請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86800完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周文堅 | zh_TW |
| dc.contributor.advisor | Wen-Chien Chou | en |
| dc.contributor.author | 陳聰智 | zh_TW |
| dc.contributor.author | Tsung-Chih Chen | en |
| dc.date.accessioned | 2023-03-27T17:01:11Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-05-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-01 | - |
| dc.identifier.citation | Abelson, S., et al. (2018). "Prediction of acute myeloid leukaemia risk in healthy individuals." Nature 559(7714): 400-404.
Affolter, M., et al. (1990). "Homeodomain proteins and the regulation of gene expression." Curr Opin Cell Biol 2(3): 485-495. Amson, R., et al. (2011). "Reciprocal repression between P53 and TCTP." Nat Med 18(1): 91-99. Aykin-Burns, N., et al. (2009). "Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation." Biochem J 418(1): 29-37. Bartek, J., et al. (2007). "DNA damage signalling guards against activated oncogenes and tumour progression." Oncogene 26(56): 7773-7779. Biaglow, J. E. and R. A. Miller (2005). "The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy." Cancer Biol Ther 4(1): 6-13. Bommer, U. A. and A. Telerman (2020). "Dysregulation of TCTP in Biological Processes and Diseases." Cells 9(7). Borjeson, M., et al. (1962). "An X-linked, recessively inherited syndrome characterized by grave mental deficiency, epilepsy, and endocrine disorder." Acta Med Scand 171: 13-21. Butler, A., et al. (2018). "Integrating single-cell transcriptomic data across different conditions, technologies, and species." Nat Biotechnol 36(5): 411-420. Cairns, R. A. and T. W. Mak (2013). "Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities." Cancer Discov 3(7): 730-741. Carter, M. T., et al. (2009). "Further clinical delineation of the Borjeson-Forssman-Lehmann syndrome in patients with PHF6 mutations." Am J Med Genet A 149a(2): 246-250. Chao, M. M., et al. (2010). "T-cell acute lymphoblastic leukemia in association with Borjeson-Forssman-Lehmann syndrome due to a mutation in PHF6." Pediatr Blood Cancer 55(4): 722-724. Chen, C., et al. (2013). "Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition." Genes Dev 27(18): 1974-1985. Chen, F., et al. (2017). "Oncometabolites d- and l-2-Hydroxyglutarate Inhibit the AlkB Family DNA Repair Enzymes under Physiological Conditions." Chem Res Toxicol 30(4): 1102-1110. Chou, W. C., et al. (2011). "The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia." Leukemia 25(2): 246-253. Clever, D., et al. (2016). "Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic Niche." Cell 166(5): 1117-1131.e1114. Corces-Zimmerman, M. R., et al. (2014). "Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission." Proc Natl Acad Sci U S A 111(7): 2548-2553. Dahlin, J. S., et al. (2018). "A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice." Blood 131(21): e1-e11. Dang, L., et al. (2009). "Cancer-associated IDH1 mutations produce 2-hydroxyglutarate." Nature 462(7274): 739-744. Dang, L., et al. (2016). "IDH mutations in cancer and progress toward development of targeted therapeutics." Ann Oncol 27(4): 599-608. de Rooij, J. D., et al. (2016). "PHF6 mutations in paediatric acute myeloid leukaemia." Br J Haematol 175(5): 967-971. Dekker, L. J. M., et al. (2020). "Metabolic changes related to the IDH1 mutation in gliomas preserve TCA-cycle activity: An investigation at the protein level." Faseb j 34(3): 3646-3657. Desai, P., et