請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8684完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭本垣(Ban-Yuan Kuo),洪淑蕙(Shu-Huei Hung) | |
| dc.contributor.author | Han-Chiang Chou | en |
| dc.contributor.author | 周漢強 | zh_TW |
| dc.date.accessioned | 2021-05-20T19:59:43Z | - |
| dc.date.available | 2010-04-02 | |
| dc.date.available | 2021-05-20T19:59:43Z | - |
| dc.date.copyright | 2010-04-02 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-03-22 | |
| dc.identifier.citation | Abers, G. A. (1992), Relationship between shallow and intermediate depth seismicity in the eastern Aleutian subduction zone, Geophys. Res. Lett., 19, 2019-2022.
Arcay, D., E. Tric, and M. P. Doin (2005), Numerical simulations of subduction zones: effects of slab dehydration on the mantle wedge dynamics, Phys. Earth and Planet. Int., 149, 133-153. Bergman, E.A., and S.C. Solomon (1990), Earthquake awarms on the Mid-Atlantic Ridge: Products of magmatism or extensional tectonics?, J. Geophys. Res., 95, 4943-4965. Bevis, M. (1988), Seismic slip and down-dip strain rates in Wadati-Benioff zones, Sciences, 240, 1317-1319. Billen, M. I., M. Gurnis, and M. Simons (2003), Multiscale dynamics of the Tonga-Kermadec subduction zone, Geophys. J. Int., 153, 359-388. Biot, M. A. (1961), Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis, Geol. Soc. Am. Bull., 72, 1595-1620. Bostock, M. G., R. D. Hyndman, S. Rondenay, and S. M. Peacock (2002), An inverted continental Moho and serpentinization of the forearc mantle, Nature, 417, 536-538. Burbach, G. V., and C. Frohlich (1986), Intermediate and deep seismicity and lateral structure of subducted lithosphere in the circum-Pacific region, Rev. Geophys. Space Phys., 24, 833-874. Caldwell, J.G., W.F. Haxby, D.E. Karig, and D.L. Turcotte (1976), On the applicability of a universal elastic trench profile, Earth and Planetary Science Letters, 31, 2, 239-246. Chen, W. P., and M. R. Brudzinski (2001), Evidence for a large-scale remnant of subducted lithosphere beneath Fiji, Science, 292, 2475-2479. Chen, Y. L. (1995), A study of 3-D velocity structure of the crust and the subduction zone in the Taiwan region, 172 pp., master thesis (in Chinese), National Central University. Chiao, L. Y. (1993), Strain segmentation and lateral membrane deformation rate of the subducted Ryukyu slab, The Island Arc, 2, 94-103. Chiao, L. Y., H. Kao, S. Lallemand, and C. S. Liu (2001), An alternative interpretation for slip vector residuals of subduction interface earthquakes: a case study in the westernmost Ryukyu slab, Tectonophysics, 333, 123-134. Chiu, J.-M., B.L. Isacks, and R.K. Cardwell (1991), 3-D configuration of subducted lithosphere in the western Pacific, Geophys. J. int., 106, 99-111. Chou, H. C., B. Y. Kuo, S. H. Hung, L. Y. Chiao, D. Zhao, and Y. M. Wu (2006), The Taiwan-Ryukyu subduction-collision complex: Folding of a viscoelastic slab and the double seismic zone, J. Geophys. Res., 111, B04410, doi:10.1029/2005JB003822. Christensen, U. R. (1989), Mantle rheology, constitution and convection, in Mantle convection: plate tectonics and global dynamics, in volume 4 of The fluid mechanics of astrophysics and geophysics, edited by Peltier, W. R., Gordon and Breach Science Publishers, pp. 595-655, New