請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86965完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何昊哲 | zh_TW |
| dc.contributor.advisor | Hao-Che Ho | en |
| dc.contributor.author | 鄧詣軒 | zh_TW |
| dc.contributor.author | Yi-Xuan Deng | en |
| dc.date.accessioned | 2023-05-02T17:07:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-02 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-14 | - |
| dc.identifier.citation | 1. Astakhov, V. P., and Joksch, S. (2012). Metalworking fluids (MWFs) for cutting and grinding: fundamentals and recent advances.
2. Bengtsson, L., Grahn, L., and Olsson, J. (2005). Hydrological function of a thin extensive green roof in southern Sweden. Hydrology Research, 36(3),259-268. 3. Bliss, D. J., Neufeld, R. D., and Ries, R. J. (2009). Storm water runoff mitigation using a green roof. Environmental Engineering Science, 26(2),407-418. 4. Boving, T. B., Stolt, M. H., Augenstern, J., and Brosnan, B. (2008).Potential for localized groundwater contamination in a porous pavement parking lot setting in Rhode Island. Environmental Geology, 55(3), 571-582. 5. Brown, R., Line, D., and Hunt, W. (2012). LID treatment train: Pervious concrete with subsurface storage in series with bioretention and care with seasonal high water tables. Journal of Environmental Engineering, 138(6),689-697. 6. Burns, M. J., Fletcher, T. D., Walsh, C. J., Ladson, A. R., and Hatt, B. E. (2012). Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landscape and Urban Planning, 105(3), 230-240.https://doi.org/https://doi.org/10.1016/j.landurbplan.2011.12.012 7. Clos, J. (2013). From COP21 to the new urban agenda. UN Chronicle, 52(3),4-5.https://doi.org/10.18356/6dd51f94-en 8. Coffman, L. S. (2001). Low impact development creating a storm of controversy. Water Resources Impact, 3(6), 7-9. 9. DeBusk, K. M., and Hunt, W. F. (2011). Bioretention Outflow: Does It Mimic Rural Water Interflow? In K. M. DeBusk and W. F. Hunt (Eds.), World Environmental and Water Resources Congress 2011 (pp. 375-386).https://doi.org/doi:10.1061/41173(414)41 10. Fan, H., and Sailor, D. J. (2005). Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes.Atmospheric environment, 39(1), 73-84. 11. Fletcher, T., and Deletic, A. (2007). Data Requirements for Integrated Urban Water Management: Urban Water Series-UNESCO-IHP.CRC Press. 12. Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.- L., Mikkelsen, P. S., Rivard, G., Uhl, M., Dagenais, D., and Viklander, M.(2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525-542.https://doi.org/10.1080/1573062X.2014.916314 13. Gülbaz, S., and Kazezyılmaz-Alhan, C. M. (2017). Experimental Investigation on Hydrologic Performance of LID with Rainfall-Watershed-Bioretention System. Journal of Hydrologic Engineering, 22(1), D4016003.https://doi.org/doi:10.1061/(ASCE)HE.1943-5584.0001450 14. Hunt, W., Smith, J., Jadlocki, S., Hathaway, J., and Eubanks, P. (2008). Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. Journal of Environmental Engineering, 134(5), 403-408. 15. IPCC. (2007). Climate change 2007: The physical science basis. 16. Jennings, D. B., and Jarnagin, S. T. (2002). Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: a historical perspective in a mid-atlantic subwatershed. Landscape Ecology,17(5), 471. 17. Keifer, C. J., and Chu, H. H. (1957). Synthetic storm pattern for drainage design. Journal of the hydraulics division, 83(4), 1332-1331-1332-1325. 18. Kleerekoper, L., Van Esch, M., and Salcedo, T. B. (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30-38. 19. Kumar, K., Kozak, J., Hundal, L., Cox, A., Zhang, H., and Granato, T. (2016). In-situ infiltration performance of different permeable pavements in a employee used parking lot–A four-year study. Journal of environmental management, 167, 8-14. 20. Lloyd, S. D., Wong, T. H., and Chesterfield, C. J. (2002). Water sensitive urban design: a stormwater management perspective. 21. Makepeace, D. K., Smith, D. W., and Stanley, S. J. (1995). Urban stormwater quality: summary of contaminant data. Critical Reviews in Environmental Science and Technology, 25(2), 93-139. 22. Manley, G. (1958). On the frequency of snowfall in metropolitan England. Quarterly Journal of the Royal Meteorological Society, 84(359), 70-72. 23. Scholz, M., and Grabowiecki, P. (2007). Review of permeable pavement systems. Building and environment, 42(11), 3830-3836. 24. Shaver, E. (2003). Design guideline manual-stormwater treatment devices. Auckland, New Zealand: Auckland Regional Council Technical Publication(10). 25. Short, F. T., and Neckles, H. A. (1999). The effects of global climate change on seagrasses. Aquatic Botany, 63(3-4), 169-196. 26. Taniguchi, M. (2011). Groundwater and subsurface environments: human impacts in Asian coastal cities. Springer Science and Business Media. 27. Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., and Edmunds, M. (2013). Ground water and climate change. Nature climate change, 3(4), 322-329. 28. Thomas, C. D. (2010). Climate, climate change and range boundaries. Diversity and Distributions, 16(3), 488-495. 29. Thuiller, W. (2007). Climate change and the ecologist. Nature, 448(7153), 550-552. 30. USEPA. (2000). Low Impact Development (LID) Literature Review No.EPA-841-B00-005. 31. VanWoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., and Xiao, L. (2005). Green roof stormwater retention: effects of roof surface, slope, and media depth. Journal of environmental quality, 34(3), 1036-1044. 32. Whelans, C., Maunsell, H. G., and Thompson, P. (1994). Planning and management guidelines for water sensitive urban (residential) design. Department of Planning and Urban Development of Western Australia, Perth, Australia. 33. Wilson, S., Newman, A. P., Puehmeier, T., and Shuttleworth, A. (2003). Performance of an oil interceptor incorporated into a pervious pavement. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 156(1), 51-58.https://doi.org/10.1680/ensu.2003.156.1.51 34. Xia, J., Wang, H., Stanford, R. L., Pan, G., and Yu, S. L. (2018). Hydrologic and water quality performance of a laboratory scale bioretention unit. Frontiers of environmental science and engineering, 12(1), 1-9. 35. 何嘉浚. (2019). 植生滯留槽降低農業污染之應用. 苗栗區農業專訊(85), 11-13. 36. 許棋閔. (2022). 考量水量水質與棲地指標之最佳工程規劃研究-以社子島濕地為例 (Publication Number 2022 年) 國立臺灣大學]. AiritiLibrary. 37. 林士惟. (2018). 多目標基因演算法於韌性城市評估之研究 (Publication Number 2018 年) 國立臺灣大學]. AiritiLibrary. 38. 林旭信, 呂學建, and 李軒昂. (2015). 都市雨水下水道人孔水位不確定性分析 [Uncertainty Analysis of Manhole Water Stage of Urban Storm Drainage System]. 先進工程學刊, 10(2), 87-98. 39. 林志棟, 陳世晃, 張堡清, and 許凱鈞. (2015). 透水性鋪面保水與溫差成效之評估-以中壢市龍慈路為例. 鋪面工程, 13(2), 71--78. 40. 麥葉鵬. (2021). 基於多尺度試驗, 監測和模型模擬的低影響開發措施雨水徑流控制效应研究 華南理工大學]. 41. 內政部營建署. (2016). 水環境低衝擊開發設施操作手冊. 42. 潘文斌, 柯錦燕, 鄭鵬, and 占昕. (2018). 低影響開發對城市內澇節點雨洪控制效果研究——不同降雨特性下的情景模擬. 中國環境科學, 38(7), 2555-2563. 43. 彭少麟, 周凱, 葉有華, and 粟娟. (2005). 城市熱島效應研究進展. 生態環境,14(4), 574-579. 44. 王如意, 易任, Wang, R.-Y., and Yih, J. (2003). 應用水文學. 臺北市: 中國土木水利工程學會.http://140.112.114.62/handle/246246/139721 45. 王彥承. (2014). 透水鋪面對於道路逕流水質淨化能力評估 (Publication Number 2014 年) 國立臺北科技大學]. AiritiLibrary. 46. 行政院農業委員會. (2021). 水土保持技術規範. 47. 徐硯庭. (2014). 低衝擊開發運用在高都市化地區的減洪效益- 以新北市中永和地區為例 (Publication Number 2014 年) 國立臺灣大學]. AiritiLibrary. 48. 楊錦釧. (2005). 地下水質量傳輸模式之發展與現地試驗研究 (3/3). 49. 游繁結, 蔡志隆, and 劉邦崇. (2002). 地下水滲流對邊坡崩壞之砂箱試驗 [Study on Slope Failure Induced by Seepage Flow]. 中華水土保持學報, 33(1), 47-55.https://doi.org/10.29417/jcswc.200203_33(1).0006 50. 張富銘. (2015). 低衝擊開發規劃與設計之研究 (Publication Number 2015 年) 國立臺灣大學]. AiritiLibrary. 51. 張玉玉. (2015). 高效滲透減排透水鋪裝對徑流的控制研究 北京建築大學]. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86965 | - |
| dc.description.abstract | 近年來,全球氣候變遷速度加快,全球平均氣溫逐漸升高導致極端自然災害事件發生頻率上升,對生物物種之生存環境產生嚴重影響。另外,隨著工業化進程發展,全世界範圍之城市人口比例已超過總人口的一半,在城市開發的過程中土地不透水面積增多,同時豐水期和枯水期差異更加顯著,強降雨時地表徑流量增加以致於地下水無法有效補充,改變原有的自然生態環境。為彌補過度開發對環境造成之負面影響,以低衝擊開發概念應用於城市基礎設施,加強極 端自然災害下城市之韌性,因此綜合評估低衝擊開發管理技術於不同降雨情境之效率成為其中重要一環。
城市淹水主要因地表不透水面積比例較大,雨水多從地表進入排水系統,為減緩淹水對城市環境之影響,本研究首先針對低衝擊開發之透水鋪面設施進行物理試驗,於實驗室搭建壓克力水箱 (60cm*120cm* 60cm),設置均勻降雨系統還原實際降雨,以固定濃度之食鹽水作為地表污染物之替代物,分析透水鋪面對降雨洪峰流量、洪峰到達時間和地表徑流水之鹽度之影響。另外,不同降雨情境下透水鋪面對地表徑流水量與水質之處理效率有所不同,本研究透過 使用荷蘭Delft3D軟體,對物理模型試驗之結果進行驗證,並設置不同降雨重現期、不同降雨偏態係數和不同降雨歷時之參數分析透水鋪面於各情境下之指標變化情況,包括降雨洪峰削減率、洪峰延後時間和鹽度去除率。 結果顯示,以臺北氣象站1951年至2011年5月最大降雨量為數據樣本,透水鋪面於短降雨重現期、偏態係數 (r=0.4至0.6)、短降雨歷時之情境下對洪峰之減緩作用較顯著,其極限承載範圍為重現期 20 年至30年之雨量,於50年降雨重現期對洪峰無減緩作用,但鹽度去除率保持緩慢上升並維持於72.6%至85.31%,希望本研究結果對後續透水鋪面規劃設計提供參考價值並在緩解城市洪水災害起到一定幫助。 | zh_TW |
| dc.description.abstract | In recent years, global climate change has accelerated and the global average temperature has gradually increased, leading to an increase in the frequency of extreme natural disasters, which have a serious impact on the living environment of biological species. In addition, with the development of industrialization, the proportion of urban population worldwide has exceeded half of the total population. In the process of urban development, the impervious area of land has increased, and the difference between the periods of abundant water and dry water has become more significant, resulting in the increase of surface runoff during heavy rainfall and the ineffective replenishment of groundwater, which changes the original natural ecological environment. In order to compensate for the negative impact of overdevelopment on the environment, the concept of low-impact development is applied to urban infrastructure to enhance the resilience of cities under extreme natural hazards, and therefore it is important to evaluate the efficiency of low-impact development management techniques for different rainfall scenarios.