al. (2018). "Somatic mutations precede acute myeloid leukemia years before diagnosis." Nat Med 24(7): 1015-1023. Duan, L., et al. (2019). "Alpha ketoglutarate levels, regulated by p53 and OGDH, determine autophagy and cell fate/apoptosis in response to Nutlin-3a." Cancer Biol Ther 20(3): 252-260. Ferrando, A. A., et al. (2002). "Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia." Cancer Cell 1(1): 75-87. Gan, L., et al. (2020). "Chromatin-Binding Protein PHF6 Regulates Activity-Dependent Transcriptional Networks to Promote Hunger Response." Cell Rep 30(11): 3717-3728.e3716. Grossmann, V., et al. (2013). "The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL." Genes Chromosomes Cancer 52(4): 410-422. Hartmann, L. and K. H. Metzeler (2019). "Clonal hematopoiesis and preleukemia-Genetics, biology, and clinical implications." Genes Chromosomes Cancer 58(12): 828-838. Holmfeldt, L. and C. G. Mullighan (2010). "PHF6 mutations in T-lineage acute lymphoblastic leukemia." Pediatr Blood Cancer 55(4): 595-596. Hsu, Y. C., et al. (2019). "Phf6-null hematopoietic stem cells have enhanced self-renewal capacity and oncogenic potentials." Blood Adv 3(15): 2355-2367. Hsu, Y. C., et al. (2017). "The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model." J Hematol Oncol 10(1): 139. Huh, H. J., et al. (2013). "Gene mutation profiles and prognostic implications in Korean patients with T-lymphoblastic leukemia." Ann Hematol 92(5): 635-644. Jochum, W., et al. (2001). "AP-1 in mouse development and tumorigenesis." Oncogene 20(19): 2401-2412. Kats, L. M., et al. (2014). "Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance." Cell Stem Cell 14(3): 329-341. Kent, W. J., et al. (2002). "The human genome browser at UCSC." Genome Res 12(6): 996-1006. Kim, D. and S. L. Salzberg (2011). "TopHat-Fusion: an algorithm for discovery of novel fusion transcripts." Genome Biol 12(8): R72. Kirkman, H. N., et al. (1999). "Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry." J Biol Chem 274(20): 13908-13914. Koivunen, P., et al. (2012). "Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation." Nature 483(7390): 484-488. Kosmider, O., et al. (2010). "Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms." Leukemia 24(5): 1094-1096. Kunze, K., et al. (2014). "Detection of an activated JAK3 variant and a Xq26.3 microdeletion causing loss of PHF6 and miR-424 expression in myelodysplastic syndromes by combined targeted next generation sequencing and SNP array analysis." Pathol Res Pract 210(6): 369-376. Lemonnier, F., et al. (2016). "The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development." Proc Natl Acad Sci U S A 113(52): 15084-15089. Li, M., et al. (2016). Co-existence of PHF6 and NOTCH1 mutations in adult T-cell acute lymphoblastic leukemia. Oncol Lett. 12: 16-22. Li, X., et al. (2013). "Somatic mutations of PHF6 in patients with chronic myeloid leukemia in blast crisis." Leuk Lymphoma 54(3): 671-672. Lin, C. C., et al. (2014). "IDH mutations are closely associated with mutations of DNMT3A, ASXL1 and SRSF2 in patients with myelodysplastic syndromes and are stable during disease evolution." Am J Hematol 89(2): 137-144. Liu, L., et al. (2012). "Solution structure of an atypical PHD finger in BRPF2 and its interaction with DNA." J Struct Biol 180(1): 165-173. Lower, K. M., et al. (2002). "Mutations in PHF6 are associated with Borjeson-Forssman-Lehmann syndrome." Nat Genet 32(4): 661-665. Mallette, F. A., et