請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8681完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭登貴(W. T. K. Cheng) | |
| dc.contributor.author | Tzong-Faa Shiao | en |
| dc.contributor.author | 蕭宗法 | zh_TW |
| dc.date.accessioned | 2021-05-20T19:59:41Z | - |
| dc.date.available | 2011-09-18 | |
| dc.date.available | 2021-05-20T19:59:41Z | - |
| dc.date.copyright | 2011-09-18 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | 行政院農業委員會。2010。99年農業統計年報。http://www.coa.gov.tw/view.php?catid=23586
李春芳、陳吉斌、吳奇儒、蕭宗法。2003。加強熱季夜間飼養對荷蘭乳牛泌乳性能及瘤胃消化的影響。中畜會誌,32 (2): 99-110。 李善男、劉振發、許義明、楊德威、陳得財、古兆和、梁宗寶。1999。熱季應用噴水及吹風循環涼爽法對乳牛生理與繁殖之效應。畜產研究32(2):137-146。 陳志毅、葉家舟、李國華、張菊犁、蕭宗法、謝昭賢、江欣蓉、姜延年。2009。不同季節牛舍溫濕度指數與乳牛生產性狀之關係。畜產研究42(1):1-12。 魯學智、黃森源、楊勝平、陳鏡明、許登造。1992。空氣調節牛舍對本省荷蘭母牛于熱季分娩後泌乳性能之影響。畜產研究25(1):1-10。 謝昭賢、蕭宗法、楊德威、陳志成。2007。臺灣地區溫濕度指數之分布。畜產研究40(4):269-278。 蕭宗法、楊德威、李恒夫、謝昭賢、李善男、李春芳。2009a。以水簾牛舍紓解荷蘭泌乳牛熱緊迫之可行性評估I.牛舍環境與牛隻生理反應。中畜會誌,38(3):183-198。 蕭宗法、楊德威、李恒夫、謝昭賢、李善男、李春芳。2009b。以水簾牛舍紓解荷蘭泌乳牛熱緊迫之可行性評估II.採食行為、瘤胃消化與泌乳性能。中畜會誌,38(3):199-215。 Abeni, F., L. Calamari, and L. Stefanini. 2007. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 1. Blood indicators of heat stress. Int. J. Biometeorol. 52:87-96. Abilay, T. A., H. D. Johnson, and L. M. Madam. 1975. Influence of environmental heath on peripheral plasma progesterone and cortisol during the bovine oestrus cycle. J. Dairy Sci: 58:1836-1840. Aharoni, Y., A. Brosh, and Y. Harari. 2005. Night feeding for high-yielding dairy cows in hot weather: effect on intake, milk yield and energy expenditure. Livest. Prod. Sci. 92:207-219. Ahmad, N., F. N. Schrick, R. L. Butcher, and E. K. Inskeep. 1995. Effect of persistent follicles on early embryonic losses in beef cows. Biol. Reprod. 52:1129-1135. Andersson, B. E., and H. Jonasson. 1993. Temperature regulation and environmental physiology. Page 886-895 in Dukes’ Physiology of Domestic Animal. Swenson, M. J., and W. O. Reece, 11th ed. Cornell Univ. Press, Ithaca, NY. Armstrong, D. V. 1994. Heat stress interaction with shade and cooling. J. Dairy Sci. 77:2044-2050. Armstrong, D. V., J. F. Smith, M. J. Brouk, V. Wuthironarith, and J. P. Harner. 2004. Impact of soaking cows housed in a tunnel ventilated barn equipped with evaporative pads located in Thailand. J. Dairy Sci. 87(Suppl. 1):300-301. ASAE Standard. 2008. Design of ventilation systems for poultry and livestock shelters. ASAE EP270.5 DEC1986 (R2008). Association of Official Analytical Chemists. 1984. Official Methods of Analysis, 14th ed. AOAC, Washington, DC. Beatty, D. T., A. Barnes, E. Taylor, D. Pethick, M. McCarthy, and S. K. Maloney. 2006. Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J. Anim. Sci. 84:972-985. Beede, D. K., and R. J. Collier. 1986. Potential nutritional strategies for intensively managed cattle during thermal stress. J. Anim. Sci. 62:543-554. Bengtsson, L. P., and J. H. Whitaker. 1988. Farm structures in tropical climates. Food and Agriculture Organization of the United Nations, Rome, Italy. Berman, A., Y. Folman, M. Kaim, M. Mamen, Z. Herz, D. Wolfenson, A. Arieli, and Y. Graber. 1985. Upper critical temperature and forced ventilation effects for high-yielding dairy cattle in a subtropical climate. J. Dairy Sci. 68:1488-1495. Berman, A. 2006. Extending the potential of evaporative cooling for heat-stress relief. J. Dairy Sci. 69:3817-3825. Berman, A. 2010. Forced heat loss from body surface reduces heat flow to body surface. J. Dairy Sci. 93:242-248. Bianca, W. 1962. Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle. Nature (London), 195:251-252. Bouraoui, R., M. Lahmar, A. Majdoub, M. Djemali, and R. Belyea. 2002. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 51(6):479-491. Bray, D. R., and J. K. Shearer. 1988. Environmental modification on Florida dairies. Proc. 25th Ann. FL Dairy Prod. Conf., 52 Gainsville, FL. Bray, D. R., R. A. Bucklin, L. Carlos, and V. Cavalho. 2003. Environmental temperatures in a tunnel ventilated barn and in an air conditioned barn in Florida. Pp. 235-242 in Fifth International Dairy Housing Proceedings of Conference. Fort Worth, Texas USA. Bridges, P. J., M. A. Brusie, and J. E. Fortune. 2005. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest. Anim. Endocrinol. 