York. Christensen, N. I. (1966), Elasticity of ultrabasic rocks, J. Geophys. Res., 71, 5821-5931. Christensen, N. I. (2004), Serpentinites, peridotites, and seismology, International Gogy Review, 46, 795-816. Chu, C. H. (2005), Generation of high-Mg andesites in the Kueishantao volcano, the southernmost part of the Okinawa Trough, 99 pp., Master Thesis (in Chinese), National Taiwan University, Taipei, Taiwan. Chung, S. L., S. L. Wang, R. Shinjo, C. S. Lee, and C. H. Chen (2000), Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa trough, Terra Nova, 12, 225-230. Cochran, J. R., An analysis of isostasy in the world’s oceans 2. midocean ridge crests (1979), J. Geophys. Res., 84, 4713-4729. Deschamps, A., S. E. Lallemand, J. Y. Collot (1998), A detailed study of the Gagua ridge: a fracture zone uplifted during a plate reorganization in the mid-Eocene, Mar. Geophys. Res., 20, 403-423. Deschamps, A., P. Monié, S. Lallemand, S. K. Hsu, and K. Y. Yeh (2000), Evidence for early Cretaceous curst trapped in the Philippine Sea plate, Earth and Planet. Sci. Lett., 179, 503-516. Dziewonski, M.A. and D.L. Anderson (1984) Seismic tomography of the Earth's interior, Am. Sci., pp. 483–493 Engdahl, E. R., R. D. van der Hilst, and R. P. Buland (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seismol. Soc. Am., 88, 722-734. Escartin, J., G. Hirth, and B. Evans (1997), Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges, Earth and Planet. Sci. Lett., 151, 181-189. Flügge W. (1975), Viscoelasticity, 194 pp., Springer-Verlag, Berlin. Font, Y., S. Lallemand, and J. Angelier (1999), Etude de la transition entre l'orogene actif de Taiwan et la subduction des Ryukyu apports de la sismicite, Soc. Geol. Fr, 170(3), 271-283. Font, Y., C. S. Liu, P. Schnurle, and S. Lallemand (2001), Constraints on backstop geometry of the southwest Ryukyu subduction based on reflection seismic data, Tectonophysics, 333, 135-158. Fryer, P., C. G. Wheat, and M. J. Mottl (1999), Mariana blueschist mud volcanism: implication for conditions within the subduction zone, Geoloty, 27, 103-106. Graeber, F. M., and Gunter Asch (1999), Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data, J. Geophys. Res., 104, 20,237-20,256. Grand, S.P., van der Hilst, R.D. and Widiyantoro, S. (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7, pp. 1–7. Grove, T. L., N. Ghatterjee, S. W. Parman, and E. Médard (2006), The influence of H2O on mantle wedge melting, Earth Planet. Sci. Lett., 249, 74-89. Gudmundsson, O, and M. Sambridge (1998), A regionalized upper mantle (RUM) seismic model, J. Geophys. Res., 103, 7121-7136. Guillot, S., K. H. Hattori, and J. de Sigoyer (2000), Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya, Geology, 28, 199-202. Hacker, B. R., G. A. Abers, and S. M. Peacock (2003), Subduction factory 1. theoretical mineralogy, densities, seismic wave speeds, and H2O contents, J. Geophys. Res., 108(B1), 2029, doi:10.10292001JB001127. Hasegawa, A., N. Umino, and A. Takagi (1978), Double planed structure of the deep seismic zone in northeastern Japan arc, Tectonophys., 47, 43-58. Hasegawa, A., S. Horiuchi, and N. Umino (1994), Seismic structure of the northeastern Japan convergent plate margin: A synthesis, J. Geophys. Res., 99, 22,295-22,311. Hattori, K. H., and S. Guillot (2003), Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge, Geology, 31, 525-528. Hirth, G., J. Escartin, and J. Lin (1998), The rheology of the lower oceanic crust: Implications for lithospheric deformationi at mid-ocean ridges, 291-303, in Faulting and magmatism at mid-ocean ridges, Geophys. Monog. 