al. (2012). "RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites." Embo j 31(8): 1865-1878. Mardis, E. R., et al. (2009). "Recurring mutations found by sequencing an acute myeloid leukemia genome." N Engl J Med 361(11): 1058-1066. Matsuoka, S., et al. (2007). "ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage." Science 316(5828): 1160-1166. Mavrakis, K. J., et al. (2011). "A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL)." Nat Genet 43(7): 673-678. McRae, H. M., et al. (2019). "PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia." Blood 133(16): 1729-1741. Meacham, C. E., et al. (2015). "A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth." Genes Dev 29(5): 483-488. Mets, E., et al. (2014). "MicroRNA-128-3p is a novel oncomiR targeting PHF6 in T-cell acute lymphoblastic leukemia." Haematologica 99(8): 1326-1333. Miyagi, S., et al. (2019). "The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells." Blood 133(23): 2495-2506. Molenaar, R. J., et al. (2018). "Wild-type and mutated IDH1/2 enzymes and therapy responses." Oncogene 37(15): 1949-1960. Molenaar, R. J., et al. (2018). "IDH1/2 Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors." Clin Cancer Res 24(7): 1705-1715. Mori, T., et al. (2016). "Somatic PHF6 mutations in 1760 cases with various myeloid neoplasms." Leukemia 30(11): 2270-2273. Nestorowa, S., et al. (2016). "A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation." Blood 128(8): e20-31. Neumann, M., et al. (2015). "Mutational spectrum of adult T-ALL." Oncotarget 6(5): 2754-2766. Notta, F., et al. (2016). "Distinct routes of lineage development reshape the human blood hierarchy across ontogeny." Science 351(6269): aab2116. Oh, S., et al. (2020). "The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes." Nucleic Acids Res 48(16): 9037-9052. Patel, J. P., et al. (2012). "Prognostic relevance of integrated genetic profiling in acute myeloid leukemia." N Engl J Med 366(12): 1079-1089. Pellin, D., et al. (2019). "A comprehensive single cell transcriptional landscape of human hematopoietic progenitors." Nat Commun 10(1): 2395. Perry, J. (2006). "The Epc-N domain: a predicted protein-protein interaction domain found in select chromatin associated proteins." BMC Genomics 7: 6. Przychodzen, B., et al. (2015). "PHF6 - Somatic Mutations and Their Role in Pathophysiology of MDS and AML." Blood 126: 1259[Abstract]. Psaila, B., et al. (2020). "Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets." Mol Cell 78(3): 477-492.e478. Randall, K. L., et al. (2011). "DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice." J Exp Med 208(11): 2305-2320. Randall, K. L., et al. (2009). "Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production." Nat Immunol 10(12): 1283-1291. Sasaki, M., et al. (2012). "IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics." Nature 488(7413): 656-659. Shlush, L. I., et al. (2014). "Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia." Nature 506(7488): 328-333. Soto-Feliciano, Y. M., et al. (2017). "PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes." Genes Dev 31(10): 973-989. Subramanian, A., et al. (2005). "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles." Proc Natl Acad Sci U S A 102(43): 15545-15550. Sulkowski, P. L., et al. (2017). "2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity." Sci Transl Med 9(375). Todd, M. A., et al. (2015). "PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein." Genes (Basel) 6(2): 325-352. Todd, M. A. and D. J. Picketts (2012). "PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex." J Proteome Res 11(8): 4326-4337. Trapnell, C., et al. (2012). "Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks." Nat Protoc 7(3): 562-578. Van Vlierberghe, P., et al. (2010). "PHF6 mutations in T-cell acute lymphoblastic leukemia." Nat Genet 42(4): 338-342. Van Vlierberghe, P., et al. (2011). "PHF6 mutations in adult acute myeloid leukemia." Leukemia 25(1): 130-134. Voss, A. K., et al. (2007). "Protein and gene expression analysis of Phf6, the gene mutated in the Borjeson-Forssman-Lehmann Syndrome of intellectual disability and obesity." Gene Expr Patterns 7(8): 858-871. Wang, J., et al. (2013). "PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis." J Biol Chem 288(5): 3174-3183. Wang, P., et al. (2015). "Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents." Cell Rep 13(11): 2353-2361. Wang, Q., et al. (2011). "Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia." Haematologica 96(12): 1808-1814. Ward, P. S., et al. (2010). "The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate." Cancer Cell 17(3): 225-234. Warmerdam, D. O., et al. (2020). "PHF6 promotes non-homologous end joining and G2 checkpoint recovery." EMBO Rep 21(1): e48460. Weitzman, J. B., et al. (2000). "JunD protects cells from p53-dependent senescence and apoptosis." Mol Cell 6(5): 1109-1119. Wendorff, A. A., et al. (2019). "Phf6 Loss Enhances HSC Self-Renewal Driving Tumor Initiation and Leukemia Stem Cell Activity in T-ALL." Cancer Discov 9(3): 436-451. Xia, D., et al. (2017). "Sertraline exerts its antitumor functions through both apoptosis and autophagy pathways in acute myeloid leukemia cells." Leuk Lymphoma 58(9): 1-10. Xu, W., et al. (2011). "Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases." Cancer Cell 19(1): 17-30. Ye, D., et al. (2018). "Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates." Trends Cancer 4(2): 151-165. Yeh, T. C., et al. (2019). "Clinical and biological relevance of genetic alterations in pediatric T-cell acute lymphoblastic leukemia in Taiwan." Pediatr Blood Cancer 66(1): e27496. Yoo, N. J., et al. (2012). "Somatic mutation of PHF6 gene in T-cell acute lymphoblatic leukemia, acute myelogenous leukemia and hepatocellular carcinoma." Acta Oncol 51(1): 107-111. Young, L. C., et al. (2013). "Kdm4b histone demethylase is a DNA damage response protein and confers a survival advantage following gamma-irradiation." J Biol Chem 288(29): 21376-21388. Yu, G., et al. (2012). "clusterProfiler: an R package for comparing biological themes among gene clusters." Omics 16(5): 284-287. Zhang, C., et al. (2013). "The X-linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain." Neuron 78(6): 986-993. Zhang, H., et al. (2013). "Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia." Cancer Cell 24(5): 575-588. Zhang, X., et al. (2020). "Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis." Blood 135(11): 845-856. Zhou, C., et al. (2017). "JUN is a key transcriptional regulator of the unfolded protein response in acute myeloid leukemia." Leukemia 31(5): 1196-1205. Zhou, X., et al. (2017). "Coexistence of EZH2, NOTCH1, IL7R and PHF6 mutations in adult T cell acute lymphoblastic leukemia." Turk J Haematol. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86800 | - |
