Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86808
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor澤大衛zh_TW
dc.contributor.advisorDavid Zelenýen
dc.contributor.author陳婷zh_TW
dc.contributor.authorTing Chenen
dc.date.accessioned2023-04-10T17:01:58Z-
dc.date.available2023-11-09-
dc.date.copyright2023-04-10-
dc.date.issued2023-
dc.date.submitted2023-02-18-
dc.identifier.citationBaker, D.E. and Amacher, M.C. (1982) Nickel, copper, zinc, and cadmium. In: Page, A.L. et al. (Eds), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed., Madison, WI: Soil Science Society of America, Inc. and American Society of Agronomy, Inc., pp. 323–336.
Bergkvist, B., Folkeson, L., and Berggren, D. (1989) Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. Water, Air, and Soil Pollution, 47, 217–286. https://doi.org/10.1007/BF00279328
Bruijnzeel, L.A., Scatena, F.N. and Hamilton, L.S. (Eds) (2010) Tropical montane cloud forests: science for conservation and management, Cambridge: Cambridge University Press.
Burt, R. (Ed) (2004) Soil Survey Laboratory Manual, Soil Survey Investigations Report, No. 42, Version 4.0. Washington, DC: Natural Resource Conservation Service, US Department of Agriculture.
Chao, W.-C., Chao, K.-J., Song, G.-Z. M. and Hsieh, C.-F. (2007) Species composition and structure of the lowland subtropical rainforest at Lanjenchi, southern Taiwan. Taiwania, 52, 253–269. http://dx.doi.org/10.6165/tai.2007.52(3).253
Chao, W.-C., Song, G.-Z.M., Chao, K.-J., Liao, C.-C., Fan, S.-W., Wu, S.-H., Hsieh, T.-H. and Hsieh, C.-F. (2010) Lowland rainforests in southern Taiwan and Lanyu, at the northern border of Paleotropics and under the influence of monsoon wind. Plant Ecology, 210, 1–17. http://dx.doi.org/10.1007/s11258-009-9694-0
Chou, C.-H., Chen, T.-Y., Liao, C.-C. and Peng, C.-I. (2000) Long-term Ecological Research in the Yuanyang Lake Forest Ecosystem I. Vegetation Composition and Analysis. Botanical Bulletin of Academia Sinica, 41, 61–72. http://dx.doi.org/10.7016/BBAS.200001.0061
Chytrý, M., Tichý, L., Holt, J. and Botta-Dukát, Z. (2002) Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13, 79–90. https://doi.org/10.1111/j.1654-1103.2002.tb02025.x
Condit, R. (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Texas: Springer.
Curtis, J.T. (Ed) (1959) The vegetation of Wisconsin: an ordination of plant communities. Madison, WI: University of Wisconsin Press.
Fajardo, A. and McIntire, E.J. (2010) Merged trees in second-growth, fire-origin forests in Patagonia, Chile: positive spatial association patterns and their ecological implications. American Journal of Botany, 97, 1424–1430. http://dx.doi.org/10.3732/ajb1000054
Finzi, A.C., Breemen, N.V. and Canham, C.D. (1998) Canopy tree-soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecological Applications, 8, 440–446. https://doi.org/10.1890/1051-0761(1998)008[0440:CTSIWT]2.0.CO;2
Foster, P. (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55, 73–106. https://doi.org/10.1016/S0012-8252(01)00056-3
Gee, G.W. and Bauder, J.W. (1986) Particle-size analysis. In: Klute, A. (Ed), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd edition. Madison, WI: Soil Science Society of America, Inc. and American Society of Agronomy, Inc., pp. 383–411.
Gransee, A. and Führs, H. (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 368, 5–21. https://doi.org/10.1007/s11104-012-1567-y
Hamilton, L.S., Juvik, J.O. and Scatena, F.N. (Eds) (1995) Tropical Montane Cloud Forests. New York: Springer-Verlag.
Hill, M.O. (1979) TWINSPAN: A fortran program for arranging multivariate data in an ordered two‐way table by classification of the individuals and attributes. Ithaca, New York: Ecology and Systematics, Cornell University.
Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42, 47–58. https://doi.org/10.1007/BF00048870
Hobbie, S.E., Reich, P.B., Oleksyn, J., Ogdahl, M., Zytkowiak, R., Hale, C. and Karolewski, P. (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87, 2288–2297. https://doi.org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2
Hsieh, C.-F., Chen, Z.-S., Sun, I.-F., Hsieh, T.-H., Zheng, Y.-B., Wang, K.-H., Su, M.-H. and Jiang, F.-Y. (1992) The subtropical rain forest in Nanjenshan Area, Kenting National Park (Report No. RES085) (Chinese). Taiwan: Kenting National Park, Construction and Planning Agency, Ministry of the Interior.