106. Hsu, S. K. (2001), Subduction/collision complexities in the Taiwan-Ryukyu junction area: tectonics of the northwestern corner of the Philippine Sea plate, Terr. Atm. Ocean, Suppl. issue, 209-230. Horen, H., M. Zamora, and G. Dubuisson (1996), Seismic wave velocities and anisotropy in serpentinized peridotites form Xigaze ophiolite: abundance of serpentine in slow spreading ridge, Geophys. Res. Lett., 23, 9-12. Houseman, G. A., and D. Gubbins (1997), Deformation of subducted oceanic lithosphere, Geophys. J. Int., 131, 535-551. Hyndman, R. D., and S. M. Peacock (2003), Serpentinization of the forearc mantle, Earth and Planet. Sci. Lett., 212, 417-432. Iwamori, H. (2007), Transportation of H2O beneath the Japan arcs and its implications for global water circulation, Chem. Geology, 239, 182-198. Kamiya, S., and Y. Kobayashi (2000), Seismological evidence for the existence of serpentinized wedge mantle, Geophys. Res. Lett., 27, 819-822. Kao, H., and R. J. Rau (1999), Detailed structure of the subducted Philippine Sea plate beneath northeast Taiwan: A new type of double seismic zone, J. Geophys. Res., 104, 1015-1033. Kao, H., S. J. Shen, and K. F. Ma (1998), Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region, J. Geophys. Res., 103, 7211-7229. Kawakatsu, H. (1986), Double seismic zones: Kinematics, J. Geophys. Res., 91, 4811-4825. Kawakatsu, H., and S. Watada (2007), Seismic evidence for deep-water transportation in the mantle, Science, 316, 1468-1471, doi:10.1126/science.1140855. Kawamoto, T., and J. R. Holloway (1997), Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascal, Science, 276, 240-243. Kim, K. H., J. M. Chiu, J. Pujol, K. C. Chen, B. S. Huang, Y. H. Yeh, and P. Shen (2005), Three-Dimensional VP and VS Structural Models Associated with the Active Subduction and Collision Tectonics in the Taiwan Region, Geophys. J. Int., in press. King, S. (2001), Subduction zones: observations and geodynamic models, Physics of the Earth and Planet. Int., 127, 9-24. Kirby, S. (1995), Intraslab earthquakes and phase changes in subducting lithosphere, Rev. Geophys. 33, 287-297. Kirby, S. H., E. R. Engdahl, and R. Denlinger (1996), Instraslab earthquakes and arc volcanism: Dual physical expressions of crustal and uppermost mantle metamorphism in subduction slabs, in Subduction: Top to bottom, Amer. Geophysc. Union Geophys. Monogr 96, edited by Bebout et al., 195-214 pp.. Kissling, E., W. L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer (1994), Initial reference models in local earthquake tomography. J. Geophys. Res., 99, 19635-19646. Kohlstedt, D. L., B. Evans, and S. J. Mackwell (1995), Strength of the lithosphere: constraints imposed by laboratory experiments, J. Geophys. Res., 100, 17,587-17, 602. Kuo, B. Y., D. F. Forsyth, and E. M. Parmentier (1986), Flexure and thickening of the lithosphere at the east Pacific rise, Geophys. Res. Lett., 13, 681-684. Lambert, I. R. and P. J. Wyllie (1972), Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications, J. Geology, 80, 693-708. Lee, C. S., G. J. Shor, L. D. Bibee, R. S. Lu, and T. W. C. Hilde (1980), Okinawa trough: origin of a back-arc basin, Mar. Geol., 35, 219-241. Lee, C. T. A (2003), Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle, J. Geophys. Res., 108(B9), 2441, doi:10.10292003JB002413. Liang, W.T., Y.H. Liu, and H. Kao (2004), Source Parameters of Regional Earthquakes in Taiwan: January-December, 2002, Terr. Atm. Ocean, 15, 727-741. Lin, J. Y., S. K. Hsu, and J. C. Sibuet (2004), Melting features along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence, J. Geophys. Res., 109, B12402, doi:10.1029/2004JB003260. Lin, J. Y., J. C. Sibuet, C. S. Lee, S. K. Hsu, and F. Klingelhoefer (2007), Origin of the southern Okinawa trough volcanism from detailed seismic tomography, J. Geophys. Res., 112, B08308, doi:10.1029/2006JB004703. Lin, S.C., L.Y. Chiao and B.Y. Kuo (2002), Dynamic interaction of cold anomalies with the mid-ocean ridge flow field and its implications for the Australian–Antarctic Discordance, Earth and Planet. Sci. Lett., 203, 925-935. Ma, K. F., J. H. Wang, and D. Zhao (1996), Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85-105. Mallet, J.L. (1989), Discrete smooth interpolation, Transactions on Graphics, 8, 2, 121-144. Mallet, J.L. (2002), Geomodeling, New York, Oxford University Press, 624 pp. McGuire, J. J., and D. A. Wiens (1995), A double seismic zone in New Britain and the morphology of the Solomon plate at intermediate depths, Geophys. Res. Lett., 22, 1965-1968. Nakajima, J., Y. Takei, and A. Hasagawa (2005), Quantitative analysis of the inclined low-velocity zone in the mantle wedge of northeastern Japan: A systematic change of melt-filled pore shapes with depth and its implications for melt migration, Earth and Planet. Sci. Lett., 234, 59-70. Peacock, S. M., P. E. van Keken, S. D. Holloway, B. R. Hacker, G. A. Abers, and R L. Rergason (2004), Thermal structure of the Costa Rica-Nicaragua subduction zone, Phys. Earth and Planet. Int., 149, 187-200. Pavlis, G. L. and J. R. Booker (1980), The mixed discrete-continuous inverse problem; application to the simultaneous determination of earthquake hypocenters and velocity structure. J. Geophys. Res., 85[9], 4801-4810. Peacock, S. M. (2003), Thermal structure and metamorphic evolution of subducting slabs, in Inside the subduction factory, Amer. Geophys. Union Geophys. Monogr. 138, edited by Eiler, 7-22 pp. Peacock, S. M. (2001), Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic lithosphere, Geology, 29, 299-302. Peacock, S.M., and K. Wang (1999), Seismic Consequences of Warm Versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan, Science, 286, 937-939 Pysklywec, R. N., J. X. Mitrovica, and M. Ishii (2003), Mantle avalanche as a driving force for tectonic reorganization in the southwest Pacific, Earth and Planet. Sci. Lett., 209, 29-38. Ranero, C. R., J. Phipps Morgan, K. Mcintosh, and C. Reichert (2003), Bending-related faulting and mantle serpentinization at the middle America trench, Nature, 425, 367-373. Rau, R. J., and F. T. Wu (1995), Tomographic imaging of lithospheric structure under Taiwan, Earth and Planet. Sci. Lett., 133, 517-532. Schmalholz, S. M., and Y. Podladchikov (1999), Buckling