| dc.description.abstract | 人類PHF6基因位於X染色體上,和轉譯調控與染色質重塑相關。它在人類和小鼠 的中樞神經系統、B和T細胞中都有很高的表現量。遺傳性的PHF6突變會導致一 種罕見的X-染色體相關的萊曼綜合症(BFLS)。這個症狀的表現包括特殊的臉部特徵和智能低下。依目前文獻顯示BFLS可能是一個容易產生癌症的症狀。同時,體細胞的PHF6的突變也在成人急性T淋巴芽細胞白血病(T-ALL)中被發現,發生率大約有11%到39.5%。大部分的PHF6突變包含缺失、遺傳密碼位移突變、無譯或錯譯突變,因此PHF6突變被認為會造成基因失效。PHF6突變也在其他腫瘤中被發 現,例如急性骨髓性白血病、骨髓分化不良症侯群、肝細胞癌等,然而突變的比例 很少。目前PHF6在活體內的病理生理學角色仍尚待研究。
在一個藉由shRNA基因抑制的研究中發現,PHF6在T-ALL中是扮演抑癌基因的角色,而在急性B淋巴芽細胞白血病(B-ALL)中是致癌基因。在B-ALL細胞中剔除Phf6,會導致與正常B細胞發育和功能相關的基因表現下降,而與T細胞信息傳 導相關的基因表現上升。這些結果顯示Phf6的功能是情境依賴式的(context- dependent)。基於有很高比例的T-ALL病人有PHF6突變,所以本論文假設PHF6會影響T細胞的發育、分化與功能活化及可在血液腫瘤生成中扮演腫瘤抑制基因的角色。這個研究最大的限制是缺乏Phf6突變的小鼠模型。 為了解決這個問題,本論文以CRISPR/cas9 system研發了一個新創的條件式Phf6剔除的小鼠。本論文研究結果顯示,與野生型同窩小鼠相比,8週齡的Phf6剔除小鼠外週血中CD4+和CD8+ T細胞的數量減少。在8週至12週齡的Phf6剔除小鼠的骨髓中,骨髓單核細胞前驅細胞(granulocyte-monocytic progenitors)減少,但Lin-c-Kit+Sca-1+細胞增加。功能研究,包括競爭性再增殖單元和連續移植試驗,揭示了Phf6剔除的造血幹細胞(HSC)有增強重建和自我更新能力。18個月大的Phf6基因剔除小鼠表現出類似骨髓分化不良症候群,包括血小板計數減少、巨核細胞發育不良和與髓外造血相關的脾臟腫大。此外,本論文發現Phf6缺失至少部分通過增加白血病起始細胞,降低了NOTCH1誘導的白血病轉化的閾值。對骨髓造血幹細胞(hematopoietic stem cells) 亞群的轉錄組分析揭示了上調的細胞週期和致癌功能,以及這些途徑中關鍵基因表達的改變。綜上,本論文的研究表明Phf6在生理和惡性造血中的體內關鍵作用。 本論文研究結果顯示條件式Phf6剔除小鼠,在18個月大時,並不會產生白血病,因此假設需要第二個突變才會導致白血病。急性白血病的發病機制涉及遺傳改變之間的相互作用。IDH1/2和PHF6的突變在一些造血系統惡性腫瘤患者中很常見並且共存,但它們的協同作用仍未得到探索。本論文進一步繁殖出同時具有PHF6和IDH2R172K突變的小鼠來探討此問題。結果發現共同突變的Phf6KOIdh2R172K小鼠表現出偏向骨髓譜系的造血分化(biased hematopoietic differentiation toward myeloid lineages),並減少了長期造血幹細胞(long-term hematopoietic stem cells)。與單突變和野生型小鼠相比,它們迅速發展出骨髓性和淋巴性相關的腫瘤,存活時間縮短許多。與攜帶Idh2R172K的小鼠相比,共同突變的小鼠其骨髓和脾細胞產生的2-羥基戊二酸量(2-hydroxyglutarate)顯著增加。單細胞RNA測序揭示了來自共同突變小鼠的造血幹/前驅細胞轉錄組的不同模式,包括代謝酶的異常表達、幾種癌基因的表達增加和DNA修復受損,本論文透過骨髓和脾細胞中增強的γH2AX表達證實DNA修復受損,且Idh2和Phf6突變在白血病發生中具有協同作用,至少通過 2-羥基戊二酸的過量產生和DNA修復受損。 總結來說,在我的博士班研究中,我發現了PHF6的許多功能,這些功能對其在血液惡性腫瘤中的作用很重要,包括它作為HSC和前驅細胞增殖的負調節劑的作用以及它作為腫瘤抑制物的作用。 | zh_TW |
| dc.description.abstract | Human PHF6 (plant homeodomain (PHD) finger 6), located in X chromosome, is involved in transcriptional regulation and chromatin remodeling. It is highly expressed in the central nervous system as well as B- and T-lymphoid cells in human and mice, involved in multiple physiological pathways through chromatin regulation by interaction with the nucleosome remodeling and deacetylation (NuRD) complex. Germline mutations of PHF6 lead to Borjeson-Forssman- Lehmann syndrome (BFLS), which is a rare X-linked disorder with distinctive facial features and mental retardation. Although less than 30 cases of BFLS with PHF6 mutations have been reported, two patients with BFLS developed T-cell acute lymphoblastic lymphoma (T-ALL) and Hodgkin lymphoma, respectively. These observations indicate that BFLS may be a cancer predisposition syndrome. Meanwhile, the somatic PHF6 mutations were found in adult T-ALL patients with an incidence from 11% to 39.5%. The mutations mainly consist of deletions, frameshifts, nonsense mutations, or missense mutations, indicating a loss of function. The PHF6 mutations were also reported in other neoplasms, such as acute myeloid leukemia, chronic myeloid leukemia, myelodysplastic syndromes, and hepatocellular carcinoma, albeit with much lower incidences. However, the functions of PHF6 in physiological hematopoiesis and leukemogenesis remain incompletely defined.
