請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8680
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭福田 | |
dc.contributor.author | Yi-Chi Chen | en |
dc.contributor.author | 陳依琪 | zh_TW |
dc.date.accessioned | 2021-05-20T19:59:40Z | - |
dc.date.available | 2012-04-16 | |
dc.date.available | 2021-05-20T19:59:40Z | - |
dc.date.copyright | 2010-04-16 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-04-12 | |
dc.identifier.citation | 1.Angelidis, T. N., Papadakis, V.G. (1997). 'Partial Regeneration of an Aged Commercial Automotive Catalyst.' Applied Catalysis B: Environmental 12: 193-206.
2.Angove, D. E., Cant, N.W. (2000). 'Position Dependent Phenomena During Deactivation of Three-way Catalytic Converters on Vehicles.' Catalysis Today 63: 371-378. 3.Bartholomew, C. H. (2001). 'Mechanisms of Catalyst Deactivation.' Applied Catalysis A:General 212: 17-60. 4.Beck, D. D., Sommers, J. W., DiMaggio, C. L. (1997). 'Axial Characterization of Catalytic Activity in Close-coupled Light-off and Underfloor Catalytic Converters.' Applied Catalysis B: Environmental 11: 257-272. 5.Birgersson, H., Boutonnet, M., Jaras, S., Eriksson, L. (2004). 'Deactivation and Regeneration of Spent Three-way Automotive Exhaust Gas Catalysts (TWC).' Topics in Catalysis 30/31: 433-437. 6.Birgersson, H., Eriksson, L., Boutonnet, M., Järås, S.G. (2004). 'Thermal Gas Treatment to Regenerate Spent Automotive Three-Way Exhaust Gas Catalysts (TWC).' Applied Catalysis B: Environmental 54: 193-200. 7.Birgersson, H., Boutonnet, M., Klingstedt, F., Murzin, D.Y., Stefanov, P., Naydenov, A. (2006). 'An Investigation of a New Regeneration Method of Commercial Aged Three-Way Catalysts.' Applied Catalysis B: Environmental 65: 93-100. 8.Bruehlmann, S., Forss, A.M., Steffen, D., Heeb, N.V. (2005). 'Benzene: A Secondary Pollutant Formed in the Three-Way Catalyst.' Environmental Science and Technology 39: 331-338. 9.Chan, C. C., Nien, C.K., Tasi, C.Y., Her, G.R. (1995). 'Comparison of Tail Pipe Emissions from Motorcycle and Passenger Cars.' Journal of Air & Waste Management Association 45: 116-124. 10.Christou, S. Y., Efstathiou, A.M (2007). 'Efficient In-Situ Regeneration Method of the Catalytic Activity of Aged TWC.' Topics in Catalysis 42: 415-419. 11.Czerwinski, J., Wili Ph., Comte, P. (2003). Emission Factors and Influences on Particle Emissions of Modern 2-Stroke Scooters, Bundesamt für Umwelt, Wald und Landschaft (BUWAL). 12.da Silva, L. I. D., de Souza Sarkis, J.E., Zotin, F.M.Z., Carneiro, M.C., Neto, A.A., da Silva-Alzira dos Santos, A.G., Cardoso, M.J.B., Monteiro, M.I.C. (2008). 'Traffic and Catalytic Converter - Related Atmospheric Contamination in the Metropolitan Region of the City of Rio de Janeiro, Brazil.' Chemosphere 71: 677-684. 13.Daley, R. A., Christou, S.Y., Efstathiou, A.M., Anderson, J.A. (2005). 'Influence of Oxychlorination Treatments on the Redox and Oxygen Storage and Release Properties of Thermally Aged Pd-Rh/CexZr1-xO2/Al2O3 Model Three-Way Catalysts.' Applied Catalysis B: Environmental 60: 117-127. 14.Datye, A. K., Xu, Q., Kharas, K.C., McCarty, J.M. (2006). 'Particle Size Distributions in Heterogeneous Catalysts: What Do They Tell Us about the Sintering Mechanism?' Catalyst Today 111: 59-67. 15.Elbouazzaoui, S., Courtois, X., Marecot, P., Duprez, D. (2004). 'Characterisation by TPR, XRD and NOx Storage Capacity Easurements of the Ageing by Thermal Treatment and SO2 Poisoning of a Pt/Ba/Al NOx-trap Model Catalyst.' Topics in Catalysis 30-31: 493-496. 16.Faisal, M., Atsuta, Y., Daimon, H., Fujie, K. (2008). 'Recovery of Precious Metals From Spent Automobile Catalytic Converters Using Supercritical Carbon Dioxide.' Asia Pacific Journal of Chemical Engineering 3: 364-367. 17.Fornalczyk, A., Saternus, M. (2009). 'Removal of Platinum Group Metals from the Used Auto Catalytic Converter.' METALURGIJA 48: 133-136. 18.Forzatti, P., Lietti, L. (1999). 'Catalyst Deactivation.' Catalysis Today 52: 165-181. 19.Heck, R. M., Farrauto, R.J., Gulati, S.T. (2002). Catalytic Air Pollution Control. New York, John Wiley & Sons. 20.Hietikko, M., Lassi, U., Kallinen, K., Savimaki, A., Harkonen, M., Pursiainen, J., Laitinen, R.S., Keiski, R.L. (2004). 'Effect of the Ageing Atmosphere on Catalytic Activity and Textural Properties of Pd/Rh Exhaust Gas Catalysts Studied by XRD.' Applied Catalysis A: General 277: 107-117. 21.Horng, R.F., Chou, H.M., Hsu, T.C. (2004) 'Effects of Heating Energy and Heating Position on the Conversion Characteristics of the Catalyst of a Four-Stroke Motorcycle Engine in Cold Start Conditions.' Energy Conversion and Management 45: 2113-2126. 22.Inoue, K., Kurahashi, T., Negishi, T., Akiyama, K., Arimura, K., Tasaka, K. (1992). 'Effects of Phosphorus and Ash Contents of Engine Oils on Deactivation of Monolithic Three-way Catalysts and oxygen sensors.' SAE Technical Paper. 23.Jen, H. W., Graham, G.W., Chun, W., McCabe, R.W., Cuif, J.P., Deutsch, S.E., Touret, O. (1999). 'Characterization of Model Automotive Exhaust Catalysts: Pd on Ceria and Ceria-zirconia Supports.' Catalysis Today 50: 309-328. 24.Jia, L. W., Zhou, W.L., Shen, M.Q., Wang, J., Lin, M.Q. (2006). 'The Investigation of Emission Characteristics and Carbon Deposition over Motorcycle Monolith Catalytic Converter Using Different Fuels.' Atmospheric Environment 40: 2002-2010. 25.Johnson, M. F. L. (1990). 'Surface Area Stability of Aluminas.' Journal of Catlysis 123: 245-259. 26.Jones, J. M., Dupont, V.A., Brydson, R., Fullerton, D.J., Nasri, N.S., Ross, A.B., Westwood, A.V.K. (2003). 'Sulphur Poisoning and Regeneration of Precious Metal Catalysed Methane Combustion.' Catalysis Today 81: 589-601. 27.Kallinen, K., Suopanki, A., Härkönen, M. (2005). 'Laboratory Scale Simulation of Three-way Catalyst Engine Ageing.' Catalysis Today 100: 223-228. 28.Kishore-Nadkarni, R. A. (2000). 'Determination of Sulfur in Petroleum Products and Lubricants: A Critical Review of Test Performance.' American Laboratory: 16-25. 29.Koltsakis, G. C., Stamatelos, A.M. (1997). 'Catalytic Automotive Exhaust Aftertreatment.' Progress in Energy and Combustion Science 23: 1-39. 30.Kröger, V., Hietikko, M., Lassi, U., Ahola, J., Kallinen, K., Laitinen, R., Keiski, R.L. (2004). 'Characterization of the Effects of Phosphorus and Calcium on the Activity of Rh-containing Catalyst Powders.' Topics in Catalysis 30/31: 469-473. 31.Kröger, V., Lassi, U., Kynkaanniemi, K., Suopanki, A., Keiski, R.L. (2006). 'Methodology Development for Laboratory-scale Exhaust Gas Catalyst Studies on Phosphorus Poisoning.' Chemical Engineering Journal 120: 113-118. 32.Kröger, V. (2007). 'Poisoning of Automotive Exhaust Gas Catalyst Components.' Department of Process and Environmental Engineering, Oulu University. 33.Kumar, S. V., Hochmuth, J.K., Heck, R.M. (1994). 'A Novel Approach to Studying the Effect of Various Rapid Aging Cycles on the Performance of a High Tech Palladium Only Three Way Catalyst.' SAE Technical Paper. 34.Lassi, U. (2003). Deactivation Correlations of Pd/Rh Three-way Catalysts Designed for EuroⅣ Emission Limits. Department of Process and Environmental Engineering, Oulu University. 35.Lassi, U., Hietikko, M., Rahkamaa-Tolonen, K., Kallinen, K., Savimaki, A., Harkonen, M., Laitinen, R., Keiski, R.L. (2004). 'Deactivation Correlations Over Pd/Rh Monoliths: The Role of Gas Phase Composition.' Topics in Catalysis 30/31: 457-462. 36.Levenspiel, O. (1999). Chemical Reaction Engineering. New York, John Wiley & Sons. 37.Lim, M. T., Choi, B.C., Kwak, Y.H. (2000). 'Aging of Automotive Catalysts-development of a Practical Model.' JSME Internal Journal Sereis B 43: 171-179. 38.Liu, D. R., Park, J.S. (1993). 'Electron Microprobe Characterization of Phosphorus Containing Deposits on Used Automotive Catalyst Surfaces.' Applied Catalysis B: Environmental 2: 49-70. 39.López Granados, M., Larese, C., Cabello Galisteo, F., Mariscal, R., Fierro, J.L.G., Fernández-Ruíz, R., Sanguino, R., Luna, M. (2005). 'Effect of Mileage on the Deactivation of Vehicle-Aged Three-Way Catalysts.' Catalysis Today 107-108: 77–85. 40.Poulopoulos, S. G., Philippopoulos, C.J. (2004). 'MTBE, Methane, Ethylene and Regulated Exhaust Emissions from Vehicles with Deactivated Catalytic Converters.' Atmospheric Environment 38: 4495-4500. 41.Rokosz, M. J., Chen, A.E., Lowe-Ma, C.K., Kucherov, A.V., Benson, D., Peck, M.C.P., McCabe, R.W. (2001). 'Characterization of Phosphorus-poisoned Automotive Exhaust Catalysts.' Applied Catalysis B: Environmental 33: 205-215. 42.Sarikaya, Y., Ada, K., Onal, M. (2007). 'Applications of Zero-order Reaction Rate Model and Transition State Theory on the Intra-particle Sintering of an Alumina Powder by Using Surface Area Measurements.' Journal of Alloys and Compounds 432: 194-199. 43.Sehested, J., Gelten, J.A.P., Helveg, S. (2006). 'Sintering of Nickel Catalysis Effects of Time, Atmosphere, Temperature, Nickel-carrier Interactions, and Dopants.' Applied Catalysis A: General 309: 237-246. 44.Serrano, D. P., Aguado, J., Rodríguez, J. M., Peral, A. (2007). 'Catalytic Cracking of Polyethylene over Nanocrystalline HZSM-5: Catalyst Deactivation and Regeneration Study.' Journal of Analytical and Applied Pyrolysis 79: 456-464. 45.Tsai, J. H., Chiang, H. L., Hsu, Y. C., Weng, H. C., Yang, C. Y. (2003). 'The Speciation of Volatile Organic Compounds (VOCs) from Motorcycle Engine Exhaust at Different Driving Modes.' Atmospheric Environment 37: 2485-2496. 46.Uy, D., O’Neill, A. E., Xu, L., Weber, W. H., McCabe, R. W. (2003). 'Observation of cerium phosphate in aged automotive catalysts using Raman spectroscopy.' Applied Catalysis B: Environmental 41: 269-278. 47.Villegas, J. I., Kumar, N., Heikkila, T., Lehto, V. P., Salmi, T., Murzin, D.Y. (2006). 'Isomerization of N-butane to Isobutane over Pt-modified Beta and ZSM-5 Zeolite Catalysts: Catalyst Deactivation and Regeneration.' Chemical Engineering Journal 120: 83-89. 48.Winkler, A., Ferri, D., Aguirre, M. (2009). 'The Influence of Chemical and Thermal Aging on the Catalytic Activity of a Monolithic Diesel Oxidation Catalyst.' Applied Catalysis B: Environmental 93: 177-184. 49.Wu, C. W., Chen, R.H., Pu, J.Y., Lin, T.H. (2004). 'The Influence of Air-fuel Ratio on Engine Performance and Pollutant Emission of an SI engine Using Ethanol Gasoline-blended Fuels.' Atmospheric Environment 38: 7093-7100. 50.Xu, L., Guo, G., Uy, D., O’Neill, A. E., Weber, W. H., Rokosz, M. J., Mccabe, R. W. (2004). 'Cerium phosphate in automotive exhaust catalyst poisoning.' Applied Catalysis B: Environmental 50: 113-125. 51.Zhao, D., Chan, A., Ljungström, E. (2006). 'Performance Study of 48 Road-Aged Commercial Threeway Catalytic Converters.' Water, Air, and Soil Pollution 169: 255-273 52.交通部 (2007). 96年度機車使用狀況調查摘要分析, 交通部. 53.交通部 (2009). 臺閩地區機動車輛登記數, 交通部. 54.行政院環境保護署 (2002). 交通工具空氣污染防制設備管理規則. 55.何文淵 (1999). 汽油車引擎廢氣揮發性有機物成分及光化反應潛勢. 環境工程學系, 國立成功大學. 碩士論文. 56.吳哲仁 (2006). 認識觸媒轉化器. 財團法人環境資源研究發展基金會簡訊 5. 57.巫金台 (2005). 機車第五期排放標準及低污染機車先進技術評估. 行政院環境保護署. 58.李秋煌 (2003). 生活中的神燈─觸媒─改善環境的仙丹. 科學發展月刊 370: 28-33. 59.林猷治、鄭武輝 (1994). 台灣地區汽車使用觸媒轉化器效能衰退實例原因調查及改善對策研究, 行政院環境保護署. 60.倪佩貞 (2009). 空氣污染物排放清冊資料更新管理及排放量空間分佈查詢建置, 行政院環境保護署. 61.翁閎政 (1998). 機車排氣之揮發性有機物特徵及光化反應性研究. 環境工程學系, 國立成功大學. 碩士論文. 62.陳永勳 (2004). 機車排氣定期檢驗站品質管理與查核, 行政院環境保護署. 63.喻賢璋 (1988). 機車廢氣觸媒轉化器之研究(I.實驗室階段), 行政院環境保護署. 64.葉惠芬 (2004). 冷熱啟動測試機車排放揮發性有機物特徵之差異研究. 環境工程學系, 國立成功大學. 碩士論文. 65.樊國恕 (2005). 機車排氣定檢制度對空氣污染減量評估之研究, 行政院環境保護署. 66.鄭武輝 (1992). 臭氧層保護規劃及機動車輛污染改善研究台灣地區汽車使用觸媒轉化器效能衰退實例原因調查及改善對策研究, 行政院環境保護署. 67.鄭福田、陳志傑、蔡俊鴻、林文印 (2009). 機車觸媒轉化器污染控制效能與耐久性評析, 行政院國家科學委員會/行政院環境保護署. 68.鄭福田、蔡俊鴻、李芝珊 (2005). 油品成分對機車排放空氣污染物之特性研究, 行政院國家科學委員會/行政院環境保護署. 69.盧昭暉 (1999). 機車排氣定期檢驗數據分析與成效評估, 行政院環境保護署. 70.顧復中 (2000). 交通工具空氣污染檢驗管制核章作業專案計畫, 行政院環境保護署.行政院環保署空保處網頁資料-機車管制,URL:http://mobile.epa.gov.tw/motorbike.aspx 71.行政院環保署空保處網頁資料-油品改善,URL: http://mobile.epa.gov.tw/oilimprovement.aspx 72.行政院環保署空保處網頁資料-機車管制,URL:http://mobile.epa.gov.tw/motorbike.aspx 73.環保署機車定期檢驗資訊管理系統,URL:http://www.motorim.org.tw/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8680 | - |
dc.description.abstract | 機車引擎排放廢氣為台灣主要空氣污染來源之一,其空氣污染物排放貢獻約為CO:19%、HC:11%及NOx:3%。我國第三期空氣污染物排放標準規定87年起所有新出廠的機車都要加裝觸媒轉化器,以降低機車引擎排放污染量。然而使用過程中高溫的操作環境與引擎排放廢氣中所含不純物將造成觸媒轉化效率隨著使用時間的增長而衰減,致使排氣污染情形惡化。因此本研究之主要內容為了解機車觸媒轉化器於使用過程中可能遭受之劣化機制以及觸媒轉化器表面特性與處理效能之變化,並藉由實驗室劣化模擬程序以探討操作溫度、時間及引擎排放廢氣中所含不純物對觸媒轉化器特性之影響。
本研究針對不同車齡及里程數機車觸媒轉化器特性分析結果顯示,熱劣化與毒化為機車觸媒轉化器之主要劣化機制,且劣化現象隨著車齡及里程數的增加而更加顯著。熱劣化及毒化機制造成使用過觸媒孔洞損失,且孔隙尺寸往大孔徑移動,觸媒比表面積減少,並影響觸媒之效能。 熱劣化模擬試驗中探討操作溫度與劣化模擬時間對觸媒特性之影響,其中操作溫度越高,熱劣化現象越顯著。觸媒比表面積損失情形有隨操作溫度上升而增加之趨勢: | zh_TW |
dc.description.abstract | Motorcycle engine exhaust is one of the major sources of air pollutants in Taiwan. Their pollutant emissions were evaluated to contribute about 3%, 11% and 13% to NOx, HC and CO emissions respectively. Catalytic converters have been enforced to be assembled in exhaust pipes of motorcycles produced later than 1998, to reduce pollutant emissions. Nevertheless, catalytic converters were reported as becoming deactivated, which was attributed to operation conditions of high temperature and impurities. Consequently, motorcycles equipped with those deactivated catalytic converters cause severe impact on the environment. In this study, catalytic converters used for different ages and mileages were characterized by forms of analytical techniques to investigate the deactivation phenomena. The laboratory aging tests were performed to simulate the real operation conditions of motorcycle catalytic converters and determine the effects of operation temperature, operation time, poison’s type and poison’s concentration on catalytic properties.
According to the analytical results of catalysts used for different ages and mileages, thermal deactivation and poisoning were described as the main deactivation mechanisms. The aging induced phase transitions, loss in specific surface areas and pore volume, the growth in the pore size and the deterioration of catalytic performances were observed. The accumulation of the used time stands for the increase in the deactivation potential. Thermal deactivation tests were performed to determine the effects of operation temperature and operation time on catalytic properties. The thermal deactivation phenomena became more significant with the increase in the operation temperature. The loss in specific surface area exhibited an increasing trend as: | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:40Z (GMT). No. of bitstreams: 1 ntu-99-F92541126-1.pdf: 6935828 bytes, checksum: 3202f2542f8f90e2bfd5057218652260 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 一、前言 1
1.1 研究背景 1 1.2 研究目標 3 1.3 研究項目及研究內容 3 二、文獻回顧 5 2.1 機車引擎排放廢氣組成 5 2.2 機車引擎排氣污染控制設備 6 2.2.1 機車污染排放控制機構 7 2.2.2 觸媒轉化器 7 2.2.3 觸媒轉化器處理排氣之效能 9 2.3 引擎操作條件對觸媒轉化器效能之影響 11 2.4 觸媒劣化機制 13 2.4.1 熱劣化機制 14 2.4.2 毒化機制 15 2.4.3 多種致劣化因子之共同效應 17 2.5 觸媒加速劣化試驗 17 2.6觸媒劣化預測 18 2.6.1 劣化週期試驗 18 2.6.2 觸媒劣化模式 19 2.6.3 零階燒結速率模式 20 2.6.4 冪次燒結速率模式 20 2.7 觸媒轉化器再生與回收再利用 21 2.7.1 觸媒再生 21 2.7.2 觸媒回收再利用 22 三、研究步驟及方法 24 3.1 建置觸媒劣化試驗系統 30 3.2 比較新舊觸媒特性之差異 33 3.3 進行觸媒劣化模擬試驗 37 3.3.1 探討熱劣化機制對觸媒轉化器處理效能的個別效應 37 3.3.2 探討毒化機制對觸媒轉化器處理效能的效應 38 3.3.3 探討多重劣化機制對觸媒轉化器處理效能的結合效應 39 3.4 計算觸媒劣化係數 41 3.4.1 計算熱劣化係數 41 3.4.2 計算毒化係數 41 3.5 建立觸媒劣化預測模式 42 3.5.1 建立實車劣化模式 42 3.5.2 建立單一機制劣化模式 42 3.5.3 建立多重機制劣化模式 43 四、預期成果與貢獻 44 五、研究結果與討論 45 5.1 新舊機車觸媒轉化器特性分析 45 5.1.1 不同車齡/里程數觸媒轉化器特性分析結果 45 5.1.2 不同車齡/里程數觸媒轉化器特性統計分析結果 49 5.2熱劣化模擬觸媒特性分析 50 5.2.1 熱劣化模擬觸媒活性測試結果 50 5.2.2 熱劣化模擬觸媒比表面積測定結果 52 5.2.3 熱劣化模擬觸媒組成分析結果 55 5.2.4 熱劣化模擬觸媒晶相結構測定結果 55 5.3 毒化模擬觸媒特性分析 57 5.3.1 毒化模擬觸媒活性測試結果 57 5.3.2 毒化模擬觸媒比表面積結果 59 5.3.3 毒化模擬觸媒表面結構與組成分析結果 63 5.3.4 毒化模擬觸媒晶相結構測定結果 66 5.4 毒化加熱劣化模擬觸媒特性分析 70 5.4.1 毒化加熱劣化模擬觸媒活性測試結果 70 5.4.2 毒化加熱劣化模擬觸媒比表面積測定結果 74 5.4.4 毒化加熱劣化模擬觸媒晶相結構測定結果 77 5.5 機車觸媒轉化器劣化係數 78 5.5.1 熱劣化係數 79 5.5.2 毒化係數 80 5.6 機車觸媒轉化器劣化現象預測模式 80 5.6.1 不同車齡及里程數觸媒轉化器劣化預測模式 81 5.6.2 觸媒熱劣化預測模式 82 5.6.3 觸媒毒化預測模式 85 5.6.4 觸媒毒化加熱劣化預測模式 87 5.6.5 機車觸媒轉化器劣化現象預測模式適用條件說明 89 六、結論與建議 91 6.1 結論 91 6.2 建議 93 6.3 研究成果應用 94 參考文獻 96 | |
dc.language.iso | zh-TW | |
dc.title | 機車觸媒轉化器劣化現象之研究 | zh_TW |
dc.title | Study on Deactivation Phenomena of Motorcycle Catalytic
Converters | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 鄭曼婷,張能復,蔡俊鴻,張章堂,林文印,陳律言 | |
dc.subject.keyword | 觸媒轉化器,熱劣化,毒化,實驗室劣化程序,起燃溫度曲線,比表面積,預測模式, | zh_TW |
dc.subject.keyword | Catalytic converter,Thermal deactivation,Poisoning,Laboratory aging test,Light-off curve,Specific surface area,Prediction model, | en |
dc.relation.page | 171 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-04-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 6.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。