versus folding: importance of viscoelasticity, Geophys. Res. Lett., 26, 2641-2644. Schnurle, P., C. S. Liu, S. Lallemand, D. Reed (1998), Structural insight into the south Ryukyu margin: effect of the subducting Gagua ridge, Tectonophysics, 288, 237-250. Schurr, B., G. Asch, A. Rietbrock, R. Trumbull, and C. Haberland (2003), Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography, Earth Planet. Sci. Lett., 215, 105-119. Seno, T., and S. Maruyama (1984), Paleogeographic reconstruction and origin of the Philippine Sea, Tectonophysics, 102, 53-84. Seno, T., S. Stein, and A. E. Gripp (1993), A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J. Geophys. Res., 98, 17,941-17,948. Seno, T., and Y. Yamanaka (1996), Double seismic zones, compressional deep trench-outer rise events, and superplumes, Geophysical Monograph, 96, 347-355. Shinjo, R., (1999), Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system, Chem. Geol., 157, 69-88. Sibuet, J. C., J. Letouzey, F. Barbier, J. Charvet, J. P. Foucher, T. W. C. Hilde, M. Kimura, L. Y. Chiao, B. Marsset, C. Muller, and J. F. Stephan (1987), Back-arc extension in the Okinawa trough, J. Geophys. Res., 92, 14,041-14,063. Sibuet, J. C., B. Deffontaines, S. K. Hsu, N. Thareau, J. P. Le Formal, C. S. Liu, and the ACT party (1998), Okinawa trough back-arc basin: early tectonic and magmatic evolution, J. Geophys. Res., 103, 30,245-30,267. Stachnik, J. C., G. A. Abers, and D. H. Christensen (2004), Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res., 109, B10304, doi:10.1029/2004JB003018. Tamura, Y., Y. Tatsumi, D. Zhao, Y. Kido, and H. Shunkuno (2002), Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones, Earth Planet. Sci. Lett., 197, 105-116 Tatsumi, Y., and S. Eggins (1995), Subduction zone magmatism, 211 pp., Blackwell, Cambridge. Teng, L. (1990), Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophys., 183, 57-76. Thurber, C. H. (1983), Earthquake locations and three-dimensional structure in the Coyote Lake area, central California, J. Geophys. Res., 88, 8226– 8236. Thurber, C. H. (1993), Local earthquake tomography: Velocities and Vp/Vs-theory, in Seismic Tomography: Theory and Practice, edited by H. M. Iyer and K. Hirahara, pp. 563– 583, Chapman and Hall, New York. Thurber, C. H., and D. Eberhart-Phillips (1999), Local earthquake tomography with flexible gridding, Comput. Geosci., 25, 809–818 van der Hilst, R., and T. Seno (1993), Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Marian island arcs, Earth and Planet. Sci. Lett., 120, 395-407. van der Hilst, R.D., Widiyantoro, S. and Engdahl, E.R. (1997) Evidence for deep mantle circulation from global tomography. Nature 386, pp. 578–584. Van Keken, P. E., B. Kiefer, and S. M. Peacock (2002), High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem. Geophys. Geosyst., 3(10), 1056, doi:10.1029/2001GC000256. Vielzeuf, D., and M. W. Schmidt (2001), Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts, Contrib. Mineral. Petrol., 141, 251-267. Walck, M., (1988), Three-dimensional VP/VS variations for the Coso region, California, J. Geophys. Res., 93, 2047-2052. Waldhauser, F. and W. L. Ellsworth (2000), A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bulletin of the Seismological Society of America, 