To address this problem, this study developed a novel conditional Phf6 knock out mouse model through CRISPR/cas9 system. This study knocked out Phf6 specifically in hematopoietic cells. This study found that Phf6 knockout mice at 8 weeks of age had reduced numbers of CD4+ and CD8+ T cells in the peripheral blood compared with the wild-type littermates. There were decreased granulocyte-monocytic progenitors but increased Lin–c-Kit+Sca-1+ cells in the marrow of young Phf6 knockout mice. Functional studies, including competitive repopulation unit and serial transplantation assays, revealed an enhanced reconstitution and self-renewal capacity in Phf6 knockout hematopoietic stem cells (HSCs). Aged Phf6 knockout mice had myelodysplasia-like presentations, including decreased platelet counts, megakaryocyte dysplasia, and enlarged spleen related to extramedullary hematopoiesis. Moreover, this study found that Phf6 loss lowered the threshold of NOTCH1-induced leukemic transformation at least partially through increased leukemia-initiating cells. Transcriptome analysis on the restrictive rare HSC subpopulations revealed upregulated cell cycling and oncogenic functions, with alteration of key gene expression in those pathways. In summary, our studies show the in vivo crucial roles of Phf6 in physiological and malignant hematopoiesis. The pathogenesis of acute leukemia involves interaction among genetic alterations. Mutations of IDH1/2 and PHF6 are common and co-exist in some patients of hematopoietic malignancies, but their cooperative effects remain unexplored. As a result, this study addressed the question by characterizing the hematopoietic phenotypes of mice harboring neither, Phf6 knockout, Idh2 R172K, or combined mutations. This study found that the combined Phf6KOIdh2R172K mice showed biased hematopoietic differentiation toward myeloid lineages and reduced long-term hematopoietic stem cells. They rapidly developed neoplasms of myeloid and lymphoid lineages, with much shorter survival compared with single mutated and wild-type mice. The marrow and spleen cells of the combined mutated mice produced a drastically increased amount of 2-hydroxyglutarate compared with mice harboring Idh2 R172K. Single cell RNA sequencing revealed distinct patterns of transcriptome of the hematopoietic stem/progenitor cells from the combined mutated mice, including aberrant expression of metabolic enzymes, increased expression of several oncogenes, and impairment of DNA repairs, as confirmed by the enhanced γH2AX expression in the marrow and spleen cells. These results conclude that Idh2 and Phf6 mutations are synergistic in leukemogenesis, at least through overproduction of 2-hydroxyglutarate and impairment of DNA repairs. In conclusion, during my PhD projects I have discovered a number of functions of PHF6 that are important for its role in hematological malignancies, including its role as a negative regulator of HSC and progenitor proliferation and its function as a tumor suppressor. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-27T17:01:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-03-27T17:01:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書…………………………………………………………..………….…………...i 誌謝…………………………………………………………………………..………………………ii 中文摘要……………………………………………………………….……………………………iii 英文摘要…………………………………………………………………….……………………….v 第一章 緒論(Introduction).………………………………………………..…………………….1 1.1 前言……………………………………………………………..………………………………1 1.2 文獻回顧……………………………………………..…………………………………….…...2 1.2.1 PHF6的細胞功能……………………………………………...……………………...2 1.2.2 PHF6基因剔除小鼠動物模型………………...……………………………………...3 1.2.3 IDH2和PHF6突變的關聯…………………………………………………...………..3 1.2.4 與IDH2和PHF6相關的急性骨髓性白血病(AML)發病機制…………………...…...4 1.3 研究的問題及其重要性………...…………………………………………….……………5 1.3.1 PHF6對正常造血的作用……………………………….