29:508–522. Brouk, M. J., J. F. Smith, and J. P. Harner. 2001. Efficiency of modified evaporative cooling in midwest dairy freestall barns. Pp 412-418 in Livestock Environment VI, Proc. of the 6th Int. Symposium, Louisville, KY. Brown-Brandl, T. M., T. Yanagi, H. Xin, R. S. Gates, R. A. Bucklin, and G. Ross. 2001. Telemetry system for measuring core body temperature in livestock and poultry. ASAE Paper #01-4032. ASAE Annual Meeting, St. Joseph, MI. Bucklin, R. A., J. T. Strickland, D. K. Beede, and D. R. Bray. 1989. Cow cooling pays in hot humid Florida. Hoard’s Dairyman 134(8):344. Bucklin, R. A., L. W. Turner, D. K. Beede, D. R. Bray, and R. W. Hemken. 1991. Methods to relieve heat stress for dairy cows in hot, humid climates. Appl. Eng. Agric. 7(2):241. Buffington, D. E., R. J. Collier, and G. H. Canton. 1983. Shade management systems to reduce heat stress for dairy cows. Trans. Am. Soc. Agric. Eng. 26(6):1798. Calamari, L., F. Abeni, F. Calegari, and L. Stefanini. 2007. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 2. Blood minerals and acid-base chemistry. Int. J. Biometeorol. 52:97-107. Chastain, J. P., and L. W. Turner. 1994. Practical results of a model o direct evaporative cooling of dairy cows. Pages 337-352 in Proc. 3rd Int. Dairy Housing Conf. Am. Soc. Agric. Eng., St. Joseph, MI. Chiappini, U., and J. P. A. Christiaens. 1992. Cooling in animal houses. p 82-97 in Working Group on Climatization of Animal Houses, 2nd report CIGR. State University of Ghent, Belgium. Collier, R. J., D. J. Beede, W. W. Thatcher, L. A. Israel, and C. J. Wilcox. 1982. Influence of environment and its modification on dairy animal health and production. J. Dairy Sci. 65:2213-2227. Collier, R. J., G. E. Dahl, and M. J. VanBaale. 2006. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 89:1244-1253. Curtis, S.E. 1981. Environmental Management in Animal Ag riculture. Iowa State University Press, Ames, IA. De Rensis, F., and R. J. Scaramuzzi. 2003. Heat stress and seasonal effects on reproduction in the dairy cow—a review. Theriogenology 60:1139–1151. Diskin, M. G., D. A. Kenny, L. Dunne, and J. M. Sreenan. 2002. Systemic progesterone pre and post AI and early embryo survival in cattle. Proc Agricultural Research Forum p. 27. Fekry, A. E., A. F. Abdelaa, M. K. Shebaita, and M. A. I. Salem. 1989. Is creatinine a good indicator for meat production in fat-tailed sheep? Page 150-252 in Ruminant Production in Dry Subtropics: Constraints and Potential. EAAP Publication, Rome, Italy. Flamenbaum, I., and E. Ezra. 2007. Effect of level of production and intensive cooling in summer on productive and reproductive performance of high yielding dairy cows. J. Dairy Sci. 90(Suppl. 1):231. (Abstr.) Frazzi, E., L. Calamari, and F. Calegari. 2002. Productive response of dairy cows to different barn cooling systems. Transactions of the ASAE 45: 395-405. Fuquay, J. W. 1981. Heat stress as it affects animal production. J. Anim. Sci. 52:164-174. Gooch, C. A., and M. B. Timmons. 2000. Dairy Housing and Equipment Systems: Managing and Planning for Profitability (NRAES-129). Natural Resource, Agriculture and Engineering Service, Ithaca, NY. Grant, R. 2007. Taking advantage of natural behavior improves dairy cow performance. Page 225-236 in Proc. Western Dairy Management Conf. Reno, NV. Guzeloglu, A., J. D. Ambrose, T. Kassa, T. Diaz, M. J. Thatcher, and W. W. Thatcher. 2001. Long term follicular dynamicsand biochemical characteristics of dominant follicles in dairy cows subjected to acute heat stress. Anim. Reprod. Sci. 66:15-34. Hahn, G. L., H. D. Johnson, M. D. Shanklin, and H. H. Kibler. 1965. Inspired-air cooling for lactating dairy cows in a hot environment. Transactions of the ASAE 8:332-334. Hahn, G. L. 1985. Management and housing of farm animals in hot environments. Page 151. in Stress Physiology in Livestock. M. K. Yousef, ed. CRC Press, Boca Ration, FL. Hahn, G. L. 1994. Environmental requirements of farm animals. Pp. 220-235 in Handbook of Agricultural Meteorology. J. F. Griffith, ed. Oxford Univ. Press, New York, NY. Hahn, G. L., A. M. Parkhurst, and J. B. Gaughan. 1997. Cattle respiration rate as a function of ambient temperature. Paper # MC97-121. ASAE Mid-West Meeting, St. Joseph, MI.. Hahn, G. L. 1999. Dynamic responses of cattle to thermal heat loads. J. Dairy Sci. 82:10-20. Hahn, G. L., J. B. Gaughan, T. L. Mader, and R. A. Eigenberg. 2009. Thermal indices and their application for livestock environments. Page 113–130 in Livestock Energetics and Thermal Environmental Management. J. A. DeShazer, ed. Am. Soc. of Agric. and Biol. Engineers, St. Joseph, MI Hamada, T. 1971. Estimation of lower critical temperatures for dry and lactating dairy cows. J. Dairy Sci. 54:1704-1705. Hansen, P. J. 1997. Effects of environment on bovine reproduction. pp 403-441. in Current Therapy in Large Animal Theriogenology. R. S. Youngquist, eds., W.B. Saunders, Philadelphia. Hansen, P. J., M. Drost, R. M. Rivera, F. F. Paula-Lopes, Y. M. al-Katanani, C. E. Krininger 3rd, and C. C. Chase, Jr. 2001. Adverse impact of heat stress on embryo production: Causes and strategies for mitigation. Theriogenology 55:91–103. Hillman, P. E., K. G. Gebremedhin, A. M. Parkhurst, J. Fuquay, and S. T. Willard. 2001. Evaporative and convective cooling of cows in a hot and humid environment. Page 343 – 350 in Livestock Environment VI, Proc. 6th Intl. Livestock Environment Symposium, St. Joseph, MI. Hillman, P. E., C. N. Lee, and S. T. Willard. 2005. Thermoregulatory responses associated with lying and standing in heat-stressed dairy cows. Trans. ASABE 48:795-801. Hillman, P. E. 2009. Thermoregulatory physiology. Page 23 – 48 in Livestock Energetics and Thermal Environmental Management. J. A. DeShazer, ed. Am. Soc. of Agric. and Biol. Engineers, St. Joseph, MI. Houpt, T. R. 1993. Acid-base balance. Page 604-615 in Dukes’ Physiology of Domestic Animal. M. J. Swenson and W. O. Reece, 11th ed. Cornell Univ. Press, Ithaca, NY. Igono, M. O., H. D. Johnson, B. J. Steevens, and M. D. Shanklin. 1987. Physiological, productive, and economic benefits of shade, spray and fan systems versus shade for Holstein cows during summer heat. J. Dairy Sci. 70:1069-1079. Igono, M. O., and H. D. Johnson. 1990. Physiological stress index of lactating dairy cows based on diurnal pattern of rectal temperature. J. Interdiscipl. Cell Res. 21:303-320. Igono, M. O., G. Bjotvedt, and H. T. Sanford-Crane. 1992. Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate. Int. J. Biometerol. 36:77-87. Ingraham, R. H., R. W Stanley, and W. C. Wagner. 1975. Relationship of temperature and humidity to conception rate of Holstein cows in Hawaii. J. Dairy Sci. 59:2086-2090. Johnson, H. D., A. C. Ragsdale, I. L. Berry, and M. D. Shanklin. 1963. Temperature-humidity effects including influence of acclimation in feed and water consumption of Holstein cattle. Univ. of Missouri Agri. Exp. Stn. Res. Bull. 846. Columbia. Jonsson, N. N., M. R. McGowan, K. McGuigan, T. M. Davison, A. M. Hussain, and M. Kafi. 1997. Relationship among calving season, heat load, energy balance and postpartum ovulation of dairy cows in a subtropical environment. Anim. Reprod Sci. 47:315–326. Kadzere, C. T., M. R.Murphy, N. Silanikove, and E. Maltz. 2002. Heat stress in lactating dairy cows: a review. Livestock Prod. Sci. 77: 59-91. Keister , Z. O., K. D. Moss, H. M. Zhang, T. Teegerstrom, R. A. Edling, R. J. Collier, and R. L. Ax. 2004. Physiological responses in thermal stressed Jersey cows subjected to different management strategies. J. Dairy Sci. 85:3217-3224. Kibler, H. H., and S. Brody. 1953. XXII. Influence of humidity on heat exchange and body temperature regulation in Jersey, Holstein, Brahman and Brown Swiss cattle. Univ. of Missouri Agri. Exp. Stn. Res. Bull. 522. Columbia. Khodaei-Motlagh, M., A. Zare Shahneh, R. Masoumi, and Fabio Derensis. 2011. Alterations in reproductive hormones during heat stress in dairy cattle. African J. Biotech. 10:5552-5558. Koubkova, M., I. Knižkova, P. Kunc, H. Hartlova, J. Flusser, and O. Doležal. 2002. Influence of high environmental temperatures and evaporative cooling on some physiological, hematological and biochemical parameters in high-yielding dairy cows. Czech J. Anim. Sci., 47:309–318. Kunkel, H. O., D. K. Stokes, Jr., W. B. Anthony, and M. F. Futrell. 1953. Serum alkaline phosphatase activity in European and Brahman breeds of cattle and their crossbred types. J. Anim. Sci. 12:765-770. Maia, A. S. C., R. G. daSilva, and C. M. B. Loureiro. 2005a. Respiratory heat loss of Holstein cows in a tropical environment. Int. J. Biometeorol. 49: 332-336. Maia, A. S. C., R. G. daSilva, and C. M. B. Loureiro. 2005b. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment. Int. J. Biometeorol. 50: 17-22. Mann, G. E., G. E. Lamming, and M. D. Fray, 1995. Plasma oestradiol during early pregnancy in the cow and the effects of treatment with buserelin. Ani. Reprod. Sci. 37:121-131. Mann, G. E., G. E. Lamming, R. S. Robinson, and D. C. Wathes. 1999. The regulation of interferon-tau production and uterine hormone receptors during early pregnancy. J. Reprod. Fertil. 54: 317-328. Mann, G. E., P. Merson, M. D. Fray and G. E. Lamming. 2001. Conception rate following progesterone supplementation after second insemination in dairy cows. Vet. J. 162:161-162. Mount, L. E. 1973. The concept of thermal neutrality. In: Heat loss from animals and man: assessment and control: proceedings of the twentieth Easter school in agricultural science. Eds. Monteith, J. L. and L. E. Mount, Butterworths, London. p. 425-439. National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press, Washington, DC. Nevander, L. E., and B. Elmarsson. 1994. Fukt handbok praktik och teori. Pp. 375-376. Stockholm. NOAA. 1976. Livestock hot weather stress. Operations Manual Letter C-31-76. NOAA, Kansas, MO. Nobel, R. L., S. M. Jobst, M. B. G. Dransfield, S. M. Pandolfi, and T. L. Balley. 1997. Use of radio frequency data communication system, HeatWatch, to describe behavioural estrus in dairy cattle. J. Dairy Sci. 80(Suppl.):179 (Abstract). Purwanto, B. P., Y. Abo, R. Sakamoto, F. Furumoto, and S. Yamamoto, 1990. Diurnal patterns of heat production and HR under thermoneutral conditions in Holstein Friesian cows differing in milk production. J. Agric. Sci. (Camb.) 114:139-142. Reece, W. O. 1993. Respiration in mammals. Pp. 263- 293 in Dukes’ Physiology of Domestic Animal. M. J. Swenson, and W. O. Reece. 11th ed. Cornell Univ. Press, Ithaca, NY. Rodriquez, L. A., G. Mekonnen, C. J. Wilcox, F. G. Martin, and W. A. Krienke. 1985. Effects of relative humidity, maximum and minimum temperature, pregnancy, and stage of lactation on milk composition and yield. J. Dairy Sci. 68:973-978. Roenfeldt, S. 1998. You can’t afford to ignore heat stress. Dairy Manage. 35: 6–12. Ronchi, B., G. Stradaioli, A. Verini Supplizi, U. Bernabuci, N. Lacetera, and P. A. Accorsi. 2001. Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17beta, LH, FSH, prolactin and cortisol in Holstein heifers. Livestock Prod. Sci. 68: 231-241. Roth, Z., R. Meidan, R. Braw-Tal, and D. Wolfenson. 2000. Immediate and delayed effect of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. J. Reprod. Fertil. 120: 83-90. Ryan , D. P., M. P. Boland, E. Kopel, D. Armstrong, L. Munyakazi, R. A. Godje, and R. H. Ingraham. 1992. Evaluating two different evaporative cooling management systems for dairy cows in a hot, dry climate. J. Dairy Sci. 75:1052-1059. Sabuncuoglu, N., O. Coban, E. Lacin, A. Yildiz, O. Akbulut, A. V. Yaganoglu, and Y. Sagsoz. 2008. Effect of barn ventilation on blood gas status and some physiological traits of dairy cows. J. Environ. Biol. 29(1): 107-110. Sanchez, W. K., M. A. McGuire, and D. K. Beede. 1994. Macromineral nutrition by heat stress interactions in dairy cattle: review and original research. J Dairy Sci 77:2051-2079. SAS Institute. 2003. Statistics User Guide. Version 9.1. SAS Inst., Inc., Cary, NC. Schmid, M., and M. von Forstner. 1986. Laboratory Testing in Veterinary Medicine Diagnosis and Clinical Monitoring. Boehringer Mannheim GmbH, Mannheim, Germany. Shearer, J. K., D. K. Beede, R. A. Bucklin, and D. R. Bray. 1991. Environmental Modifications to Reduce Heat Stress in Dairy Cattle. Agri-Practice, Volume 12, No. 4, July/August, 1991. Shiao, T. F., J. C. Chen, D. W. Yang, S. N. Lee, C. F. Lee, and W. T. K. Cheng. 2011. Feasibility Assessment of a Tunnel-ventilated, Water-padded Barn on Heat Stress Alleviation for Lactating Holstein Cows in a Humid Area. J. Dairy Sci. (accepted). Smith, J. F., D.V. Armstrong, M. J. Brouk, V. Wuthironarith, and J. P. Harner. 2005. Impact of using feedline soakers in combination with tunnel ventilation and evaporative pads to minimize heat stress in lactating dairy cows located in Thailand. J. Dairy Sci. 88(Suppl. 1) and J. Anim. Sci. 83(Suppl. 1):503 (Abstract). Smith, T. R., A. Chapa, S. Willard, C. Herndon Jr., R. J. Williams, J. Crouch, T. Riley, and D. Pogue. 2006a. Evaporative tunnel cooling of dairy cows in the southeast. I: Effect on body temperatures and respiration rates. J. Dairy Sci. 89:3904-3914. Smith, T. R., A. Chapa, S. Willard, C. Herndon Jr., R. J. Williams, J. Crouch, T. Riley, and D. Pogue. 2006b. Evaporative tunnel cooling of dairy cows in the southeast. II: Impact on lactation performance. J. Dairy Sci. 89:3915-3923. Stowell, R. R., C. A. Gooch, and S. Inglis. 2001. Performance of tunnel ventilation for freestall dairy facilities as compared to natural ventilation with supplemental cooling fans. Pp 29-40. in Livestock Environment VI. ASAE, Louisville, Kentucky, USA. St-Pierre, N. R., B. Cobanov, and G. Schnitkey. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86:E52-E77. Strickland, J. T., R. A. Bucklin, R. A. Nordstedt, D. K. Beede, and D. R. Bray. 1989. Sprinkler and fan cooling systems for dairy cows in hot, humid climates. Appl. Eng. Agric. 5(2):231-326. Trout, J. P., L. R. McDowell, and P. J. Hansen. 1998. Characteristics of the oestrous cycle and antioxidant status of lactating Holstein cows exposed to stress. J. Dairy Sci. 81: 1244-1250. Turner, L. W., J. P. Chastain, R. W. Hemkin, R. S. Gates, and W. L. Crist. 1992. Reducing heat stress in dairy cows through sprinkler and fan cooling. Applied Engineering in Agriculture 8: 251-256. West, J. W., B. G. Mullinix, and T. G. Sandifer. 1991. Changing dietary electrolyte balance for dairy cows in cool and hot environments. J. Dairy Sci. 74:1662-1670. West, J. W., K. D. Haydon, B. G. Mullinix, and T. G. Sandifer. 1992. Dietary cation-anion balance and cation source effects on production and acid-base status of heat-stressed cows. J. Dairy Sci. 75:2776-2786. West, J. W. 1994. Interactions of energy and bovine somatotropin with heat stress. J. Dairy Sci. 77:2091–2102. West, J. W. 2003. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86:2131-2144. West, J. W., B. G.. Mullinix, and J. K. Bernard. 2003. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J. Dairy Sci. 86: 232-242. Wiersma, F. 1982. Shades for dairy cattle. U. Ariz. Ext. Serv., WREP 51. Univ. Arizona, Tucson. Wiersma. F., and D. V. Armstrong. 1983. Cooling dairy cattle in the holding pen. Paper No. 83-4507, Am. Soc. Agric. Eng., St. Joseph, MI. Yeck, R. G., and R. E. Stewart. 1959. A ten-year summary of the phychoenergetic laboratory dairy cattle research at the University of Missouri. Transactions of the ASAE 2:71-77. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8681 | - |
| dc.description.abstract | 夏季高溫高濕的熱緊迫一直是國內泌乳牛性能表現的瓶頸,改善牛舍降溫環境是紓解熱緊迫最有效與最直接的方法,本試驗目的在評估應用隧道式抽風蒸發冷卻牛舍 (簡稱水簾牛舍) 來紓解夏季荷蘭種泌乳牛熱緊迫的可行性。2005年試驗採用每期30日的交叉設計,平均乳量26.2 kg的42頭泌乳牛分成二組,分別飼養於水簾牛舍或挑高的太子樓牛舍 (簡稱傳統牛舍)。長方形水簾牛舍可飼養48頭牛隻,一端設置整排八臺抽風扇,對應牆面設置L型整面水簾,兩側以厚塑膠捲簾密閉形成隧道,抽風扇依氣溫升高而啟動,提供牛隻周遭最高風速每秒1.66 m與牛舍空氣交換速度每分鐘2次,空氣抽入時經過水簾上的流水而降溫;傳統牛舍共懸掛四臺全日開啟的風扇,採食區另設置每日六次每次30分鐘的噴水吹風降溫處理。試驗結果顯示,水簾牛舍可以較傳統牛舍降低日間最高舍溫2.4℃,並減少牛隻曝露於中度熱緊迫狀況 (78 < 溫濕度指數 (THI) ≤ 84) 的時間2.5 h;但水簾牛舍內持續高的相對濕度 (全日相對溼度 > 93%) 與低的風速增加牛隻熱負荷,牛隻在4 a.m.的呼吸數 (62 vs. 50次/分鐘)、4 a.m.的直腸溫度 (39.58 vs. 39.31℃) 及2 p.m.的直腸溫度 (39.75 vs. 39.47℃) 都顯著高於傳統牛舍牛隻,牛隻血液CO2分壓 (41.4 vs. 43.8 mmHg) 降低,血液pH值顯著增加。同時,水簾牛舍飼養環境顯著減少牛隻的採食活動,使牛隻乾物質採食量降低7.6% (17.0 kg vs. 18.4 kg),4%乳脂校正乳量降低10.1% (23.1 kg vs. 25.7 kg),乳蛋白質濃度也顯著降低,但水簾牛舍環境並不影響瘤胃的消化,牛隻的瘤胃pH值、揮發性脂肪酸與氨態氮濃度都相近。為改善水簾牛舍的氣候環境,2006年增加牛舍內的抽風扇數量,並安裝與傳統牛舍相同的噴水處理,提供白天最高風速2.38 m/s與3.2次/min的空氣交換速度,夜間環境估計分別為1.17 m/s與1.4次/min。2006年試驗採用一個3 x 3拉丁方設計,將36頭泌乳牛分組飼養於傳統牛舍、水簾牛舍或水簾+噴水牛舍,試驗每期21日。結果顯示,水簾兩組在降低牛舍日間溫度與THI的效率高於傳統牛舍,每日增加舍內氣溫 < 26℃的時間達4.2小時,但全日相對濕度 > 96%。水簾兩組牛隻3 a.m.的呼吸數與體表溫都顯著高於傳統牛舍組牛隻。水簾組牛隻陰道溫度持續高,但噴水兩組牛隻陰道溫度可隨噴水與擠乳處理後明顯下降0.4 – 0.6℃。三種牛舍環境對牛隻採食活動、瘤胃消化及泌乳性能的影響相近,但水簾兩組牛隻採食量顯著較高,且水簾+噴水組牛隻乳量有高於傳統組的趨勢 (25.4 kg vs. 24.7 kg, P = 0.10)。由2006年試驗結果顯示,三種牛舍環境雖仍無法完全紓解泌乳牛熱緊迫,但經由增加風速與噴水降溫處理,水簾兩組牛隻的採食與泌乳都已相當於或優於傳統組牛隻表現,因此水簾牛舍在高濕地區的使用值得繼續研究。除了影響泌乳牛生理反應與泌乳性能,熱緊迫也嚴重影響乳牛的熱季繁殖效率。2005年調查傳統牛舍與水簾牛舍牛隻的血清助孕素濃度,得知在同期化發情處理過程中,12頭泌乳牛助孕素濃度相近。於2007年熱季將40頭泌乳牛分組飼養於傳統牛舍或水簾+噴水牛舍90天 (換氣速度3.2次/min),進行兩次前列腺素注射的發情同期化處理。試驗結果顯示,不論在一般傳統牛舍或水簾+噴水牛舍,熱季期間牛隻對標的配種計畫的反應皆不理想,全期試驗每次人工授精受孕率分別為20.7%與17.4%,全期懷孕率分別為30%與21.1%。收集接續三年期間 (2008 - 2010) 的田間紀錄,以2 x 2複因子設計,分析泌乳牛繁殖效率受畜舍降溫處理 (一般傳統牛舍或水簾+噴水牛舍) 及季節 (涼熱兩季) 之影響。結果顯示,泌乳牛熱季 (5 - 10月) 懷孕率,在一般傳統牛舍或水簾+噴水牛舍分別為29.0%與26.4%,全年則分別為40.2%與36.3%,無顯著性差異。綜合三次試驗結果,顯示水簾牛舍的高濕度問題可藉由提高風速來減緩,水簾牛舍內再配合噴水降溫處理,可以有效協助牛隻排熱,提高牛隻泌乳性能,但仍無法解決熱季繁殖效率的低落,如何增加牛舍內通氣量與降低相對濕度,為往後繼續努力的方向。 | zh_TW |
| dc.description.abstract | Heat stress from high temperature and humidity is always the bottleneck in enhancing lactation performance of dairy cows in Taiwan. Improving the barn environment is the most effective and direct method to alleviate cow heat stress. The feasibility of heat stress alleviation for Holstein lactating cows by a tunnel-ventilated, water-padded (TP) barn was assessed in this study. In 2005, a crossover designed experiment was conducted for 30 days a period. A total of 42 head of cows with milk yield of 26.2 kg a day were assigned into the TP barn or the conventional barn. The rectangle TP barn has a raising space for 48 head of lactating cows. Eight exhaustive fans and an L shape water-pad were set at the two end walls in the TP barn. Heavy plastic curtains formed both long side walls contributed the tunnel effect. The exhaustive fans would be turned on following the increasing air temperature and provided the highest daytime air speed of 1.66 m per second and air exchange rate of two times per minute. Evaporating water in the pad absorbs heat from the incoming air and cools the air. Four hung fans operated all day long were set in the conventional barn. Additional six 30-min sprinkler cooling cycles a day were arranged along the intake alley. The results indicated that TP barn could effectively cut down 2.4℃ more at the highest daytime temperature, and decreased 2.5 h more for cows suffering the medium heat stress (78 < THI ≤ 84) than conventional barn did. However, the persistently high relative humidity (> 93%) and low air speed inside the TP barn increased the heat load for cows. Cows raised in the TP barn had the higher 4 a.m. respiration rate (62 vs. 50 breaths/min), 4 a.m. rectal temperature (39.58 vs. 39.31℃), and 2 p.m. rectal temperature (39.75 vs. 39.47℃) than those raised in the convention barn. TP barn environment decreased the partial pressure of CO2 in cow blood (41.4 vs. 43.8 mmHg), thus increased the blood pH. Meanwhile, TP barn environment significantly decreased cow intake activity and resulted in the lower dry matter intake and 4% fat corrected milk yield by 7.6% (17.0 kg vs. 18.4 kg) and 10.1% (23.1 kg vs. 25.7 kg), respectively. Percentage of milk protein was also decreased. But rumen digestion pattern was kept the same. Diurnal rumen pH, NH3-N and volatile fatty acid productions were not influenced by barn environments. To improve the TP barn environment, fan numbers were increased and same sprinkling program as that in the conventional barn were applied in 2006. The highest daytime air speed at cow level and air exchange rate reached 2.38 m/s and 3.2 times/min after the modification. Both parameters at night in the TP barn were estimated to be 1.17 m/s and 1.4 times/min, respectively. In 2006, 36 cows allocated in a 3 x 3 Latin square with 21 days a period were raised in three barn cooling treatments: the conventional barn like in 2005 trial, a TP barn and a TP barn with sprinkler cooling (TP+SP). Both TP barns were more efficient in reducing the daytime temperature and the temperature humidity index. The barn temperature was less than 26°C for an extra 4.2 h per day, but the relative humidity was above 96% in both TP barns. Cows in both TP barns had higher 3 a.m. respiration rates and skin temperatures than cows in the conventional barn. Vaginal temperature was persistently high in cows in the TP barn; in the two barns with sprinkler cooling, vaginal temperature could effectively decreased 0.4 to 0.6°C following the sprinkling and milking. The intake activity, rumen digestion, and milking performance of cows raised in the three environments were similar. Cows in both TP barns ingested more dry matter. Cows in the TP+SP barn tended to produce more milk than those in the conventional barn (25.4 vs. 24.7 kg, P = 0.10). Although cows’ heat stress was not completely alleviated in these three barns, the TP+SP treatment resolved the negative impact of a previous TP barn built in 2004 on intake and milk yield by increasing air speed and using sprinkler cooling. Thus, it is expected that TP+SP barns will be beneficial in areas of high humidity. Except for the physiological responses and milking performance, the reproductive efficacy of cows is also influenced by the environmental heat stress. The serum progesterone levels during synchronization treatment were similar from 12 cows raised in the conventional barn and TP barn in 2005. In 2007 summer, a total of 40 cows were assigned into the conventional barn or the TP+SP barn (air exchange rate of 3.2 times/min) for a period of 90 days. A target breeding program with two consecutive prostaglandin injections at 14-d interval was applied. No matter cows were raised in the conventional barn or the TP+SP barn, responses to prostaglandin treatment of cows in hot summer was not ideal. Conception rate per AI of cows in these two barns were 20.7% and 17.4%, and for the whole period pregnancy rate were 30% and 21.1%, respectively. From 2008 to 2010, reproductive field data of lactating cows were collected. Data were categorized and statistically analyzed in a 2 x 2 factorial design including barn cooling treatments, conventional barn or TP+SP barn, and seasons, cool or hot season. Results showed that conception rate of cows were not affected by the barn treatment. In hot season (May to Oct.), conception rate of cows in conventional barn and TP+SP barn were 29.0% and 26.4%, and were 40.2% and 36.3% for the whole year, respectively. Results from all three studies suggested that the high humidity problem in TP barn could be mitigated by the higher air speed. The application of sprinkler cooling in TP barn is beneficial for cows to dissipate their body heat so that to promote the milking performance. However, poor reproductive efficacy in the hot summer is not resolved by the TP+SP barn. Adequate air speed and lower humidity are likely to be key factors for further TP barn study. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:41Z (GMT). No. of bitstreams: 1 ntu-100-D90626001-1.pdf: 2108311 bytes, checksum: 2982a4bd0675137280f2e17423f5e31e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 ......................................i
誌謝 ..................................................ii 中文摘要 ..............................................iii 英文摘要 ..............................................v 目錄 ..................................................viii 圖目錄 ................................................xiii 表目錄 ................................................xv 第一章 緒論 ..........................................1 1.1 國內酪農業概況 ....................................1 1.2 環境溫度對牛隻體溫恆定之影響.......................3 1.3 乳牛熱緊迫程度之評估 ..............................4 1.4 乳牛對熱緊迫之反應 ............................... 6 1.4.1 熱緊迫對牛隻行為之影響 ......................... 6 1.4.2 熱緊迫對牛隻代謝之影響 ..........................8 1.4.3 熱緊迫對牛隻泌乳之影響 ......................... 9 1.4.4 熱緊迫對牛隻繁殖之影響 .........................12 1.5 以改善牛舍降溫紓解牛隻熱緊迫 .....................12 1.5.1 遮蔭 ...........................................13 1.5.2 噴水與吹風 .....................................14 1.5.3 隧道式抽風 .....................................15 1.5.4 隧道式抽風與蒸發冷卻 ...........................16 1.5.5 冷氣 ...........................................16 1.5.6 其他降溫方式....................................18 1.6 台灣的氣候環境 ...................................18 1.7 試驗緣起與目的 ...................................23 第二章 以水簾牛舍紓解荷蘭泌乳牛熱緊迫之可行性評估 I.牛舍環境與牛隻生理反應 .......................................24 2.1 中文摘要 .........................................24 2.2 緒言..............................................24 2.3 材料與方法........................................27 2.3.1 水簾牛舍........................................27 2.3.2 傳統牛舍........................................28 2.3.3 試驗設計........................................29 2.3.4 試驗牛群之飼養管理..............................29 2.3.4.1 試驗牛群......................................29 2.3.4.2 牛群管理......................................29 2.3.4.3 牛群飼養......................................29 2.3.5 環境資料收集....................................29 2.3.5.1 溫濕度之測定..................................29 2.3.5.2 THI之計算公式.................................30 2.3.5.3熱緊迫程度之定義...............................30 2.3.6 牛隻熱緊迫生理反應測定項目......................30 2.3.6.1呼吸次數與直腸溫度.............................30 2.3.6.2血液生化值.....................................30 2.3.6.3血液氣體.......................................30 2.3.7 統計分析........................................31 2.4 結果與討論........................................31 2.4.1 環境氣候........................................31 2.4.2 泌乳牛生理反應..................................35 2.4.2.1 呼吸次數與直腸溫度............................35 2.4.2.2 血液生化值及氣體..............................36 2.5 結論與建議........................................39 第三章 以水簾牛舍紓解荷蘭泌乳牛熱緊迫之可行性評估 II. 採食行為、瘤胃消化與泌乳性能................................40 3.1 中文摘要..........................................40 3.2 緒言..............................................40 3.3 材料與方法........................................42 3.3.1 試驗設計與處理..................................42 3.3.2 試驗動物及飼養管理..............................43 3.3.3 測定項目........................................44 3.3.3.1 體重變化......................................44 3.3.3.2 採食活動......................................44 3.3.3.4 瘤胃消化......................................45 3.3.3.5 泌乳性能......................................45 3.4 結果與討論........................................45 3.4.1 牛舍環境........................................45 3.4.2 飼糧組成與採食..................................48 3.4.3 瘤胃消化........................................53 3.4.4 泌乳性能........................................53 3.5 結論與建議........................................59 第四章 以水簾牛舍紓解荷蘭泌乳牛熱緊迫之可行性評估 III. 增加換氣速度與噴水降溫之效果..............................60 4.1 中文摘要..........................................60 4.2 緒言..............................................60 4.3 材料與方法........................................62 4.3.1 牛舍處理........................................62 4.3.2 試驗動物飼養管理................................63 4.3.3 牛舍環境參數測定................................63 4.3.4 泌乳牛生理反應..................................64 4.3.5 泌乳牛採食、瘤胃消化與泌乳性能..................64 4.3.6 統計分析........................................65 4.4 結果與討論........................................65 4.4.1 牛舍氣候環境....................................65 4.4.2 泌乳牛生理反應..................................70 4.4.2.1 呼吸速度與體溫................................70 4.4.2.2 血液氣體及生化值..............................74 4.4.2.3 泌乳牛採食活動、瘤胃消化與泌乳性能............77 4.4.2.3.1 採食活動....................................77 4.4.2.3.2 瘤胃消化與泌乳性能..........................77 4.5 結論..............................................83 第五章 以水簾牛舍改善荷蘭種泌乳牛熱季繁殖效率可行性評估..84 5.1 中文摘要..........................................84 5.2 緒言..............................................84 5.3 材料與方法........................................85 5.3.1 水簾牛舍對熱季泌乳牛血中助孕素濃度之影響........85 5.3.2 水簾牛舍對熱季泌乳牛標的配種計畫效果之影響......86 5.3.2.1 試驗動物管理..................................86 5.3.2.2 試驗設計與標的配種計畫........................86 5.3.3 長期飼養於水簾牛舍的泌乳牛的繁殖效率............87 5.4 結果與討論........................................87 5.4.1 水簾牛舍對熱季泌乳牛血中助孕素濃度之影響........87 5.4.2 水簾牛舍對熱季泌乳牛標的配種計畫效果之影響......88 5.4.3 長期飼養於水簾牛舍的泌乳牛的繁殖效率............89 5.5 結論..............................................91 第六章 結論...........................................92 參考文獻..............................................93 附錄.................................................104 | |
| dc.language.iso | zh-TW | |
| dc.title | 以隧道式抽風水簾牛舍紓解荷蘭種泌乳牛於臺灣夏季熱緊迫問題之可行性 | zh_TW |
| dc.title | Feasibility of Heat Stress Alleviation for Holstein Lactating Cows by a tunnel-ventilated, water-padded barn in hot and humid summer in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李善男(S. N. Lee),陳銘正,陳全木,沈朋志 | |
| dc.subject.keyword | 熱緊迫,荷蘭泌乳牛,溼度,隧道抽風水簾牛舍, | zh_TW |
| dc.subject.keyword | heat stress,Holstein lactating cow,humidity,a tunnel-ventilated,water-padded barn, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 2.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