90, 1353-68. Wang, K., and G. C. Rogers (1994), An explanation for the double seismic layers north of the Mendocino triple junction, Geophys. Res. Lett., 21, 121-124. Wang, K., S. L. Chung, S. Y. O’Reilly, S. S. Sun, R. Shinjo, and C. H. Chen (2004a), Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region, J. Petrology, 45, 975-1011. Wang, T. K., S. F. Lin, C. S. Liu, and C. S. Wang (2004b), Crustal structure of the southernmost Ryukyu subduction zone: OBS, MCS and gravity modeling, Geophys. J. Int., 157, 147-163. Watts, A. B., An analysis of isostasy in the world’s oceans 1. Hawaiin-Emperor seamount chain (1978), J. Geophys. Res., 83, 5989-6004. Wessel, J. K., and H. F. Smith (1991), Free software helps map and display data, EOS trans. AGU, 72, 441, 445-446. Wiens, D. A., and S. Stein (1984), Intraplate seismicity and stresses in young oceanic lithosphere, J. Geophys. Res., 89, 11,442-11,464. Wolfe, C., G.M. Purdy, D.R. Toomey, and S.C. Solomon (1995), Microearthquake characteristics and crustal velocity structure at 29°N of the Mid-Atlantic Ridge: The architecture of a slow spreading segment, J. Geophys. Res., 100, 24449-24472. Wu, F. T., C. S. Chang, and Y. M. Wu (2004), Precisely relocated hypocenters, focal mechanisms and active orogeny in Central Taiwan, in Aspects of the tectonic evolution of China, edited by Fletcher et al., special pub., 226, 333-354. Yamaoka, K., Y. Fuako, and M. Kumazawa (1986), Spherical shell tectonics: effects of sphericity and inextensibility on the geometry of the descending lithosphere, Rev. Geophys. Space Phys., 24, 27-55. Yamasaki, T., and T. Seno (2003), Double seismic zone and dehydration embrittlement of the subducting slab, J. Geophys. Res., 108(B4), 2212, doi:10.1029/2002JB001918. Yeh, Y. H., C. H. Lin, and S. W. Roecker (1989), A study of upper crustal structures beneath northeastern Taiwan: Possible evidence of the western extension of Okinawa trough, Proc. Geol. Soc. China, 32, 139-156. Zhao, D., A. Hasegawa, and S. Horiuchi (1992), Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, J. Geophys. Res. 97, 19,909-19,928. Zhao, D., K. Wang, G. C. Rogers, and S. M. Peacock (2001), Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone, Earth, Planet. Space, 53, 285-293. Zhao, D., Z. Wang, N. Umino, A. Hasegawa (2009) Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics, 467, 89-106. Zhao, D., Y. Xu, D. A. Wiens, L. Dorman, J. Hiderbrand, and S. Webb (1997) Depth extento f the Lau back-arcs preadingc enter and its relation to subduction processes, Science, 278, 254-257 . | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8684 | - |
| dc.description.abstract | 頂著歐亞板塊的琉球海溝末端,也是菲律賓海板塊斜向隱沒進入歐亞板塊下方的地點,在台灣外海形成了複雜的隱沒—碰撞複和帶,迄今仍未被詳盡解釋的一個區域。我們結合了來自台灣與日本兩個地區的地震觀測網資料,以期闡明琉球隱沒板塊如何在這個隱沒—碰撞地區隱沒與變形。我們使用同時被兩個地震網所記錄到超過五千個以上的地震資料,並以最佳化的區域一維速度模型及二次差分法進行重新定位。外海的地震分布結果顯示,在隱沒板塊伸至40至80公里深處,有存在間隔約15至20公里寬的雙層地震帶。根據震源機制解的結果顯示,雙層地震帶是肇因於斜向聚合所導致的東西向壓縮。
精確定位後的地震分布也第一次呈現在深度50至100公里處,隱沒板塊水平方向褶皺的曲率大到與整個琉球海溝的曲率異號。這個異常的曲率加上震源機制解的結果,顯示隱沒板塊因為頂住歐亞岩石圈而變形,且這個變形很顯然並非完全彈性。我們針對此變形建立了一個模式,推導出一個不穩定的麥斯威爾黏彈性層,夾在黏滯性介質中的結果。這個不穩定性的構造其特徵波長約為250公里,這個結果符合褶曲的隱沒板塊其黏滯性約為周圍地幔物質的100倍大,且沿著海溝方向的表面彈性應變為0.01;或是隱沒板塊其黏滯性約為周圍地幔物質的1000倍,則表面彈性應變可以大到5%。 本研究中建構了琉球最西側隱沒的菲律賓海板塊以及臺灣東北部地底下的弧前地幔的三維地震層析影像。利用超過5600個同時被臺灣與日本地震觀測網所記錄到的地震資料,將地震重新定位並反演VP、VS、和VP/VS的變化。藉由分析資料的變異量降低對模型變異間的取捨,可以幫助我們建立合適嚴謹程度的正則化,以避免對資料過度解釋或解釋不足。正則化參數的選擇是為了確保人為的VP/VS異常可以被壓制住。隱沒板塊的特徵為高VP、高VS以及中等到低的VP/VS。 值得注意的是在緊鄰隱沒板塊表面,深度約30-80公里處的地幔楔則為高VP/VS異常。過去曾被發現存在有高VP/VS通道連結隱沒板塊與島弧火山之間,因而被解釋作熔融的通道,但在本研究中並未發現。 我們將VS和VP/VS轉換為溫度變化以及地幔中的蛇紋岩化。隱沒板塊的溫度比周圍地幔低約200-400oC,與隱沒帶理論模型的估計一致。在50公里深的地幔,其蛇紋岩化的程度達到約15%,或含水量達2%。我們將此蛇紋岩化的峰值,解釋為由於菲律賓海板塊隱沒,其表面之海洋地殼產生玄武岩—榴輝岩變質反應所釋放的水,與地幔反應所導致。由於本區域現有地震網相對於隱沒帶地震的分佈,存在有空間上的限制,因此限制了完整描述大部分地幔楔產生熔融的型態。層析影像反演的解析度測試則提供了對於解釋較佳解析區域的基本指引。 | zh_TW |
| dc.description.abstract | The termination of the Ryukyu trench against Eurasia and the oblique subduction of the Philippine Sea Plate create a subduction-collision complex offshore Taiwan, which has not previously been elucidated in detail. We combine traveltime data from the seismic networks in Taiwan and Japan to better illuminate how the subducting Ryukyu slab deforms in this subduction-collision zone. More than 5000 events recorded by both networks were relocated with the double-difference method using an optimal regional 1-D velocity model. The offshore seismicity indicates that the double seismic zone, with a gap of 15-20 km, exists in the subducting slab in the depth range of 40-80 km. Focal mechanisms suggest that the double seismic zone is caused by east-west compression resulting from oblique convergence.
The improved hypocentral locations for the first time reveal folding of the slab into a horizontal curvature larger in magnitude than and opposite in sign to that of the Ryukyu trench in the depth range 50-100 km. The anomalous curvature, together with the focal mechanisms, suggests that the slab folds against the Eurasian lithosphere and that this deformation cannot be fully elastic. We model this deformation mode as the developing instability of a viscoelastic Maxwell layer embedded in a viscous medium. The characteristic wavelength of the instability, i.e., ~250 km, is consistent with folding of a slab whose viscosity is 100 times higher than that of the surrounding mantle for an along-strike elastic membrane strain as small as 0.01, or more than 3 orders of magnitude higher if 5% elastic strain is allowed. Three dimensional tomographic images of the subducting Philippine Sea slab and the forearc mantle beneath NE Taiwan and the westernmost Ryukyu were generated in this study. More than 5600 events recorded simultaneously by seismic networks in Taiwan and Japan were relocated for the inversion for variations in VP, VS, and VP/VS. Analysis of the tradeoff between the data variance-reduction and model-variance helps to determine the appropriate strictness for regularization to avoid either over- or under-interpretation of data. The regularization parameters were also chosen to ensure suppression of artificial VP/VS anomalies. The subducting slab is characterized by high VP, high VS, and intermediate to low VP/VS. Notable in the mantle wedge is the high VP/VS anomalies that abut the surface of the subducting slab at depths of 30-80 km. The previously identified positive VP/VS channel connecting the slab and the arc volcano interpreted to be a melt pathway is not reproduced in this study. We convert VS and VP/VS to perturbations of temperature and serpentinization of the mantle. The slab is cooled by 200-400oC relative to the mantle, in