…………………………..5 1.3.2 PHF6在惡性造血中的作用…………………………………………………………6 1.4 研究的假說與特定目的………………………………………………………………..…..6 1.4.1 假說1:PHF6在正常造血系統的作用……………………….…………………..6 1.4.1.1 探索Phf6對正常造血的作用…………………..……………………..……6 1.4.1.2 研究Phf6在造血系統功能挑戰中的作用…………………………………7 1.4.2 假說2:PHF6在惡性造血中起作用……………………….……………………..7 1.4.2.1 通過觀察小鼠的長期表型來測試PHF6在惡性造血中的作用….…..…..8 1.4.2.2 通ICN的逆轉錄病毒表達測試PHF6和細胞內ICN1的相互作用……...8 1.4.3 假說3:PHF6突變與IDH2R172K突變協同誘導白血病發生……....................8 1.4.3.1 觀察紀錄PHF6突變加IDH2R172K突變對正常造血功能的影響.…….….9 1.4.3.2 觀察紀錄PHF6突變加IDH2R172K突變對惡性造血功能的影響….…..…9 1.4.4 假說4:PHF6突變加IDH2R172K突變協同誘導腫瘤發生的分子機制………....…9 1.4.4.1 檢查血清代謝物以探索造血系統惡性腫瘤早發的基礎機制……….…...9 1.4.4.2 進行單細胞RNA測序(scRNA-seq)………………………………….....…9 1.4.4.3 測試骨髓細胞中與DNA穩定性有關的機制………………………....……9 第二章 材料與方法(Materials and methods)…………………….………………………10 2.1 動物模型……………………………………………………………………...…………….…10 2.1.1 骨髓、胸腺、脾臟、淋巴結的單細胞懸液製備……………………………………10 2.1.2 小鼠細胞流式細胞儀分析…………………………………….……...................10 2.1.3 精緻骨髓細胞的流式細胞儀分析…………………………………………..…….10 2.1.4 精緻T細胞的流式細胞儀分析……………………...……………………………11 2.1.5 小鼠血液和組織採集………………………………..…………………………….12 2.2 骨髓移植和競爭性骨髓移植試驗(Competitive repopulation unit assay)……...…….12 2.3 系列骨髓移植試驗(Serial transplantation assay)…………………………………..…..12 2.4 組織學和病理學分析………………………………………………………..……………12 2.5 細胞內NOTCH1(ICN1)的逆轉錄病毒轉導……………………………………………13 2.6 白血病起始細胞(leukemia initiating cells, LIC)的有限稀釋分析……………………13 2.7 Immunoblotting和immunohistochemistry……………………………………….………13 2.8 RT-qPCR分析…………………………………………………….………………………14 2.9 RNA測序和分析...………………………………………………………...……………..14 2.10 質譜儀(Mass spectrometry)分析………………………………………….….................14 2.11 單細胞測序分析(Single cell sequencing analysis)…………………….………………..15 2.12 10x Genomics單細胞RNA測序數據預處理和分析………………..…………………15 2.13 統計分析……………………………………………………………….………………….16 第三章 結果(Results).…………………………………………………………………………17 3.1 培育Phf6條件性剔除小鼠………………………………….….………………………..17 3.2 PHF6對正常造血的作用…………………………………………………………..…….17 3.2.1 Phf6條件性剔除(KO)在穩態下會增加造血幹細胞和前驅細胞………………17 3.2.2 Phf6 KO小鼠週邊血細胞的淋巴細胞生成存在顯著偏差…………….……….17 3.2.3 Phf6 KO干擾體內T細胞發育…………………………………………………...18 3.2.4 Phf6在造血系統功能挑戰中的作用……………………….…………………….18 3.3 PHF6在惡性造血中的作用……………………………………………………….……..18 3.3.1 在老年Phf6KO小鼠中發現脾臟腫大並伴有明顯的淋巴細胞減少和血小板減少 ……………………………………………………………………………………..…18 3.3.2 老年Phf6KO小鼠無明顯血液腫瘤,但有骨髓分化不良的症狀………….…….19 3.4 PHF6與白血病發生中其他遺傳變異的相互作用……………………………………..19 3.4.1 與細胞內NOTCH1 (ICN1)的相互作用……………………………..…………..19 3.4.1.1 Phf6缺失降低了NOTCH1誘導的白血病的閾值…………….…………19 3.4.1.2 細胞週期和致癌功能的表達增加,是改變誘導白血病途徑中的關鍵因素….20 3.4.2 Phf6KO與Idh2R172K的交互作用……………………..……………………………20 3.4.2.1 培育Phf6KOIdh2R172K小鼠………………..…………………..…………..20 3.4.2.2 Phf6KOIdh2R172K小鼠在年輕時外周血中有明顯的白細胞減少和貧血..21 3.4.2.3 Phf6KOIdh2R172K小鼠週邊血中B220+、CD4+和CD8+細胞顯著減少….21 3.4.2.4 在年輕時,Phf6KOIdh2R172K小鼠罹患了慢性骨髓單核細胞白血病樣疾病 (chronic myelomonocytic leukemia-like disease)…………………………...…..21 3.4.2.5 在小鼠體內,Phf6KO和Idh2R172K協同驅動早期致癌轉化…………....22 3.5 Phf6KO和Idh2R172K聯合突變誘導腫瘤發生的分子機制…………………..……..…..23 3.5.1 在Phf6KOIdh2R172K小鼠中2-HG的顯著增加,是透過Idh2R172K mRNA和蛋白質表達增加 ………………………………………………………………………………..………23 3.5.2 單細胞RNA測序揭示了Phf6KOIdh2R172K小鼠異常的血球生成和代謝酶基因表達改變……………………………………...……………………………………..23 3.5.3 Phf6KOIdh2R172K小鼠的骨髓前驅細胞中,有高表達關鍵致癌基因………….25 3.5.4 Phf6KOIdh2R172K小鼠的骨髓HSPC中,DNA修復受損………………….…..25 第四章 討論(Discussion).………………………………………………………...………..….27 4.1 建立獨特造血細胞特異性Phf6剔除小鼠……………………………………………..…..27 4.2 Phf6缺失的HSC與野生型HSC相比具有更強的重建能力………………..……………27 4.3 Phf6缺失的HSC可以加快引起NOTCH1誘導的轉化…………………………….…….27 4.4 Phf6缺失造成差異表達基因與HSPCs生物學功能之間的關聯……………...…………28 4.5 Phf6功能喪失和新形態Idh2突變協同作用產生造血惡性腫瘤……………………..…..28 4.6 IDH2突變和PHF6功能喪失突變的協同效應是透過大幅增加2-HG和DNA修復受損.29 4.7 PHF6的缺失與突變IDH2相互作用,通過改變基因表達來加速腫瘤發生……………...29 第五章 展望(Perspectives).…………………………………………………………...………31 5.1 PHF6缺失引起的再增殖潛力增強的意義……………………………………….………..31 5.2 透過移植評估HSC功能的局限性…………………………………………..……………..31 5.3 PHF6在調控免疫反應中的潛在作用……………………………………...………………32 5.4 PHF6缺失引起的造血變化如何導致白血病易感性…………………..………………….32 5.5 PHF6突變在腫瘤維持中的作用……………………………………………………..…….33 圖目錄 圖1:PHF6基因和蛋白質結構域結構…………………………………..………………………..34 圖2:使用CRISPR/Cas9基因組編輯策略,培育Phf6 floxed小鼠…………………………... 35 圖3:西方墨點法(Western blotting)顯示Phf6KO小鼠的骨髓、胸腺和脾臟中幾乎完全缺失Phf6 蛋白……………………………………………………...…………………….……….…….37 圖4:Phf6條件性剔除(KO)導致8至10週小鼠的淋巴生成異常………………..……………..38 圖5:在基礎狀態下,8-10週小鼠造血幹細胞和前驅細胞組成……………………………..…..39 圖6:Phf6剔除導致淋巴球比例異常……………………………………………………………..40 圖7:Phf6KO小鼠胸腺中CD4和CD8雙陰性(DN)細胞的比例…………………………………43 圖8:骨髓移植測定(Bone marrow transplantation assay)結果……………………………….44 圖9:老年的的Phf6KO和野生型小鼠血像圖……….……………………….……………………45 圖10:老年的Phf6KO和野生型小鼠病理分析…………….………..………………………….47 圖11:Phf6缺失和ICN1過表達的協同作用………………………………..…………………49 圖12:Phf6缺失增強了HSPC的分化和細胞週期相關功能…………………..……………..51 圖13:培育Phf6KOIdh2R172K小鼠和基因分型………………………………………………….53 圖14:在8週至12週齡時,Phf6KOIdh2R172K、Phf6KO、Idh2R172K和野生型小鼠週邊血中血 像圖和網織紅細胞(reticulocyte)計數……………………………………..……..……..54 圖15:在8週至12週齡時,Phf6KOIdh2R172K、Phf6KO、Idh2R172K和野生型小鼠週邊血中流 式細胞儀分析圖……………………………………………...………………..…………55 圖16:在8週至12週齡時,Phf6KOIdh2R172K小鼠週邊血中B220+、CD4+和CD8+細胞減 少…………………………………………..………………………………………….…..56 圖17:Phf6KO和Idh2R172K的組合導致在8至12週時,小鼠產生慢性骨髓單核細胞白血病 樣表型……………………..………………….……………………………..……………57 圖18:Phf6KOIdh2R172K小鼠骨髓病理分析…………………………………………………….59 圖19:脾臟組織學和流式細胞學分析……………………….……………….…………………61 圖20:Phf6KOIdh2R172K小鼠早期發生血液腫瘤…………………………………………….…63 圖21:罹患腫瘤小鼠的病理分析………………………….………………………….…………65 圖22:正常小鼠接受Phf6KOIdh2R172K小鼠骨髓移植後,骨髓分化異常且發展為急性髓性白 血病………………………………………….……………………………………………67 圖23:Phf6KOIdh2R172K小鼠中Idh2R172K mRNA 和蛋白質的高表達導致癌代謝物2-HG急劇 升高…………………..……………….……………………………………………..……69 圖24:單細胞RNA定序實驗工作流程……………………………...…………..……………..71 圖25:四種基因型小鼠的單細胞轉錄組分析顯示造血功能和代謝酶表達變化……………….73 圖26:四種基因型小鼠的Lin-c-Kit+細胞中代謝酶表達量分析…...........................................75 圖27:與野生型小鼠相比,Phf6KOIDH2R172K小鼠中的HSC/MPP細胞群具不同轉錄模式..77 圖28:Phf6KOIDH2R172K小鼠中的致癌基因表達增加且Trp53表達降低……………………79 圖29:年輕的Phf6KOIDH2R172K小鼠細胞中γH2AX增加………………………..……………80 參考文獻(References)………………………………….……...…………………………………81 附錄:個人在修業期間所發表之論文清冊……………………….………………………………90 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 腫瘤抑制基因 | zh_TW |
| dc.subject | 小鼠模型 | zh_TW |
| dc.subject | T淋巴芽細胞白血病 | zh_TW |
| dc.subject | PHF6突變 | zh_TW |
| dc.subject | Tumor suppressor gene | en |
| dc.subject | Mouse model | en |
| dc.subject | PHF6 mutation | en |
| dc.subject | T-cell lymphoblastic leukemia | en |
| dc.title | PHF6在正常和惡性造血中的作用 | zh_TW |
| dc.title | The roles of PHF6 in normal and malignant hematopoiesis | en |
| dc.title.alternative | The roles of PHF6 in normal and malignant hematopoiesis | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 林淑華 | zh_TW |
| dc.contributor.coadvisor | Shu-Wha Lin | en |
| dc.contributor.oralexamcommittee | 林家齊;黃凱文;劉俊煌;張原翊 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Chi Lin;Kai-Wen Huang;Jin-Hwang Liu;Yuan-I Chang | en |
| dc.subject.keyword | PHF6突變,T淋巴芽細胞白血病,腫瘤抑制基因,小鼠模型, | zh_TW |
| dc.subject.keyword | PHF6 mutation,T-cell lymphoblastic leukemia,Tumor suppressor gene,Mouse model, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202300119 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-02-02 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | 2023-02-02 09:59:51 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 7.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