Hu, J. and Riveros-Iregui, D.A. (2016) Life in the clouds: are tropical montane cloud forests responding to changes in climate? Oecologia, 180, 1061–1073. https://doi.org/10.1007/s00442-015-3533-x
Hu, Y.-W. and Tzeng, H.-Y. (2019) Microhabitat types and tree species composition in an evergreen broadleaf forest at Mt. Peitungyen (Chinese). Taiwan Journal of Forest Science, 34, 13–27.
Huang, T.-C. and Hsieh, C.-F. (1994–2003). Flora of Taiwan, vol. I–IV, 2nd ed., National Taiwan University, Taipei.
Keuskamp, J.A., Dingemans, B.J.J., Lehtinen, T., Sameel, J.M. and Hefting, M.M. (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4, 1070–1075. https://doi.org/10.1111/2041-210X.12097
Ku, C.-C., Song, G.-Z. M., Chao, K.-J. and Chao, W.-C. (2021) Species-habitat associations of tree species under the northeast monsoon wind-affect tropical forest at Lanjenchi Forest Dynamics Plot, Taiwan. Taiwania, 66, 39–47. http://dx.doi.org/10.6165/tai.2021.66.39
Ku, C.-C., Chao, K.-J., Song, G.-Z.M., Lin, H.-Y., Fan, S.-W. and Chao, W.-C. (2022) How the strength of monsoon winds shape forest dynamics. Diversity, 14, 169. https://doi.org/10.3390/d14030169
Lai, I.-L., Chang, S.-C., Lin, P.-H., Chou, C.-H. and Wu, J.-T. (2006) Climatic characteristics of the subtropical mountainous cloud forest at Yuanyang Lake long-term ecological research site, Taiwan. Taiwania, 51, 317–329. http://dx.doi.org/10.6165/tai.2006.51(4).317
Lawton, R.O. (1982) Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. American Journal of Botany, 69, 1224–1230. https://doi.org/10.2307/2442746
Lee, Y.-N. (2021) Importance of interspecific and intraspecific variation of plant functional traits: a case study in the Lalashan Forest Dynamics Plot (dissertation). Taipei, Taiwan: Institute of Ecology and Evolutionary Biology, National Taiwan University. https://doi.org/10.6342/NTU202104070
Legendre, P. and Legendre, L. (2012) Numerical Ecology, Chapter 1.1: Spatial structure, spatial dependence, spatial correlation, 3rd ed., Oxford: Elsevier, pp. 8–21.
Lepore, M., Arellano, G., Condit, R., Davis, S., Detto, M., Gonzale-Akre, E. et al. (2019) Fgeo: analyze forest diversity and dynamics. Available at: https://cran.r-project.org/web/packages/fgeo/index.html [Accessed 30 July 2021]
Li, C.-F., Chytrý, M., Zelený, D., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Chao, W.-C. and Hsieh, C.-F. (2013) Classification of Taiwan forest vegetation. Applied Vegetation Science, 16, 698–719. https://doi.org/10.1111/avsc.12025
Li, C.-F., Zelený, D., Chytrý, M., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Guo, K. and Hsieh, C.-F. (2015) Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research, 30, 771–791. https://doi.org/10.1007/s11284-015-1284-0
Lin, H.-Y., Yang, K.-C., Hsieh, T.-H. and Hsieh, C.-F. (2005) Species composition and structure of a montane rainforest of Mt. Lopei in northern Taiwan. Taiwania, 50, 234–249. http://dx.doi.org/10.6165/tai.2005.50(3).234
McIntire, E.J. and Fajardo, A. (2011) Facilitation within species: A possible origin of group-selected superorganisms. The American Naturalist, 178, 88–97. http://dx.doi.org/10.5061/dryad.8869
Mulvaney, R.L. (1996) Nitrogen––inorganic forms. In: Sparks, D.L. et al. (Eds), Methods of Soil Analysis, Part 3: Chemical Methods. Madison, WI: Soil Science Society of America, Inc. and American Society of Agronomy, Inc., pp. 1123–1184.
Nelson, D.W. and Sommers, L.E. (1972) A simple digestion procedure for estimation of total nitrogen in soils and sediments. Journal of Environmental Quality, 1, 423–425.
Nelson, D.W. and Sommers, L.E. (1996) Total carbon, organic carbon and organic matter. In: Sparks, D.L. et al. (Eds), Methods of Soil Analysis, Part 3: Chemical Methods. Madison, WI: Soil Science Society of America, Inc. and American Society of Agronomy, Inc., pp. 961–1010.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D. et al. (2020) Vegan: community ecology package. Version 2.5-7. Available at https://cran.rproject.org/web/packages/vegan/index.html [Accessed 3 October 2021]
Ponco-Reyes, R., Reynoso-Rosales, V.H., Watson, J., VanDerWal, J., Fuller, R., Pressey, R. and Possingham, H. (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nature Climate Change, 2, 448–452. https://doi.org/10.1038/nclimate1453
Quervain A.D. (1904) Die Hebung der atmosphärischen lsothermenin der Schweizer Alpen und ihre Beziehung zu deren Höhengrenzen. Gerlands Beitrage zur Geophysik, 6, 481–533.
Reinhardt, K. and Smith, W.K. (2008) Impacts of cloud immersion on microclimate, photosynthesis and water relations of Abies fraseri (Pursh.) Poiret in a temperate mountain cloud forest. Oecologia, 158, 229–238. http://dx.doi.org/10.1007/s00442-008-1128-5
Rigueiro-Rodríguez, A., Mosquera-Losada, M.R., and Ferreiro-Domínguez, N. (2012) Pasture and soil zinc evolution in forest and agriculture soils of Northwest Spain three years after fertilisation with sewage sludge. Agriculture, Ecosystems & Environment, 150, 111–120. https://doi.org/10.1016/j.agee.2012.01.018
Roleček, J., Tichý, L., Zelený, D. and Chytrý, M. (2009) Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science, 20, 596–602. https://doi.org/10.1111/j.1654-1103.2009.01062.x
SanClements, M.D., Fernandez, I.J., and Norton, S.A. (2010) Phosphorus in soils of temperate forests: linkages to acidity and aluminum. Soil Science Society of America Journal, 74, 2175-2186. https://doi.org/10.2136/sssaj2009.0267
Satti, P., Mazzarino, M.J., Gobbi, M., Funes, F., Roselli, L. and Fernandez, H. (2003) Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonia forests. Journal of Ecology, 91, 173–181. https://doi.org/10.1046/j.1365-2745.2003.00756.x
Schachtschabel, P. (1954) Das pflanzenverfügbare Magnesium des Bodens und seine Bestimmung. Journal of Plant Nutrition Soil Science, 67, 9–23.
Schulz, H.M., Li, C.-F., Thies, B., Chang, S.-C. and Bendix, J. (2017) Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLOS ONE, 12, 1–17. https://doi.org/10.1371/journal.pone.0172663
Song, G.-Z. (1996) The composition and distribution type in a warm temperate broad-leaved evergreen forest at Mt Peitungyen, certral Taiwan (dissertation) (Chinese). Taipei, Taiwan: Institute of Plant Biology, National Taiwan University.
Song, G.-Z. M., Yang, K.-C., Hou, C.-H., Lin, J.-K., Hsieh, C.-F., Fan, S.-W. and Chao, W.-C., 2010. Tree population dynamics over 12 yr in a warm temperate broad-leaved evergreen forest at Mt Peitungyen, central Taiwan. Taiwan Journal of Forest Science, 25, 17–27. http://dx.doi.org/10.7075%2fTJFS.201003.0001
Stadtmüller, T. (1987) Cloud forest in the humid tropics. Costa Rica: The United Nations University.
Still, C., Foster, P.N. and Schneider, S.H. (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature, 398, 608–610. https://doi.org/10.1038/19293
Su, H.-J. (1984) Studies on the climate and vegetation types of the natural forests in Taiwan (II)—Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry, 17, 57–73.
