請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86980完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高英哲 | zh_TW |
| dc.contributor.advisor | Ying-Jer Kao | en |
| dc.contributor.author | 林冠霖 | zh_TW |
| dc.contributor.author | Guan-Lin Lin | en |
| dc.date.accessioned | 2023-05-02T17:12:56Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-02 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-09 | - |
| dc.identifier.citation | L. Savary and L. Balents, “Quantum spin liquids: a review,” Reports on Progress in Physics, vol. 80, no. 1, p. 016502, 2016.
X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons. OUP Oxford, 2004. X.-G. Wen, “Colloquium: Zoo of quantum-topological phases of matter,” Rev. Mod. Phys., vol. 89, p. 041004, Dec 2017. S. Sachdev, “Kagome- and triangular-lattice heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons,” Phys. Rev. B, vol. 45, pp. 12 377–12 396, Jun 1992. Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, “Projected-wave-function study of the spin-1/2 heisenberg model on the kagome lattice,” Physical review letters, vol. 98, no. 11, p. 117205, 2007. Y. Iqbal, D. Poilblanc, and F. Becca, “Spin-1/2 heisenberg j1- j2 antiferromagnet on the kagome lattice,” Physical Review B, vol. 91, no. 2, p. 020402, 2015. Y. Iqbal, D. Poilblanc, and F. Becca, “Vanishing spin gap in a competing spin-liquid phase in the kagome heisenberg antiferromagnet,” Physical Review B, vol. 89, no. 2, p. 020407, 2014. Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, “Gapless spin-liquid phase in the kagome spin-1/2 heisenberg antiferromagnet,” Physical Review B, vol. 87, no. 6, p. 060405, 2013. Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, “Signatures of dirac cones in a dmrg study of the kagome heisenberg model,” Physical Review X, vol. 7, no. 3, p. 031020, 2017. C.-Y. Lee, B. Normand, and Y.-J. Kao, “Gapless spin liquid in the kagome heisenberg antiferromagnet with dzyaloshinskii-moriya interactions,” Phys. Rev. B, vol. 98, p. 224414, Dec 2018. H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang, B. Normand, and T. Xiang, “Gapless spin-liquid ground state in the s = 1/2 kagome antiferromagnet,” Phys. Rev. Lett., vol. 118, p. 137202, Mar 2017. F. Wang and A. Vishwanath,“Spin-liquid states on the triangular and kagome ́lattices: A projective-symmetry-group analysis of schwinger boson states,” Phys. Rev. B, vol. 74, p. 174423, Nov 2006. Y.-M. Lu, Y. Ran, and P. A. Lee, “Z2 spin liquids in the s = 1/2 heisenberg model on the kagome lattice: A projective symmetry-group study of schwinger fermion mean-field states,” Phys. Rev. B, vol. 83, p. 224413, Jun 2011. S. Jiang and Y. Ran, “Symmetric tensor networks and practical simulation algorithms to sharply identify classes of quantum phases distinguishable by short-range physics,” Phys. Rev. B, vol. 92, p. 104414, Sep 2015. S. Yan, D. A. Huse, and S. R. White, “Spin-liquid ground state of the s = 1/2 kagome heisenberg antiferromagnet,” Science, vol. 332, no. 6034, pp. 1173–1176, 2011. S. Depenbrock, I. P. McCulloch, and U. Schollwock, “Nature of the spin-liquid ground state of the s= 1/2 heisenberg model on the kagome lattice,” Physical review letters, vol. 109, no. 6, p. 067201, 2012. H.-C. Jiang, Z. Wang, and L. Balents, “Identifying topological order by entanglement entropy,” Nature Physics, vol. 8, no. 12, pp. 902–905, 2012. S. Nishimoto, N. Shibata, and C. Hotta, “Controlling frustrated liquids and solids with an applied field in a kagome heisenberg antiferromagnet,” Nature communications, vol. 4, no. 1, pp. 1–6, 2013. Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, “Quasiparticle statistics and braiding from ground-state entanglement,” Physical Review B, vol. 85, no. 23, p. 235151, 2012. S. Crone and P. Corboz, “Detecting a Z2 topologically ordered phase from unbiased infinite projected entangled-pair state simulations,” Physical Review B, vol. 101, no. 11, p. 115143, 2020. H. He, H. Moradi, and X.-G. Wen, “Modular matrices as topological order parameter by a gauge-symmetry-preserved tensor renormalization approach,” Physical Review B, vol. 90, no. 20, p. 205114, 2014. J.-W. Mei, J.-Y. Chen, H. He, and X.-G. Wen, “Gapped spin liquid with Z2 topological order for the kagome heisenberg model,” Physical Review B, vol. 95, no. 23, p. 235107, 2017. M. Mambrini, R. Orus, and D. Poilblanc, “Systematic construction of spin liquids on the square lattice from tensor networks with su(2) symmetry,” Phys. Rev. B, vol. 94, p. 205124, Nov 2016. S. Jiang, P. Kim, J. H. Han, and Y. Ran, “Competing Spin Liquid Phases in the S=1/2 Heisenberg Model on the Kagome Lattice,” SciPost Phys., vol. 7, p. 6, 2019. Z. Y. Xie, J. Chen, J. F. Yu, X. Kong, B. Normand, and T. Xiang, “Tensor renormalization of quantum many-body systems using projected entangled simplex states,” Phys. Rev. X, vol. 4, p. 011025, Feb 2014. D. Poilblanc, N. Schuch, D. Perez-Garcia, and J. I. Cirac, “Topological and entanglement properties of resonating valence bond wave functions,” Phys. Rev. B, vol. 86, p. 014404, Jul 2012. N. Schuch, D. Poilblanc, J. I. Cirac, and D. Perez-Garcia, “Resonating valence bond states in the peps formalism,” Phys. Rev. B, vol. 86, p. 115108, Sep 2012. J. I. Cirac, D. Poilblanc, N. Schuch, and F. Verstraete, “Entanglement spectrum and boundary theories with projected entangled-pair states,” Physical Review B, vol. 83, no. 24, p. 245134, 2011. M. Oshikawa, “Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice,” Phys. Rev. Lett., vol. 84, pp. 1535–1538, Feb 2000. Hastings, M. B., “Sufficient conditions for topological order in insulators,” Europhys. Lett., vol. 70, no. 6, pp. 824–830, 2005. E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Annals of Physics, vol. 16, no. 3, pp. 407–466, 1961. H. C. Jiang, Z. Y. Weng, and T. Xiang, “Accurate determination of tensor network state of quantum lattice models in two dimensions,” Phys. Rev. Lett., vol. 101, p. 090603, Aug 2008. H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, “Differentiable programming tensor networks,” Phys. Rev. X, vol. 9, p. 031041, Sep 2019. R. Orus and G. Vidal, “Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction,” Physical Review B, vol. 80, no. 9, p. 094403, 2009. J. Haegeman, V. Zauner, N. Schuch, and F. Verstraete, “Shadows of anyons and the entanglement structure of topological phases,” Nature communications, vol. 6, no. 1, pp. 1–8, 2015. K. Duivenvoorden, M. Iqbal, J. Haegeman, F. Verstraete, and N. Schuch, “Entanglement phases as holographic duals of anyon condensates,” Phys. Rev. B, vol. 95, p. 235119, Jun 2017. Y.-H. Chen, “Symmetric tensor network studies of kitaev spin liquids,” Master’s thesis, National Taiwan University, Jan 2021. X. Chen, B. Zeng, Z.-C. Gu, I. L. Chuang, and X.-G. Wen, “Tensor product representation of a topological ordered phase: Necessary symmetry conditions,” Phys. Rev. B, vol. 82, p. 165119, Oct 2010. P. Schmoll, S. Singh, M. Rizzi, and R. Orus, “A programming guide for tensor networks with global su(2) symmetry,” Annals of Physics, vol. 419, p. 168232, 2020. T. Tay and O. I. Motrunich, “Variational study of J1-J2 heisenberg model on kagome lattice using projected schwinger-boson wave functions,” Phys. Rev. B, vol. 84, p. 020404, Jul 2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86980 | - |
| dc.description.abstract | 凝態物理學的其中一個核心目標是精確地生成實際交互作用系統中的量子相圖。而量子多體糾纏的研究為我們提供了許多關於量子態結構的關鍵洞見。尤其張量網路最近已成為一種強大的數值技術,能夠可靠地捕捉系統中的糾纏結構以及量子相關性,提供描述量子態的自然語言。最近的數值研究顯示,自旋-1/2 海森堡模型在籠紋晶格上(KAFH)的基態包含著自旋液體的有力證據;然而,這種新奇物質的性質還是未知的。
在本論文中,我們利用對稱投影糾纏單體態來分類可能的Z2自旋液體,並用數值方法獲得最佳基態。首先,我們利用投影糾纏單體態的投影對稱群概念,事先處理張量量值的等效性,將我們波函數中的局部張量進行分類,允許我們在獲得對稱投影糾纏單體態波函數的每個有限分類下,分別進行變分簡單更新模擬。接著我們使用角轉移矩陣重整群(CTMRG)演算法來獲得更精確的能量測量。因此,我們的方法使我們能夠在熱力學極限下了解KAFH模型基態的本質。此外,最小糾纏態的重疊提供了我們基態波函數中Z2拓撲序的證據。 | zh_TW |
| dc.description.abstract | One of the central goals in condensed matter physics is accurately generating quantum phase diagrams of realistically interacting systems. The study of quan- tum many-body entanglement has provided many key insights into the structure of quantum states of matter. Tensor networks (TNs) have recently emerged as powerful numerical techniques that reliably capture the entanglement structure and quantum correlations in the system, offering a natural language to describe quantum states. Recent numerical studies show that the ground state of the spin-1/2 Kagome antiferromagnetic Heisenberg (KAFH) model contains strong evidence of a spin liquid phase; however, the characteristics of this new exotic phase of matter are unknown. In this thesis, we utilize symmetric projected entangled simplex states (PESS) to classify possible Z2 spin liquid phases and numerically obtain the optimal ground state. In particular, we employ the concept of projective symmetry group (PSG) for PESS, allowing us to deal with tensor gauge equivalence beforehand to classify our local tensor in the TN wavefunction. The classification allows us to obtain a finite number of classes of symmetric PESS wavefunctions and perform a variational simple update simulation within each class separately. Additionally, we use the Corner Transfer Matrix Renormalization Group (CTMRG) algorithm to obtain more accurate energy measurement. Therefore, our approach enables us to understand the nature of the ground state of the KAFH model at the thermodynamic limit. Furthermore, the minimal entanglement states (MES) overlapping provides evidence of the Z2 topological order within our ground state wavefunction. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:12:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-02T17:12:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract ................................................................................................ i
List of Figures ....................................................................................... v List of Tables ......................................................................................... vii 1 Introduction ........................................................................................ 1 1.1 Background and Motivation .............................................................. 1 1.2 Outline of the thesis ......................................................................... 2 2 Symmetry classification on PESS ........................................................ 5 2.1 Spin-12 symmetric PESS on kagome lattice ...................................... 5 2.2 Gauge transformation and symmetry classification .......................... 7 2.3 Symmetric simple update.................................................................. 13 3 CTMRG measurement .......................................................................... 17 3.1 Energy measurement ......................................................................... 17 3.2 MES overlaps ..................................................................................... 19 3.2.1 Long-cylinder setting ...................................................................... 21 3.2.2 Parity controlled CTMRG on torus ................................................... 24 4 Conclusion ............................................................................................ 27 A Symmetry group of kagome lattice ....................................................... 29 B Symmetry transformation rule ............................................................... 31 Reference ................................................................................................. 35 | - |
| dc.language.iso | en | - |
| dc.subject | 角轉移矩陣重整群 | zh_TW |
| dc.subject | 量子自旋液體 | zh_TW |
| dc.subject | 拓樸序 | zh_TW |
| dc.subject | 海森堡模型 | zh_TW |
| dc.subject | 張量網路 | zh_TW |
| dc.subject | 投影對稱群 | zh_TW |
| dc.subject | Corner Transfer Matrix Renormalization Group | en |
| dc.subject | Quantum spin liquids | en |
| dc.subject | Topological order | en |
| dc.subject | Heisenberg model | en |
| dc.subject | Tensor networks | en |
| dc.subject | Projective symmetry group | en |
| dc.title | 對稱張量網路對自旋1/2海森堡模型在籠紋晶格之研究 | zh_TW |
| dc.title | Symmetric Tensor Network Studies of the Spin-1/2 Heisenberg Model on Kagome Lattice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳柏中;謝長澤 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Chung Chen;Chang-Tse Hsieh | en |
| dc.subject.keyword | 量子自旋液體,拓樸序,海森堡模型,張量網路,投影對稱群,角轉移矩陣重整群, | zh_TW |
| dc.subject.keyword | Quantum spin liquids,Topological order,Heisenberg model,Tensor networks,Projective symmetry group,Corner Transfer Matrix Renormalization Group, | en |
| dc.relation.page | 39 | - |
| dc.identifier.doi | 10.6342/NTU202300040 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-01-10 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 4.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