In order to mitigate the impact of flooding on urban environment, this study first conducted physical tests on permeable pavement facilities for low-impact development by setting up acrylic water tanks (60cm*120cm*60cm) in the laboratory, setting up a uniform rainfall system to restore the actual rainfall, and using a fixed concentration of salt water as a proxy for surface pollutants. The effect of permeable pavement on the flood flow, flood arrival time, and salinity of surface runoff was analyzed. In addition, the efficiency of permeable pavers on surface runoff volume and water quality varies under different rainfall scenarios. and salinity removal rate. The results showed that, using the maximum rainfall from 1951 to May 2011 at Taipei Meteorological Station as the data sample, the permeable pavement had a significant effect on flood peak mitigation under the scenarios of short rainfall recurrence period, skewness coefficient (r=0.4 to 0.6), and short rainfall history, and its limit load range was from 20 to 30 years of recurrence period. It is hoped that the results of this study will provide a reference value for the subsequent planning and design of permeable pavement and help to mitigate urban flooding hazards. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:07:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-02T17:07:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 #
誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 研究架構 2 第二章 文獻回顧 4 2.1 氣候變遷之影響 4 2.2 低衝擊開發 6 2.2.1 低衝擊開發之發展歷程 6 2.2.2 低衝擊開發在水量和水質之應用 7 2.2.3 目前低衝擊開發研究之成果 11 2.3 透水鋪面試驗和數值模擬之研究 12 第三章 研究方法 16 3.1 物理模型試驗 16 3.1.1 試驗設備及設備前置設計與加工 16 3.1.2 試驗配置 21 3.1.3 試驗過程 24 3.1.4 試驗結果 25 3.2 數值模擬 27 3.2.1 Delft3D 模型介紹 28 3.2.2 模型建置 28 第四章 結果與討論 37 4.1 不同重現期對透水鋪面減緩洪峰和去除鹽度之影響 37 4.2 不同偏態係數對透水鋪面減緩洪峰和去除鹽度之影響 41 4.3 不同降雨歷時對透水鋪面減緩洪峰和去除鹽度之影響 47 4.4 不同情境對透水鋪面成效之整合分析 50 4.4.1 降雨重現期對透水鋪面成效之探討 50 4.4.2 偏態係數對透水鋪面成效之探討 51 4.4.3 降雨歷時對透水鋪面成效之探討 52 第五章 結論與建議 58 5.1 結論 58 5.2 建議 59 參考文獻 60 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 洪峰延後時間 | zh_TW |
| dc.subject | 透水鋪面 | zh_TW |
| dc.subject | 洪峰削減率 | zh_TW |
| dc.subject | 鹽度去除率 | zh_TW |
| dc.subject | flood reduction rate | en |
| dc.subject | permeable pavement | en |
| dc.subject | salinity removal rate | en |
| dc.subject | flood delay time | en |
| dc.title | 應用透水鋪面於改善水量水質之研究 | zh_TW |
| dc.title | Application of Permeable Pavement to Improve Water Quantity and Quality | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李鴻源;葉克家 | zh_TW |
| dc.contributor.oralexamcommittee | Hong-Yuan Lee;Keh-Chia Yeh | en |
| dc.subject.keyword | 透水鋪面,洪峰削減率,洪峰延後時間,鹽度去除率, | zh_TW |
| dc.subject.keyword | permeable pavement,flood reduction rate,flood delay time,salinity removal rate, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202300044 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-01-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