Tanner, E.V.J., Kapos, V., Freskos S. and Theobald, A.M. (1990) Nitrogen and phosphorus fertilization of Jamaican montane forest trees. Journal of Tropical Ecology, 6, 231–238. http://dx.doi.org/10.1017/S0266467400004375
Tichý, L. (2002) JUICE, software for vegetation science. Journal of Vegetation Science, 13, 451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x
Tsui, C.-C., Chen, Z.-S., and Hsieh, C.-F. (2004) Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma, 123, 131–142. https://doi.org/10.1016/j.geoderma.2004.01.031
Urban, O., Janouš, D., Acosta, M. and Marek, M.E. (2007) Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 13, 157–168. https://doi.org/10.1111/j.1365-2486.2006.01265.x
von Uexküll, H.R. and Mutert, E. (1995) Global extent, development and economic impact of acid soils. Plant and Soil, 171, 1–15. https://doi.org/10.1007/BF00009558
Zelený, D. (2021) twinspanR: TWo-way INdicator SPecies ANalysis (and its modified version) in R. Version 0.22. Available at https://github.com/zdealveindy/twinspanR [Accessed 3 October 2021]
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86808-
dc.description.abstract亞熱帶山地雲霧森林是一種台灣獨特的植群類型,因受到規律且高頻的雲霧影響,使山地雲霧森林中的植物需適應空氣濕度高、光線少、氣溫低及土壤中長期缺乏養分的環境。為了詳細地瞭解決定亞熱帶山地雲霧森林植物群落組成的生態過程,本研究於台灣北部插天山自然保留區內,位於近塔曼山-拉拉山鞍部拉拉山側之檜木山地針闊葉混合雲霧森林中設立了拉拉山森林動態樣區(24°42ʹ N, 121°26ʹ E)。
該一公頃樣區設立於2019年7月,並於2020年8月完成第一次樣區木本植物普查,普查資料內容包含樣區中所有胸高直徑 ≥1公分木本植物之物種、胸高直徑、位置及編號。同時,也於樣區中蒐集和地形及土壤性質相關之環境因子以供研究分析(其中有些環境因子含樣區中所有樣方之資料,有些則只含樣區中的25個取樣樣方之資料)。
第一次拉拉山森林動態樣區木本植物普查共記錄隸屬於29科、42屬、65種之5220株個體,胸高斷面積共為69.1平方公尺/公頃。以種的優勢度而言,台灣扁柏(Chamaecyparis obtusa var. formosana)和台灣杜鵑(Rhododendron formosanum)之重要值指數(IVI)皆為14%、次為毽子櫟(Quercus sessilifolia)佔9%、昆欄樹(Trochodendron aralioides)佔7% 、假柃木(Eurya crenatifolia)佔5%,前五優勢樹種之累積重要值指數達49%。本研究利用雙向指標種分析(TWINSPAN)將樣區森林以10公尺×10公尺之樣方為單位分為三種植群型後,透過變異數分析(ANOVA)測試植群型間環境因子之差異。
薄葉虎皮楠-台灣扁柏型(Daphniphyllum himalayense subsp. macropodum-Chamaecyparis obtusa var. formosana type)共佔74個樣方,是樣區中主要的植群類型,主要分布於樣區西側及中央寬闊的稜線上。分類至該植群型之樣方擁有相對平緩的地形及酸鹼值較低之土壤,並擁有較高的平均胸高斷面積及較低的密度。小葉石楠-台灣杜鵑型(Pourthiaea villosa var. parvifolia-Rhododendron formosanum type)共佔20個樣方,主要分布於樣區東側的迎風坡上,受東北季風的影響最甚。分類至該植群型之樣方之迎風程度高且土壤酸鹼值高,並擁有較低的平均胸高斷面積和較高的密度及物種豐富度。狹瓣八仙花-假柃木型(Hydrangea angustipetala-Eurya crenatifolia type)相對較少、僅佔6個樣方,主要分布於樣區西側的溪谷中。分類至該植群型之樣方普遍坡度較陡、地勢較低窪、土壤含石率及土壤酸鹼值高,且擁有所有植群型中最低的密度。
為了瞭解樣區形成現今木本植物物種組成背後的主要成因,我們使用降趨對應分析(DCA),並將所有通過測試、與樣區物種組成具有顯著相關之環境因子陳列於圖中。DCA的結果顯示拉拉山森林動態樣區之木本物種組成主要受DCA之第一及第二軸所影響。於該分析中可以見得第一軸和海拔及土壤化學性質包含碳氮比、磷、鎂、鋅呈正相關,而和坡度及土壤酸鹼值呈負相關。第二軸則和土壤含石率呈正相關,並和迎風程度、凹凸度及土壤分解中的穩定因子呈負相關。其中,樣區中的木本植物物種組成主要於擁有較高土壤酸鹼度之較陡的迎風坡和擁有較低土壤酸鹼度之平坦且較高之稜線間發生變化。而次要的物種組成變化則發生於擁有較高凹凸度之地形及擁有較低凹凸度且土壤含石率較高的溪谷兩者之間。
本研究所蒐集之拉拉山森林動態樣區木本植物分布及相關環境狀況,亦可作為未來複查樣區之基線資料,以供未來分析及監測台灣亞熱帶山地雲霧森林動態之所需。
zh_TW
dc.description.abstractSubtropical montane cloud forest (SMCF) is a peculiar vegetation type, affected by the regular occurrence of dense clouds, which influences plant species due to high air humidity, lower light availability and air temperature, and chronic soil nutrient limitation. To understand the ecological processes behind the SMCF community in Taiwan, we established the Lalashan Forest Dynamics Plot (LFDP) in Chamaecyparis montane mixed cloud forest near the saddle between Lalashan and Tamanshan, inside the Chatianshan Nature Reserve, northern Taiwan (24°42ʹ N, 121°26ʹ E). The 1-ha plot was established in July 2019, and in August 2020, we finished the first census of all woody species with a diameter at breast height ≥ 1 cm. Each individual was identified, tagged, mapped, and its diameter at breast height (DBH) was measured. We collected environmental factors related to the topography within each of the 100 10 m × 10 m subplots and soil properties within selected 25 10 m × 10 m subplots.
In total, we recorded 5220 individuals belonging to 65 species, 42 genera and 29 families, with a basal area (BA) of 69.1 m2/ha. The forest is dominated by Chamaecyparis obtusa var. formosana (14% of importance value index, IVI), Rhododendron formosanum (14%), Quercus sessilifolia (9%), Trochodendron aralioides (7%) and Eurya crenatifolia (5%), and the cumulative IVI of these five most dominant species reached 49%. We applied modified two-way indicator species analysis (TWINSPAN) to classify the vegetation into three vegetation types at subplot-level, and tested differences in environmental conditions between these types by ANOVA. The ridge type (Daphniphyllum himalayense subsp. macropodum-Chamaecyparis obtusa var. formosana type, 74 subplots) is the main vegetation type of LFDP, mainly distributed on the wide ridge in the west and middle part of LFDP, with relatively flat topography and soils with lower pH, with higher mean DBH and lower density of individuals. The east-facing slope type (Pourthiaea villosa var. parvifolia-Rhododendron formosanum type, 20 subplots) is mainly distributed in the eastern part of the plot on the steeper windward slopes facing the northeast monsoon, with soils of higher soil pH, with low mean DBH, higher density of individuals and higher species richness. The valley type (Hydrangea angustipetala-Eurya crenatifolia type, 6 subplots) is rather rare, distributed in the ephemeral streams in the western part of LFDP, in steeper slopes and concave shapes with high soil rockiness and soil pH, and with the lowest density of individuals.
To uncover the main gradients in species composition, we used detrended correspondence analysis (DCA) with passively projected topographical and soil environmental factors. The results of DCA showed that the vegetation of the plot is structured along two main compositional axes, the first related positively to elevation, soil chemical properties including C/N ratio, available P, Mg, and Zn, and negatively to slope and soil pH, while the second related positively to soil rockiness, and negatively to windwardness, convexity and stabilization factor of decomposition. The main changes in species composition are between steeper, windward slopes with less acid soils, and flatter higher ridges with more acid soils. The second main changes are between more convex types of topography and concave valley types with rockier soils.
This study provides baseline data about the distribution of woody species and relevant environmental conditions in LFDP, which can be used as references for future resurveys, and analyses for monitoring the dynamics of SMCF in Taiwan.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-04-10T17:01:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-04-10T17:01:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract III
Contents V
List of Figures VI
List of Tables VII
Abbreviations in this study VIII
Introduction 1
Materials and Methods 6
Study site 6
Sampling design 8
Species composition 8
Topographical variables 10
Soil properties 11
Statistical analyses 13
Results 15
Discussion 28
Conclusions 32
Authors contributions 33
References 34
Appendices 45
Appendix 1: Synoptic table 45
Appendix 2: The differences between the selected soil chemical properties in DCA 49
Appendix 3: Correlations between environmental variables 50
Appendix 4: Species checklist 51
Appendix 5: Species IVI in LFDP 56
Appendix 6: R code 59
-
dc.language.isoen-
dc.title拉拉山森林動態樣區木本植物組成與環境之關係zh_TW
dc.titleWoody Species Composition of the Lalashan Forest Dynamics Plot and its Relationship to Environmenten
dc.title.alternativeWoody Species Composition of the Lalashan Forest Dynamics Plot and its Relationship to Environment-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.coadvisor鍾國芳zh_TW
dc.contributor.coadvisorKuo-Fang Chungen
dc.contributor.oralexamcommittee趙國容;林奐宇zh_TW
dc.contributor.oralexamcommitteeKuo-Jung Chao;Huan-Yu Linen
dc.subject.keyword降趨對應分析,雙向指標種分析,東北季風,亞熱帶山地雲霧森林,植群分類,zh_TW
dc.subject.keyworddetrended correspondence analysis,modified two-way indicator species analysis,northeast monsoon,subtropical montane cloud forest,vegetation classification,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202300621-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-18-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-0252230218405018.pdf2.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved