Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86989
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌zh_TW
dc.contributor.advisorShih-Huang Tungen
dc.contributor.author劉宸妤zh_TW
dc.contributor.authorChen-Yu Liuen
dc.date.accessioned2023-05-02T17:16:15Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-02-
dc.date.issued2022-
dc.date.submitted2023-01-05-
dc.identifier.citationBenyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D. K. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers 2022, 14 (12), 2366.
Global Polyethylene Terephthalate (PET) Market Overview. 2017. https://www.alliedmarketresearch.com/polyethylene-terephthalate-market POLYETHYLENE TEREPHTHALATE (PET) RESIN MARKET - GROWTH, TRENDS, COVID-19 IMPACT, AND FORECASTS (2022 - 2027). https://www.mordorintelligence.com/industry-reports/polyethylene-terephtalate-market GmbH, n.-I. New bio-based polymer PEF shows low CO2 footprint - Peer-reviewed LCA study with in-depth assessment of industrial PEF production and its use as raw material for bottles. In PETnology online, 2022.
Wang, J.; Liu, X.; Jia, Z.; Sun, L.; Zhu, J. Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): Potential bio-based engineering plastic. European Polymer Journal 2018, 109, 379-390.
Staff, P. History of the world in 52 packs | 18. PET bottles; Packaging News, 22 December 2015.
Kim, T.; Bamford, J.; Gracida-Alvarez, U. R.; Benavides, P. T. Life Cycle Greenhouse Gas Emissions and Water and Fossil-Fuel Consumptions for Polyethylene Furanoate and Its Coproducts from Wheat Straw. ACS Sustainable Chemistry & Engineering 2022, 10 (8), 2830-2843.
Burgess, S. K.; Leisen, J. E.; Kraftschik, B. E.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Chain mobility, thermal, and mechanical properties of poly (ethylene furanoate) compared to poly (ethylene terephthalate). Macromolecules 2014, 47 (4), 1383-1391.
Burgess, S. K.; Kriegel, R. M.; Koros, W. J. Carbon dioxide sorption and transport in amorphous poly (ethylene furanoate). Macromolecules 2015, 48 (7), 2184-2193.
Avantium. FDCA and plantMEG™ together make a 100% plant-based plastic PEF.https://www.avantium.com/lead-products/ (accessed.
Avantium. Avantium reaches key commercial milestone for its FDCA flagship plant with commitments for >50% of its output. Apr 7, 2021. https://www.avantium.com/press-releases/avantium-reaches-key-commercial-milestone-for-its-fdca-flagship-plant-with-commitments-for-50-of-its-output/ (accessed.
Mercea, P.; Mureşan, L.; Mecea, V.; Silipaş, D.; Ursu, I. Permeation of gases through poly (ethylene terephthalate) membranes metallized with palladium. Journal of membrane science 1988, 35 (3), 291-300.
Shahpanah, M.; Mehrabian, S.; Abbasi-Firouzjah, M.; Shokri, B. Improving the oxygen barrier properties of PET polymer by radio frequency plasma-polymerized SiOxNy thin film. Surface and Coatings Technology 2019, 358, 91-97.
Chen, Y.; Ding, L.; Jiang, B.; Liu, L.; Du, Y.; Huang, Y. Excellent gas barrier properties PET film modified by silicone resin/sericite nanocomposite coatings. ES Materials & Manufacturing 2019, 4 (3), 58-65.
Haworth, B.; Robinson, T. The measurement of thin PVdC coatings on PET substrates using fluorescence microscopy. Polymer testing 1991, 10 (3), 205-219.
MOFFITT, R. D. K., Jasmeet;FREEMAN, T Edwin;SHI, YU;Morlon Salvador. BARRIER ENHANCED PET MULTILAYER CONTAINER. 2016.
Acquasanta, E. E. F. Improving the sunstainbility and performance of multilayer barrier containers with PEF. In ComPETence, ONE:21.
Langius., F. A. R. V. B. PEF as a multilayer barrier technology: a sustainable way to enable long shelf life in PET bottles. In ComPETence, TWO:20.
Avantium. EPBP gives 3-year endorsement to allow multilayer PET/PEF packaging in PET bottle recycling stream; 2022. https://www.petnology.com/online/news-detail/epbp-gives-3-year-endorsement-to-allow-multilayer-pet-pef-packaging-in-pet-bottle-recycling-stream-1.
Sousa, A. F.; Matos, M.; Freire, C. S.; Silvestre, A. J.; Coelho, J. F. New copolyesters derived from terephthalic and 2, 5-furandicarboxylic acids: A step forward in the development of biobased polyesters. Polymer 2013, 54 (2), 513-519.
Konstantopoulou, M.; Terzopoulou, Z.; Nerantzaki, M.; Tsagkalias, J.; Achilias, D. S.; Bikiaris, D. N.; Exarhopoulos, S.; Papageorgiou, D. G.; Papageorgiou, G. Z. Poly (ethylene furanoate-co-ethylene terephthalate) biobased copolymers: Synthesis, thermal properties and cocrystallization behavior. European Polymer Journal 2017, 89, 349-366.
Sun, L.; Zhang, Y.; Wang, J.; Liu, F.; Jia, Z.; Liu, X.; Zhu, J. 2, 5‐Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly (ethylene terephthalate) copolyester with enhanced performance. Journal of Applied Polymer Science 2019, 136 (11), 47186.
Joshi, A. S.; Lawrence, J. G.; Coleman, M. R. Effect of biaxial orientation on microstructure and properties of renewable copolyesters of poly (ethylene terephthalate) with 2, 5-furandicarboxylic acid for packaging application. ACS Applied Polymer Materials 2019, 1 (7), 1798-1810.
Zaidi, S.; Thiyagarajan, S.; Bougarech, A.; Sebti, F.; Abid, S.; Majdi, A.; Silvestre, A. J.; Sousa, A. F. Highly transparent films of new copolyesters derived from terephthalic and 2, 4-furandicarboxylic acids. Polymer Chemistry 2019, 10 (39), 5324-5332.
Min, J.; Tingting, L.; Qiang, Z.; Ying, C.; Guangyuan, Z. From fossil resources to renewable resources: Synthesis, structure, properties and comparison of terephthalic acid-2, 5-furandicarboxylic acid-diol copolyesters. Journal of Renewable Materials 2015, 3 (2), 120-141.
Terzopoulou, Z.; Papadopoulos, L.; Zamboulis, A.; Papageorgiou, D. G.; Papageorgiou, G. Z.; Bikiaris, D. N. Tuning the properties of furandicarboxylic acid-based polyesters with copolymerization: A review. Polymers 2020, 12 (6), 1209. Wang, P.; Huang, W.; Zhang, Y.; Lin, J.; Chen, P. An evoluted bio‐based 2, 5‐furandicarboxylate copolyester fiber from poly (ethylene terephthalate). Journal of Polymer Science 2020, 58 (2), 320-329.
Reddy, A. B.; Reddy, G. S. M.; Jayaramudu, J.; Sudhakar, K.; Manjula, B.; Ray, S. S.; Sadiku, E. R. Polyethylene terephthalate-based blends: natural rubber and synthetic rubber. In Poly (ethylene terephthalate) based blends, composites and nanocomposites, Elsevier, 2015; pp 75-98.
Park, S.; Thanakkasaranee, S.; Shin, H.; Lee, Y.; Tak, G.; Seo, J. Pet/bio-based terpolyester blends with high dimensional thermal stability. Polymers 2021, 13 (5), 728.
Hu, Y.; Prattipati, V.; Mehta, S.; Schiraldi, D.; Hiltner, A.; Baer, E. Improving gas barrier of PET by blending with aromatic polyamides. Polymer 2005, 46 (8), 2685-2698.
Dalgıçdir, C. Investigation of barrier properties of as cast and biaxially stretched pet/evoh and peti/evoh blend films. 2009.
KOTLIAR, A. M. Interchange Reactions Involving Condensation Polymers. 1981, 367-395.
Collins, S.; Peace, S. K.; Richards, R. W.; MacDonald, W.; Mills, P.; King, S. Transesterification in poly (ethylene terephthalate). Molecular weight and end group effects. Macromolecules 2000, 33 (8), 2981-2988.
Poulopoulou, N.; Kasmi, N.; Siampani, M.; Terzopoulou, Z. N.; Bikiaris, D. N.; Achilias, D. S.; Papageorgiou, D. G.; Papageorgiou, G. Z. Exploring next-generation engineering bioplastics: Poly (alkylene furanoate)/poly (alkylene terephthalate)(PAF/PAT) blends. Polymers 2019, 11 (3), 556.
Papageorgiou, D. G.; Tsetsou, I.; Ioannidis, R. O.; Nikolaidis, G. N.; Exarhopoulos, S.; Kasmi, N.; Bikiaris, D. N.; Achilias, D. S.; Papageorgiou, G. Z. A new era in engineering plastics: Compatibility and perspectives of sustainable alipharomatic poly (ethylene terephthalate)/poly (ethylene 2, 5-furandicarboxylate) blends. Polymers 2021, 13 (7), 1070.
黃郁茹. 利用PEF 與纖維素奈米纖維提升PET 之阻氣性. 2021.
Venkatachalam, S.; Nayak, S. G.; Labde, J. V.; Gharal, P. R.; Rao, K.; Kelkar, A. K. Degradation and recyclability of poly (ethylene terephthalate); InTech Rijeka, Croatia, 2012.
Montaudo, G.; Puglisi, C.; Samperi, F. Primary thermal degradation mechanisms of PET and PBT. Polymer degradation and stability 1993, 42 (1), 13-28.
Paci, M.; La Mantia, F. Competition between degradation and chain extension during processing of reclaimed poly (ethylene terephthalate). Polymer degradation and Stability 1998, 61 (3), 417-420.
Bimestre, B. H.; Saron, C. Chain extension of poly (ethylene terephthalate) by reactive extrusion with secondary stabilizer. Materials Research 2012, 15, 467-472.
鄭有舜. X-光小角度散射在軟物質研究上的應用. In 物理雙月刊, 4月,2004.
童世煌. Scattering and diffraction techniques.
Bamford, C.; Jenkins, A. Termination Reaction in Vinyl Polymerization: Preparation of Block Copolymers. Nature 1955, 176 (4471), 78.
Graebling, D.; Muller, R.; Palierne, J. Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 1993, 26 (2), 320-329.
Krishnan, J. M. D., Abhijit P Kumar, PB Sunil. Rheology of complex fluids; Springer, 2010.
Vinckier, I.; Minale, M.; Mewis, J.; Moldenaers, P. Rheology of semi-dilute emulsions: viscoelastic effects caused by the interfacial tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 150 (1-3), 217-228.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86989-
dc.description.abstract聚對苯二甲酸乙二酯(PET)是一種石化材料,被大量的應用生活中,其中以食品包裝材料佔了多數。隨著大量的生產伴隨產生的廢棄物,對於地球的環境造成了傷害,且近年來環保意識抬頭,如何減少石化材料的生產及尋找可替代的生質材料尤為重要。聚呋喃二甲酸乙二酯(PEF)其優越的機械性質及阻氣性等被視為可取代PET的生質高分子材料,但目前生產PEF的成本高完全取代PET仍然有難度,因此結合PET及PEF進行混摻作為PEF尚未完全取代PET過渡期的方法。因PET及PEF結構上的不同,兩者單純進行混摻時,兩者會產生嚴重的相分離,不利於後續的加工處理。本實驗室先前利用共沉澱的方式使PET及PEF達最佳混合狀態,利用熱壓機在高溫中進行酯交換反應產生共聚物成功提高PET/PEF彼此的相容性。但共沉澱的方式使用大量的有機溶劑,不利於工業界的應用,因此本研究利用微型混煉機進行混摻,同時進行酯交換反應。
本研究由DSC結果顯示隨著混煉時間增加,玻璃轉移溫度由兩個變成一個,代表摻合物達相容,當摻合物相容時成功利用1H-NMR推算摻合物的最高酯交換程度可達14%。利用奧士瓦黏度計量測混煉不同時間摻合物的極限黏度的變化,進一步證明分子量降低與機械性質延伸率的變化的關係。利用DSC及小角X光散射技術分析混煉後摻合物的晶體厚度的變化。以流變動態頻率掃描觀察混煉初期摻合物的鬆弛時間。發現在280℃氮氣中混煉10至15分鐘的條件下, 具有一定的酯交換程度,提高摻合物的相容性,其氧氣透過率可下降至PET的1/2,而且在機械性質維持一定的延伸率。
zh_TW
dc.description.abstractPolyethylene terephthalate (PET) is one of the mostly used fossil-based material in our daily life, especially in food packing usage. However, it accompanies lots of pollution for mass manufacturing and the production and end of life causes damage to our environment. With the rise of environmental awareness, it is important to reduce the production of petrochemicals and find an alternative material from biomass. Polyethylene 2,5-furandicarboxylate (PEF) is considered as bio-based substitute for PET because of its exceptional mechanical and gas barrier properties, but the high manufacturing cost hinders it from mass production. Thus, blending PET with PEF is a temporary solution before PEF could fully replace PET. However, PET and PEF are intrinsically immiscible due to structure difference, which may cause phase separation and the difficulty of processing. Previously, we had used co-precipitation method to prepare PET/PEF blends and the compatibility of the blends was enhanced by the transesterification of PET and PEF under high temperature. Nevertheless, this method requires a great amount of organic solvents and this might not be suitable for industry.
In this study, instead of co-precipitation method, we blended PET and PEF by compounding during which the transesterification was simultaneously achieved. With sufficient compounding time, the compatibility between PET and PEF could be improved, as revealed by the changes of the glass transition temperatures. We estimated the degree of transesterification by 1H-NMR and it reached 14% when PET and PEF became compatible. However, the fracture strains of the blends declined dramatically with compounding time due to the decrease of molecular weight, as inferred from the decrease in intrinsic viscosity of PET/PEF blends. By optimizing the compounding parameters, we found that the blends compounded at 280 ℃ in nitrogen atmosphere for 10 to 15 minutes showed good compatibility and balanced properties, with an acceptable fracture strain up to 400% and a low oxygen transmission rate below half that of pure PET. Additionally, we used small angle X-ray scattering to study the crystal structures and used the rheometer to study the rheological properties of PET/PEF blends with different compounding time.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:16:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-02T17:16:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 III
摘要 IV
Abstract V
圖目錄 IX
表目錄 XIV
第一章 緒論及研究動機 1
第二章 文獻回顧 3
2.1 聚對苯二甲酸乙二酯(PET) 3
2.2 聚呋喃二甲酸乙二酯(PEF) 4
2.3 PET和PEF多層結構 5
2.4 PET/PEF共聚 6
2.5 PET/PEF混摻 10
第三章 實驗方法與儀器 13
3.1 實驗藥品 13
3.2 樣品製備 14
3.2.1. PET和PEF熔融混煉樣品製備 14
3.2.2. PET和PEF添加催化劑樣品製備 15
3.2.3.混煉後樣品熱壓 15
3.3 實驗儀器 16
3.3.1熱重力分析儀(Thermogravimetric Analysis,TGA) 16
3.3.2差式掃描量熱儀(Differential scanning calorimeters, DSC) 16
3.3.3 萬能試驗機(Universal/Tensile Tester) 17
3.3.4 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer, NMR) 18
3.3.5 奧士瓦黏度計(Ostwald Viscosimeter) 19
3.3.6 氧氣透過分析儀(Oxygen Permeation Testing Analyzer, OTR) 21
3.3.7 X 光散射(X-ray Scattering) 21
3.3.8 流變儀(Rheometer) 24
第四章 結果與討論 26
4.1 DSC相容性分析 26
4.1.1 PET/PEF摻合物於270℃混煉 26
4.1.2 PET/PEF摻合物於280℃混煉 28
4.1.3 PET/PEF摻合物於290℃混煉 30
4.1.4 PET/PEF添加催化劑摻合物於270℃混煉 30
4.1.5 PET/PEF摻合物於280℃氮氣環境中混煉 32
4.2 1H-NMR酯交換程度分析 33
4.3 機械性質分析 36
4.3.1 PET/PEF摻合物於280℃混煉 37
4.3.2 PET/PEF添加催化劑摻合物於270℃混煉 40
4.3.3 PET/PEF摻合物於290℃混煉 43
4.3.4 PET/PEF摻合物在280℃氮氣環境中混煉 45
4.4 奧士瓦黏度計極限黏度分析 47
4.5 PET/PEF摻合物氧氣阻氣性分析 51
4.6 PET/PEF摻合物等溫結晶分析 54
4.7 PET/PEF摻合物流變性質分析 61
4.7.1 PET/PEF摻合物黏度變化 61
4.7.2 PET/PEF摻合物動態頻率掃描分析 65
第五章 結論 69
參考文獻 71
附錄 77
-
dc.language.isozh_TW-
dc.titlePET/PEF摻合物混煉條件優化與結構性質分析zh_TW
dc.titleCompounding Process Optimization and Structure/Property Analysis for PET/PEF Blendsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張光偉;邱文英;賴森茂zh_TW
dc.contributor.oralexamcommitteeGuang-Wei Jang;Wen-Ying Chiu;Sen-Mau Laien
dc.subject.keywordPET,PEF,混煉,酯交換反應,阻氣性,流變動態頻率掃描,zh_TW
dc.subject.keywordPET,PEF,micro compounding,transesterification reaction,rheology,gas barrier properties,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202210193-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-01-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved