium corymbosum L.). J. Amer. Soc. Hortic. Sci. 107(1):5–-56.
Olivier, J.G., K.M. Schure, and J.A.H.W. Peters. 2017. Trends in global CO2 and total greenhouse gas emissions. Netherlands Envi. Assessment Agy. 5:1–11.
Ou, S. and C. Chen. 2000. Estimation of the chilling requirement and development of a low-chill model for local peach trees in Taiwan. J. Chinese Soc. Hort. Sci. 46(4):337–350.
Protzman, E. 2021. Blueberries Around the Globe–Past, Present, and Future. Intl. Agricultural Trade Report. USDA.
Retamales, J.B. and J.F Hancock(eds.). 2012. Blueberries. CABI, Oxfordshire, U.K.
Retamales, J. B., C. Mena, G. Lobos, and Y. Morales. 2015. A regression analysis on factors affecting yield of highbush blueberries. Scientia Hort. 186:7–14.
Richardson, E.A., Seeley, S.D. and Walker, D.R. 1974. A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience 9(4):331–332.
Rohde, A. and R.P. Bhalerao. 2007. Plant dormancy in the perennial context. Trends Plant Sci. 12(5):217–223.
Rom, R.C. and E.H. Arrington. 1966. The effect of varying temperature regimes on degree-days to bloom in the Elberta peach. Proc. Amer. Soc. Hort. Sci. 88:239–244.
Rummukainen, M. 2012. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Clim. Change 3(2):115–129.
Sater, H., L.F.V. Ferrão, J. Olmstead, P.R. Munoz, J. Bai, A. Hopf, and A. Plotto. 2021. Exploring environmental and storage factors affecting sensory, physical and chemical attributes of six southern highbush blueberry cultivars. Sci. Hort. 289 (110468):1–10.
Shaultout, A.D. and C.R. Unrath. 1983. Rest completion prediction model for Starkrimson delicious apples. J. Amer. Soc. Hort. Sci. 108:957–961.
Snyder R.L., D. Spano, C. Cesaraccio, and P. Duce. 1999 Determining degreeday thresholds from field observations. Int. J. Biometeorol. 42:177–182.
Spiers, J. M. and A. D. Draper. 1974. Effect of Chilling on Bud Break in Rabbiteye Blueberry. J. Amer. Soc. Hort. Sci. 995:398–399.
Spiers, J.M. 1976. Chilling regimes affect bud break in ‘Tifblue’ rabbiteye blueberry. J. Amer. Soc. Hortic. Sci. 101(1):84–86.
Spiers, J.M. 1990. Rabbiteye blueberry. Fruit Var. J. 44(2):68–72.
Taylor, R. 1990. Interpretation of the correlation coefficient: a basic review. J. Diagn. Med. Sonogr. 6(1):35–39.
Wang, K. M. 2021. Enhancing Energy Efficiency with Insulation Materials in Taipei, Taiwan Residential Redevelopment. Doctoral dissertation, University of Washington. USA.
Weinberger, J. H. 1950. Chilling requirements of peach varieties. J. Amer. Soc. Hortic. Sci. 56:122–28.
Williamson, J.G., R.L. Darnell, G. Krewer, J. Vanenvegen, and S. NeSmith. 1996. Gibberellic acid: A management tool for increasing yield of rabbiteye blueberry. J. Small Fruit Vitic. 3(4):203–218.
Witcher, C. L., K. J. Curry, D. A. Marshall-Shaw, and J. Spiers. 2011. Blueberry Fruit Dev. Splitting. Hortscience 45(4):496.
Zheng, Y., R. Li, Y. Sun. M. Xu, H. Zhang, L. Huang, and X. Zhang. 2017. The optimal temperature for the growth of blueberry (Vaccinium corymbosum L.). Pak. J. Bot. 49(3):965–979.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87102-
dc.description.abstract藍莓(Vaccinium spp.)為原生於溫帶地區之落葉性果樹,秋、冬季環境日長與溫度誘導植株進入休眠。打破休眠則依賴低溫的累積,休眠解除後另需累積足量的積熱,方能使花芽開花並進入果實發育階段。臺北位處於亞熱帶地區,冬季低溫不足與春季氣溫波動大,對果實產期具有明顯影響。因此本研究分析自2018年9 月至2022 年7 月之氣溫資料,並利用低溫單位模型(chill units model)以及透過不同基礎溫度計算積熱(heat units),觀察南方高叢藍莓(Vaccinium hybrid)、兔眼藍莓(Vaccinium virgatum)品種以及NTU兔眼藍莓品系產期的變化。2018/19 年低溫累積量為4 個年份中最少,2019/20 年與2020/21 年累積量相近並高於2018/19 年,而2021/22 年累積量為4 個生產期中最高的一期。積熱則以4 個基礎溫度進行計算,分別設定為0 °C、5 °C、10 °C、15 °C。以15 °C 的標準計算下,全期累積積熱以2021 年最高為42151.6 °Ch,其次為2020 年41306.4 °Ch 與 2019 年39763 °Ch,而2022 年最低為37210 °Ch。結果顯示,南高叢藍莓在低溫累積最少與最多的兩個年份,產期開始日明顯延後,需較高積熱量產期才開始,而兔眼藍莓與NTU 兔眼品系則是在低溫累積最多的年份產期明顯延後,在2021/22 年產期開始前累積最多。南高叢藍莓在低溫累積量最低及最高的年份,產期集中,總產期明顯縮短,產期開始至結束累積之積熱最少,兔眼藍莓與NTU藍莓總產期與低溫累積累較無關。而不同品種間產量達總產量50%之日期區間,在不同生產期間並無明顯的變化趨勢。整體上,南高叢藍莓產期較容易受氣溫變化所影響,而兔眼藍莓與NTU藍莓受影響程度不如南高叢藍莓明顯。zh_TW
dc.description.abstractBlueberry (Vaccinium spp.) is a deciduous fruit tree native to temperate regions.In autumn and winter, environmental daylength and temperature induces dormancy.To break the dormancy, accumulation of chilling temperature is necessary. Once the dormancy is released, accumulation of enough heat is required for bloom and fruit development. Taipei is in the subtropical region, insufficient chilling temperature in winter and great temperature fluctuations in spring have a significant impact on the harvesting date and harvest windows. This study analyzed the temperature data from September 2018 to July 2022, using chill unit (CU) models and calculates heat units (°Ch) through different base temperatures to evaluate the response of several southern highbush blueberry (Vaccinium hybrid), rabbiteye blueberry (Vaccinium virgatum) varieties and NTU rabbiteye blueberry lines. Among the four years, accumulated chilling units in 2018/19 was the least; CU of 2019/20 was similar to that of 2020/21 and was higher than 2018/19, while CU of 2021/22 was the highest. The accumulated heat was calculated based on four base temperatures, which were set at 0 °C, 5 °C, 10 °C, and 15 °C. Calculated on the basis of 15 °C, 2021 had the highest accumulated heat at 42151.6 °Ch, followed by 41306.4 °Ch in 2020 and 39763 °Ch in 2019, and the lowest in 2022 was 37210 °Ch. The results showed that in the year with either less or high accumulated CU, the initial harvesting date of southern highbush blueberry significantly delayed, and the accumulated heat untils prior the initial harvesting date was higher. The initial harvesting date of rabbiteye blueberry and NTU rabbiteye blueberry were significantly delayed in 2021/22 with the highest chill unit accumulation and most of the varieties and lines were accumulated the most heat units in 2021/22. The harvest windows of southern highbush blueberry were significantly shortened in years with relatively high or low accumulated chilling units and the accumulated heat units during the harvest window were less. However, the accumulative yield reaching 50% of total yield among different varieties had no obvious difference in different years. Overall, the harvest windows of southern highbush blueberry were more sensitive to temperature changes in winter and spring, while rabbiteye blueberry and NTU blueberry line were less affected.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-05T17:31:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-05T17:31:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 x
圖目錄 xi
附錄 xiv
第一章 總論-前人研究與試驗假說 1
1.1. 前言 1
1.2. 臺北地區氣候型態與氣候變遷 2
1.3. 氣候變遷對藍莓生長之影響 2
1.4. 藍莓品種特性 3
1.5. 氣溫對藍莓生殖生長之影響 4
1.6. 藍莓休眠期與低溫需求 5
1.7. 低溫單位計算 5
1.7.1. 低溫時數模型 (chill hours model) 6
1.7.2. 猶他模型 (Utah model) 6
1.7.3. 北卡羅萊納模型 (North Carolina model) 7
1.7.4. 低需冷性模型 (low chilling model) 7
1.7.5. 動態模型 (dynamic model) 7
1.7.6. 均溫模型 (mean temperature model) 8
1.7.7. 臺灣模型 (Taiwan model) 8
1.7.8. 應用於藍莓之低溫模型 8
1.8. 植物之熱需求 9
1.8.1. 作物之基礎溫度 9
1.8.2. 生長度日 (growing degree days, GDD) 之計算 9
1.8.3. 生長度時 (growing degree hours, GDH) 之計算 10
1.8.4. 生長度分 (growing degree minutes, GDM) 之計算 10
1.9. 試驗假說 10
第二章 材料與方法 12
2.1. 試驗地點與材料 12
2.2. 氣象資料紀錄 12
2.3. 開花期紀錄 13
2.4. 果實採收紀錄 13
2.5. 統計分析 14
第三章 試驗結果 15
3.1. 氣溫變化觀察 15
3.1.1 第一年度(2018 年9 月至2019 年7 月) 15
3.1.2 第二年度(2019 年9 月至2020 年7 月) 15
3.1.3 第三年度(2020 年9 月至2021 年7 月) 16
3.1.4 第四年度(2021 年9 月至2022 年7 月) 16
3.2. 低溫單位變化 16
3.3. 積熱變化 17
3.4. 降雨量變化 17
3.5. 生產紀錄 (2018-2019) 17
3.5.1. 南高叢藍莓產量與產期 17
3.5.2. 兔眼藍莓產量與產期 17
3.5.3. NTU 品系產量與產期 18
3.6. 生產紀錄 (2019-2020) 18
3.6.1. 南高叢藍莓產量與產期 18
3.6.2. 兔眼藍莓產量與產期 18
3.6.3. NTU 品系產量與產期 19
3.7. 生產紀錄 (2020-2021) 19
3.7.1. 南高叢藍莓產量與產期 19
3.7.2. 兔眼藍莓產量與產期 19
3.7.3. NTU 品系產量與產期 20
3.8. 生產紀錄 (2021-2022) 20
3.8.1 南高叢藍莓產量與產期 20
3.8.2 兔眼藍莓產量與產期 20
3.8.3 NTU 品系產量與產期 21
3.9 花期紀錄 (2021-2022) 21
3.10. 低溫累積量與產期開始日期之相關性 22
3.10.1. 南高叢藍莓 22
3.10.2. 兔眼藍莓 22
3.10.3. NTU 藍莓 22
3.11. 低溫累積量與總產期之相關性 23
3.11.1. 南高叢藍莓 23
3.11.2. 兔眼藍莓 23
3.11.3. NTU 藍莓 23
3.12. 積熱與產期開始日期之相關性 24
3.12.1. 南高叢藍莓 24
3.12.2. 兔眼藍莓 24
3.12.3. NTU 藍莓 24
3.13. 積熱與總產期之相關性 25
3.13.1. 南高叢藍莓 25
3.13.2. 兔眼藍莓 25
3.13.3. NTU 藍莓 25
第四章 討論 73
4.1. 天氣變化與種植於臺北地區之藍莓 73
4.2. 低溫單位與積熱的計算 74
4.3. 氣溫變化對開花期之影響 75
4.4. 氣溫變化對產期開始日與總產期之影響 75
4.5. 氣溫變化對產量集中程度之影響 77
4.6. 綜合討論 78
第五章 結論 79
參考文獻 80
附錄 92
-
dc.language.isozh_TW-
dc.subject物後期zh_TW
dc.subject兔眼藍莓zh_TW
dc.subject熱單位zh_TW
dc.subject氣候變遷zh_TW
dc.subject低溫單位zh_TW
dc.subject南高叢藍莓zh_TW
dc.subjectchill uniten
dc.subjectsouthern highbush blueberryen
dc.subjectrabbiteye blueberryen
dc.subjectgrowing degree houren
dc.subjectclimate changeen
dc.subjectphenological phaseen
dc.title冬春季氣溫波動對藍莓產量分佈與產期之影響zh_TW
dc.titleEffects of temperature fluctuation in winter and spring on blueberry yield distribution and harvest perioden
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李金龍;張哲嘉zh_TW
dc.contributor.oralexamcommitteeChing-lung Lee ;Jer-Chia Changen
dc.subject.keyword氣候變遷,低溫單位,熱單位,南高叢藍莓,兔眼藍莓,物後期,zh_TW
dc.subject.keywordclimate change,chill unit,growing degree hour,southern highbush blueberry,rabbiteye blueberry,phenological phase,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202300446-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-15-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf5.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved