請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86997
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛馬坦 | zh_TW |
dc.contributor.advisor | Matan Shelomi | en |
dc.contributor.author | 江旻柔 | zh_TW |
dc.contributor.author | Min-Rou Chiang | en |
dc.date.accessioned | 2023-05-02T17:19:17Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-05-02 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2023-01-13 | - |
dc.identifier.citation | Amat, I., Desouhant, E., Gomes, E., Moreau, J., & Monceau, K. (2018). Insect personality: what can we learn from metamorphosis? Curr Opin Insect Sci, 27, 46-51. https://doi.org/10.1016/j.cois.2018.02.014
Aribi, N., Quennedey, A., Pitoizet, N., & Delbecque, J. (1997). Ecdysteroid Titres in a Tenebrionid Beetle, Zophobas atratus: Effects of Grouping and Isolation. J Insect Physiol, 43, 7. Bedford, G. O. (1980). Biology, Ecology, and Control of Palm Rhinoceros Beetles. Ann Rev Entomol, 25, 33. Berberet, R. C., & Helms, T. J. (1972). Comparative Anatomy and Histology of Selected Systems in Larval and Adult Phyllophaga anxia (Coleoptera: Scarabaeidae). Annals Ent Soc America, 65(5), 28. Cheung, W. W. K., & Low, K. W. (1975). Ultrastructural and Functional Differentiation of The Midgut of The Sugar Cane Beetle, Protaetia acuminata (F.) (Coleoptera: Cetoniidae). Int J Insect Morphol & Embryol, 4, 13. Costa, C., & Vanin, S. A. (1985). On The Concepts of "Pre-Pupa", with Special Reference to The Coleoptera. Revta bras Zool, 2, 7. de Cassia Santos Przepiura, T., Navarro, A. M., da Rosa Ribeiro, R., Gomes, J. R., Pitthan, K. V., & de Miranda Soares, M. A. (2020). Mechanisms of programmed cell death in the midgut and salivary glands from Bradysia hygida (Diptera: Sciaridae) during pupal-adult metamorphosis. Cell Biol Int, 44(10), 1981-1990. https://doi.org/10.1002/cbin.11404 Delbecque, J., & Sláma, K. (1980). Ecdysteroid Titres during Autonomous Metamorphosis in a Dermestid Beetle. Zeitschrift für Naturforschung C, 35, 15. Dow, J. A. T. (1987). Insect Midgut Function. Advances Insect Physio. 19, 187-328. https://doi.org/10.1016/s0065-2806(08)60102-2 Ebert, K. M., Arnold, W. G., Ebert, P. R., & Merritt, D. J. (2020). Hindgut microbiota reflects different digestive strategies in dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Appl Environ Microbiol, 87(5), e02100-20 https://doi.org/10.1128/AEM.02100-20 Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev, 37(5), 699-735. https://doi.org/10.1111/1574-6976.12025 Fukumori, K., Oguchi, K., Ikeda, H., Shinohara, T., Tanahashi, M., Moriyama, M., Koga, R., & Fukatsu, T. (2022). Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles (Coleoptera: Chrysomelidae: Cassidinae). mBio, 13(1), 17. https://doi.org/https://doi.org/10.1128/mbio.03691-21 Gonzalez-Serrano, F., Perez-Cobas, A. E., Rosas, T., Baixeras, J., Latorre, A., & Moya, A. (2020). The Gut Microbiota Composition of the Moth Brithys crini Reflects Insect Metamorphosis. Microb Ecol, 79(4), 960-970. https://doi.org/10.1007/s00248-019-01460-1 Hirashima, A., Takeya, R., & Taniguchi, E. (1995). Metamorphosis, Activity of Juvenile-Hormone Esterase and Alteration of Ecdysteroid Titres: Effects of Larval Density and Various Stress on the Red Flour Beetle, Tribolium freemani Hinton (Coleoptera: Tenebrionidae). J. Insect Physiol. , 41, 6. Hsieh, C. H., Huang, C. G., Wu, W. J., & Wang, H. Y. (2020). A rapid insect species identification system using mini-barcode pyrosequencing. Pest Manag Sci, 76(4), 1222-1227. https://doi.org/10.1002/ps.5674 Huang, S.-W., Zhang, H.-Y., Marshall, S., & Jackson, T. A. (2010). The scarab gut: A potential bioreactor for bio-fuel production. Insect Sci., 17(3), 175-183. https://doi.org/10.1111/j.1744-7917.2010.01320.x Jackson, T. A., & Klein, M. G. (2006). Scarabs as Pests: A Continuing Problem. The Coleopterists Bulletin, 60(sp5), 102-119. https://doi.org/10.1649/0010-065x(2006)60[102:Sapacp]2.0.Co;2 Judy, K. J., & Gilbert, L. I. (1969). Morphology of the Alimentary Canal During the Metamorphosis of Hyalophora cecropia (Lepidoptera: Saturniidae). Annals En. Soc America, 62, 9. Koçakoğlu, N. Ö., Candan, S., & Erbey, M. (2020). Structure of the mouthparts and alimentary canal of Eusomus ovulum Germar, 1824 (Coleoptera: Curculionidae). Revta Bras Ento,, 64(3). https://doi.org/10.1590/1806-9665-rbent-2020-0004 Lee, J.-H., Lee, K.-A., & Lee, W.-J. (2017). Microbiota, Gut Physiology, and Insect Immunity. Advances Insect Phyiol, 52, 111-138. https://doi.org/10.1016/bs.aiip.2016.11.001 McKenna, D. (2020). Evolution: Symbiotic Microbes Mediate Host Range of Herbivorous Beetles. Curr Biol, 30(15), R893-R896. https://doi.org/10.1016/j.cub.2020.05.089 Nardi, J. B., Bee, C. M., Miller, L. A., Nguyen, N. H., Suh, S. O., & Blackwell, M. (2006). Communities of microbes that inhabit the changing hindgut landscape of a subsocial beetle. Arthropod Struct Dev, 35(1), 57-68. https://doi.org/10.1016/j.asd.2005.06.003 Ozyurt Kocakoglu, N., Candan, S., & Caglar, U. (2020). Histomorphology of the Adult Digestive Tract of Capnodis tenebrionis (L. 1758) (Coleoptera, Buprestidae). Microsc Microanal, 26(6), 1245-1254. https://doi.org/10.1017/S1431927620024472 Parthasarathy, R., & Palli, S. R. (2008). Proliferation and differentiation of intestinal stem cells during metamorphosis of the red flour beetle, Tribolium castaneum. Dev Dyn, 237(4), 893-908. https://doi.org/10.1002/dvdy.21475 Perissinotto, R., & Clennell, L. (2021). Census of the fruit and flower chafers (Coleoptera, Scarabaeidae, Cetoniinae) of the Macau SAR, China. Zookeys, 1026, 17-43. https://doi.org/10.3897/zookeys.1026.60036 Rolff, J., Johnston, P. R., & Reynolds, S. (2019). Complete metamorphosis of insects. Philos Trans R Soc Lond B Biol Sci, 374(1783), 20190063. https://doi.org/10.1098/rstb.2019.0063 Rost-Roszkowska, M. M., Poprawa, I., & Chachulska-Zymelka, A. (2010). Apoptosis and autophagy in the midgut epithelium of Acheta domesticus (Insecta, Orthoptera, Gryllidae). Zoolog Sci, 27(9), 740-745. https://doi.org/10.2108/zsj.27.740 Rowland, I. J., & Goodman, W. G. (2016). Magnetic Resonance Imaging of Alimentary Tract Development in Manduca sexta. PLoS One, 11(6), e0157124. https://doi.org/10.1371/journal.pone.0157124 Shah, N. A. (2021). A short review on morphology, biomass and economics and ecological distribution of Scarabaeidae coleoptera scarab beetles. Pure App. Bio., 10(4). https://doi.org/10.19045/bspab.2021.100118 Sheehan, C. M., Crawford, A. M., & Wigley, P. J. (1982). Anatomy and histology of the alimentary canal of the black beetle, Heteronychus arator. New Zealand Journal of Zoology, 9(3), 381-385. https://doi.org/10.1080/03014223.1982.10423867 Shukla, S. P., Sanders, J. G., Byrne, M. J., & Pierce, N. E. (2016). Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Mol Ecol, 25(24), 6092-6106. https://doi.org/10.1111/mec.13901 Terra, W. R., & Ferreira, C. (2020). Evolutionary trends of digestion and absorption in the major insect orders. Arthropod Struct Dev, 56, 100931. https://doi.org/10.1016/j.asd.2020.100931 Tettamanti, G., & Casartelli, M. (2019). Cell death during complete metamorphosis. Philos Trans R Soc Lond B Biol Sci, 374(1783), 20190065. https://doi.org/10.1098/rstb.2019.0065 Tettamanti, G., Grimaldi, A., Casartelli, M., Ambrosetti, E., Ponti, B., Congiu, T., Ferrarese, R., Rivas-Pena, M. L., Pennacchio, F., & Eguileor, M. (2007). Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Res, 330(2), 345-359. https://doi.org/10.1007/s00441-007-0449-8 Thummel, C. (1995). From Embryogenesis to Metamorphosis: The Regulation and Function of Drosophila Nuclear Receptor Superfamily Members. Cell, 83, 7. Zheng, W., Zhao, Y., & Zhang, H. (2012). Morphology and ultrastructure of the hindgut fermentation chamber of a melolonthine beetle Holotrichia parallela (Coleoptera: Scarabaeidae) during larval development. Micron, 43(5), 638-642. https://doi.org/10.1016/j.micron.2011.11.009 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86997 | - |
dc.description.abstract | 完全變態昆蟲在幼蟲和成蟲期的外觀型態會非常不同,幼蟲隨著齡期增加而蛻皮直到進入蛹期,蟲體內外的器官組織會進行大量的改造以適應羽化成蟲後的棲地與食性的轉變。金龜子(Coleoptera: Scarabaeidae)在自然環境中扮演很重要的角色,除了幫助植物授粉和促進土讓內的物質循環外,他們也是在環境評估上的指標昆蟲。由於幼蟲和成蟲的食性不同,每個生長階段的消化道形態可能不同。然而,關於這方面相關的文獻非常少,因此我推測在幼蟲和成蟲階段具有不同食性的甲蟲會有不同的腸道形態,並認為腸道轉化會在蛹期發生。我選擇了5種金龜子作為描述整個生活史的腸道變化的觀察對象:Oryctes rhinoceros、Thaumastopeus shangaicus、Protaetia orientalis、Protaetia inquinata和Protaetia formosana。這些甲蟲在幼蟲期居住於腐木或堆肥內,以食用有機質維生,而成蟲以花蜜、果實等較軟的植物組織維生。此外使用甘藷龜金花蟲 (Cassida circumdata,Chrysomelidae)與金龜子比較整個生長期的腸道變化是否跟幼蟲和成蟲食性的轉變有關。每個階段皆至少各剖3隻個體,並使用顯微鏡觀察消化道結構,拍照並說明各個階段的消化道特徵。從實驗結果發現金龜子在蛹前期的消化道會從幼蟲期轉變成成蟲期的腸道,進行腸道的大改造,但有一些構造如後腸的生物膜仍會保留在成蟲腸道內。在甘藷龜金花蟲的生活史中,腸道並沒有隨著生長階段進行較大的改變。這些資訊可以為變態提供新的見解,包括金龜子蛹期的消化道形態變化的過程以及這些物種可能的共生微生物傳播途徑。 | zh_TW |
dc.description.abstract | Holometabolous insects like beetles are morphologically very different between larvae and adults. They grow through successive molts until the pupa stage, when their tissues and organs are modified to adapt to the shift of habitats and feeding habits. The scarab beetles (Coleoptera: Scarabaeidae) play an important role in the environment. In addition to pollination and promoting the circulation of materials in the soil, they are also indicator insects for environmental assessment. The morphology of the digestive tract in each life stage may be different, as the diets of the larvae and adults are different. However, there is little literature about this. I hypothesize that beetles with different diets in the larval and adult stage will have significantly different gut morphologies, and wanted to observe these changes develop during pupation. I chose these Scarabaeidae species as the focus of my thesis: Oryctes rhinoceros, Thaumastopeus shangaicus and Protaetia spp., where the larvae eat wood, soil, or compost while the adults feed on soft plant matter, tree sap, and rotting fruits. I compared these to the tortoise beetle, Cassida circumdata (Chrysomelidae), which feeds on leaves as both larva and adult, to compare their gut morphology to see if the digestive tract changes dramatically to satisfy changes in diet. I dissected three beetles of all species in each stage, observing the structures in detail on the microscope, taking photos and illustrating their digestive tracts. I found there are dramatic changes of the digestive tract in scarab beetles during the pupal stage, although some structures like a microbial biofilm are retained from the larval stage. In the leaf beetles, the gut did not change. This information can provide new insight into metamorphosis, including the possible symbiont transmission routes for these species. The illustrations of what occurs during pupation are novel contributions to this field. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:19:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-05-02T17:19:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acceptance Certificate ⅰ
Acknowledgements ⅱ Chinese Abstract ⅲ English Abstract ⅳ List of Tables ⅶ List of Figures ⅷ Introduction 1 Materials and Methods 10 Results 14 Discussion 21 References 50 | - |
dc.language.iso | en | - |
dc.title | 金龜子在各發育階段中消化道的構造變化 | zh_TW |
dc.title | Anatomical Changes of the Scarab Beetle Digestive Tract in Each Life Stage | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳明城;胡哲明 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Cheng Wu;Jer-Ming Hu | en |
dc.subject.keyword | 消化道形態,變態,腸道轉化,金龜科(Scarabaeidae), | zh_TW |
dc.subject.keyword | digestive tract morphology,metamorphosis,gut transformation,scarab beetle, | en |
dc.relation.page | 56 | - |
dc.identifier.doi | 10.6342/NTU202300082 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-01-14 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 昆蟲學系 | - |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 目前未授權公開取用 | 4.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。