accord with the estimates from theoretical modeling of subduction. The serpentinization reaches ~15%, or 2% water content, at 50 km depth in the forearc mantle. We interpret the peak serpentinization as hydrated by the water released from the basalt-eclogite metamorphic reaction in the oceanic crust of the subducting Philippine Sea plate. The spatial limitation of the present seismic networks in this region with respect to subduction zone events hinders a full description of the pattern of melting in much of the mantle wedge. Resolution tests of the tomographic inversion provide a basis to guide our interpretation to better resolved regions. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:43Z (GMT). No. of bitstreams: 1 ntu-99-D92224001-1.pdf: 8954926 bytes, checksum: 1199963a82e3fbb519a6044d26fac640 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書 誌謝 中文摘要 英文摘要 第一章 簡介………………………………………………………………………………………………… 1 1.1 地震層析影像的發展與演進……………………………………..………………….. 1 1.2 從地震層析影像看隱沒帶的構造活動…………………………………………… 2 1.3 地震定位與參考速度模型…………………………………………………………… 3 1.4 從震源分佈與震源機制,看隱沒帶的力學特性……………………………… 3 第二章 臺灣-琉球間的構造活動………………………………………………………………… 5 2.1 菲律賓海板塊的隱沒……………………………………………………………………… 6 2.2 菲律賓海板塊西緣的構造與力學性質…………………………………………… 6 2.3 雙層地震帶……………………………………………………………………………… 7 2.4 琉球隱沒帶的火成活動與震波層析影像………………………………… 8 第三章 資料與研究方法……………………………………………………………………………… 10 3.1 地震測站的選用……………………………………………………………………………… 10 3.2 一維速度模型的建立與參數投影法……………………………………………… 10 3.3 地震定位與兩次差分法…………………………………………………………………… 12 3.4 震波走時記錄的時間延遲………………………………………………………………… 14 3.5 震波層析影像的反演………………………………………………………………………… 15 3.6 棋盤檢定與解析力矩陣的建立………………………………………………………… 19 3.7 反演隱沒板塊與地幔楔之溫度異常與蛇紋岩化程度……………………… 20 第四章 震源分佈……………………………………………………………………………………… 22 4.1 建立隱沒板塊表面的三維幾何構造………………………………………………… 23 4.2 雙層地震帶與其力學特性……………………………………………………………… 25 4.3 隱沒板塊的褶曲與麥斯威爾黏彈性板塊模型………………………………… 26 4.4 黏彈性板塊模型中參數的不確定性………………………………………………… 29 第五章 震波層析影像…………………………………………………………………………………… 33 5.1 地震層析影像的解析能力……………………………………………………………… 33 5.2 隱沒板塊與地幔楔的構造特性……………………………………………………… 36 5.3 溫度異常與蛇紋岩化的程度…………………………………………………………… 38 5.4 熔融現象與蛇紋岩化………………………………………………………………………… 41 5.5 地震層析影像的解讀………………………………………………………………………… 43 5.5.1 次要與小尺度的構造……………………………………………………………… 43 5.5.2 解析力的可信度……………………………………………………………………… 45 第六章 結論…………………………………………………………………………………………………… 46 第七章 附錄…………………………………………………………………………………………………… 47 7.1 黏彈性板塊的性質…………………………………………………………………………… 47 7.2 震波層析影像其他結果…………………………………………………………………… 50 7.3 蛇紋岩化參數及反演………………………………………………………………………… 60 第八章 參考文獻…………………………………………………………………………………………… 62 | |
| dc.language.iso | zh-TW | |
| dc.title | 臺灣-琉球間之隱沒-碰撞複和帶
隱沒板塊與弧前地幔之力學性質與結構 | zh_TW |
| dc.title | The Taiwan-Ryukyu subduction-collision complex:
Mechanics and structure of the slab and the forearc mantle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.advisor-orcid | ,洪淑蕙(shung@ntu.edu.tw) | |
| dc.contributor.oralexamcommittee | 喬凌雲(Ling-Yun Chiao),龔源成(Yuan-Cheng Gung),黃柏壽(Bor-Shouh Huang),馬國鳳(Kuo-Fong Ma) | |
| dc.subject.keyword | 黏彈性隱沒板塊,雙層地震帶,臺灣琉球隱沒帶,隱沒,地震層析影像,蛇紋岩化, | zh_TW |
| dc.subject.keyword | viscoelastic slab,double seismic zone,Taiwan-Ryukyu subduction zone,subduction,tomography,serpentinization, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-03-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 8.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
