Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86782
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐莞曾(Wan-Tseng Hsu)
dc.contributor.authorYu-Yang Chengen
dc.contributor.author鄭宇揚zh_TW
dc.date.accessioned2023-03-20T00:17:25Z-
dc.date.copyright2022-10-17
dc.date.issued2022
dc.date.submitted2022-09-26
dc.identifier.citation1. Hasenfuss G, Mann DL. Chapter 47: Pathophysiology of Heart Failure. In: Libby P, Bonow RO, et al, eds. Braunwald's Heart Disease: a Textbook of Cardiovascular Medicine. 12 ed. Elsevier/Saunders; 2022:913:chap 47. 2. Januzzi JL, Mann DL. Chapter 48: Approach to the Patient with Heart Failure. In: Libby P, Bonow RO, et al, eds. Braunwald's Heart Disease: a Textbook of Cardiovascular Medicine. 12 ed. Elsevier/Saunders; 2022:933:chap 48. 3. Virani SS, Alonso A, et al. Heart Disease and Stroke Statistics - 2021 Update: A Report from the American Heart Association. Circulation. 2021;143(8):e254. 4. Vos T, Lim SS, et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet. 2020;396(10258):1204. 5. Farre N, Vela E, et al. Real World Heart Failure Epidemiology and Outcome: A Population-Based Analysis of 88,195 Patients. PLoS One. 2017;12(2):e0172745. 6. Conrad N, Judge A, et al. Temporal Trends and Patterns in Heart Failure Incidence: A Population-Based Study of 4 Million Individuals. The Lancet. 2018;391(10120):572. 7. James SL, Abate D, et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1789. 8. Wang TD, Huang ST, et al. Nationwide Trends in Incidence, Healthcare Utilization, and Mortality in Hospitalized Heart Failure Patients in Taiwan. ESC Heart Failure. 2020; 9. Sundaram V, Nagai T, et al. Hospitalization for Heart Failure in the United States, UK, Taiwan, and Japan: An International Comparison of Administrative Health Records on 413,385 Individual Patients. Journal of Cardiac Failure. 2022;28(3):353. 10. Mann DL, Chakinala M. Chapter 252: Heart Failure: Pathophysiology and Diagnosis. In: Jameson JL, Fauci AS, et al, eds. Harrison's Principles of Internal Medicine. 20 ed. New York: McGraw Hill Education; 2018:1763:chap 252. 11. TImimi FK. Chapter 6: Heart Failure and Cardiomyopathies. In: Wittich CM, Backman TJ, eds. Mayo Clinic Internal Medicine Board Review. 12 ed. Oxford university press; 2020:chap 6. 12. Peacock WF. Chapter 7: Heart Failure in the Emergency Department. In: Cannon CP, O'Gara PT, eds. Critical Pathway in Cardiovascular Medicine. 2 ed. Lippincott Williams & Wilkins; 2007:46:chap 7. 13. Hartupee J, Mann DL. Neurohormonal Activation in Heart Failure with Reduced Ejection Fraction. Nature Reviews Cardiology. 2017;14(1):30. 14. Notarius CF, Millar PJ, et al. Muscle Sympathetic Activity in Resting and Exercising Humans with and Without Heart Failure. Applied Physiology, Nutrition, and Metabolism. 2015;40(11):1107. 15. Iwai M, Horiuchi M. Devil and Angel in the Renin-Angiotensin System: ACE-Angiotensin II-AT1 Receptor Axis vs ACE2-Angiotensin-(1-7)-Mas receptor Axis. Hypertension Research. 2009;32(7):533. 16. Azevedo PS, Polegato BF, et al. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arquivos Brasileiros de Cardiologia. 2016;106(1):62. 17. Cohn JN, Ferrari R, et al. Cardiac Remodeling – Concepts and Clinical Implications: A Consensus Paper from an International Forum on Cardiac Remodeling. Journal of the American College of Cardiology. 2000;35(3):569. 18. Volpe M, Carnovali M, et al. The Natriuretic Peptides System in the Pathophysiology of Heart Failure: From Molecular Basis to Treatment. Clinical science (London). 2016;130(2):57. 19. Volpe M, Rubattu S, et al. Natriuretic Peptides in Cardiovascular Diseases: Current Use and Perspectives. European Heart Journal. 2014;35(7):419. 20. Diez J. Chronic Heart Failure as a State of Reduced Effectiveness of The Natriuretic Peptide System: Implications for Therapy. European Journal of Heart Failure. 2017;19(2):167. 21. McDonagh TA, Metra M, et al. European Heart Journal. 2021;42(36):3599. 22. Heidenreich PA, Bozkurt B, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895. 23. Lang RM, Badano LP, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from The American Society of Echocardiography and The European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography. 2015;28(1):1. 24. Vasan RS, Enserro DM, et al. Lifetime Risk of Heart Failure Among Participants in the Framingham Study. Journal of the American College of Cardiology. 2022;79(3):250. 25. Fleming LM, Gavin M, et al. Derivation and Validation of A 30-Day Heart Failure Readmission Model. American Journal of Cardiology. 2014;114(9):1379. 26. Cameli M, Pastore MC, et al. ACUTE HF Score, a Multiparametric Prognostic Tool for Acute Heart Failure: A Real-Life Study. International Journal of Cardiology. 2019;296:103. 27. Adler ED, Voors AA, et al. Improving Risk Prediction in Heart Failure Using Machine Learning. European Journal of Heart Failure. 2020;22(1):139. 28. Driscoll A, Romaniuk H, et al. Clinical Risk Prediction Model for 30-Day All-Cause Re-Hospitalisation or Mortality in Patients Hospitalised with Heart Failures. International Journal of Cardiology. 2022;350:69. 29. Mehra MR. Chapter 253: Heart Failure: Management. In: Jameson JL, Fauci AS, et al, eds. Harrison's Principles of Internal Medicine. 20 ed. New York: McGraw Hill Education; 2018:1769:chap 253. 30. Fonarow GC. Chapter 20: Heart Failure. In: Cannon CP, O'Gara PT, eds. Critical Pathway in Cardiovascular Medicine. 2 ed. Lippincott Williams & Wilkins; 2007:190:chap 20. 31. CONSENSUS Trial Study Group. Effects of Enalapril on Mortality in Severe Congestive Heart Failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The New England Journal of Medicine. 1987;316(23):1429. 32. The SOLVD Investigators. Effect of Enalapril on Survival in Patients with Reduced Left Ventricular Ejection Fractions and Congestive Heart Failure. New England Journal of Medicine. 1991;325(5):293. 33. Yusuf S, Pitt B, et al. Effect of Enalapril on Survival in Patients with Reduced Left Ventricular Ejection Fractions and Congestive Heart Failure. New England Journal of Medicine. 1991;325(5):293. 34. Pfeffer MA, Braunwald E, et al. Effect of Captopril on Mortality and Morbidity in Patients with Left Ventricular Dysfunction after Myocardial Infarction. Results of the Survival and Ventricular Enlargement Trial. The SAVE Investigators. The New England Journal of Medicine. 1992;327(10):669. 35. AIRE Study Investigators. Effect of Ramipril on Mortality and Morbidity of Survivors of Acute Myocardial Infarction with Clinical Evidence of Heart Failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. The Lancet. 1993;342(8875):821. 36. Pitt B, Segal R, et al. Randomised Trial of Losartan Versus Captopril in Patients over 65 with Heart Failure (Evaluation of Losartan in the Elderly Study, ELITE). The Lancet. 1997;349(9054):747. 37. Pitt B, Poole-Wilson PA, et al. Effect of Losartan Compared with Captopril on Mortality in Patients with Symptomatic Heart Failure: Randomised Trial – The Losartan Heart Failure Survival Study ELITE II. The Lancet. 2000;355(9215):1582. 38. Cohn JN, Tognoni G. A Randomized Trial of The Angiotensin-Receptor Blocker Valsartan in Chronic Heart Failure. The New England Journal of Medicine. 2001;345(23):1667. 39. Tai C, Gan T, et al. Effect of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on Cardiovascular Events in Patients with Heart Failure: A Meta-Analysis of Randomized Controlled Trials. BMC Cardiovascular Disorders. 2017;17(1):257. 40. Woo KS, Nicholls MG. High prevalence of persistent cough with angiotensin converting enzyme inhibitors in Chinese. Br J Clin Pharmacol. 1995;40(2):141. 41. Ng LP, Goh PS. Incidence of Discontinuation of Angiotensin-Converting Enzyme Inhibitors Due to Cough, in A Primary Healthcare Centre in Singapore. Singapore Medical Journal. 2014;55(3):146. 42. Beavers CJ, Dunn SP, et al. The Role of Angiotensin Receptor Blockers in Patients with Angiotensin-Converting Enzyme Inhibitor-induced Angioedema. Annals of Pharmacotherapy. 2011;45(4):520. 43. Makani H, Messerli FH, et al. Meta-Analysis of Randomized Trials of Angioedema as an Adverse Event of Renin-Angiotensin System Inhibitors. American Journal of Cardiology. 2012;110(3):383. 44. Yusuf S, Teo KK, et al. Telmisartan, Ramipril, or Both in Patients at High Risk for Vascular Events. New England Journal of Medicine. 2008;358(15):1547. 45. Kuenzli A, Bucher HC, et al. Meta-Analysis of Combined Therapy with Angiotensin Receptor Antagonists Versus ACE Inhibitors Alone in Patients with Heart Failure. PLoS One. 2010;5(4):e9946. 46. McMurray JJ, Packer M, et al. Angiotensin-Neprilysin Inhibition Versus Enalapril in Heart Failure. The New England Journal of Medicine. 2014;371(11):993. 47. Wachter R, Senni M, et al. Initiation of Sacubitril/valsartan in Haemodynamically Stabilised Heart Failure Patients in Hospital or Early after Discharge: Primary Results of The Randomised TRANSITION Study. Article. European Journal of Heart Failure. 2019;21(8):998. 48. Velazquez EJ, Morrow DA, et al. Angiotensin-Neprilysin Inhibition in Acute Decompensated Heart Failure. The New England Journal of Medicine. 2019;380(6):539. 49. Desai AS, Solomon SD, et al. Effect of Sacubitril/valsartan vs Enalapril on Aortic Stiffness in Patients with Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. Conference Paper. Jama. 2019;322(11):1077. 50. Cardiac Insufficiency Authors. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A Randomised Trial. The Lancet. 1999;353(9146):9. 51. MERIT-HF Study Group. Effect of Metoprolol CR/XL in Chronic Heart Failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). The Lancet. 1999;353(9169):2001. 52. Packer M, Fowler MB, et al. Effect of Carvedilol on the Morbidity of Patients with Severe Chronic Heart Failure: Results of the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study. Circulation. 2002;106(17):2194. 53. Flather MD, Shibata MC, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005;26(3):215. 54. Eichhorn EJ, Domanski MJ, et al. A Trial of the Beta-Blocker Bucindolol in Patients with Advanced Chronic Heart Failure. The New England Journal of Medicine. 2001;344(22):1659. 55. Poole-Wilson PA, Swedberg K, et al. Comparison of Carvedilol and Metoprolol on Clinical Outcomes in Patients with Chronic Heart Failure in the Carvedilol Or Metoprolol European Trial (COMET): Randomised Controlled Trial. The Lancet. 2003;362(9377):7. 56. Pitt B, Zannad F, et al. The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure. Randomized Aldactone Evaluation Study Investigators. The New England Journal of Medicine. 1999;341(10):709. 57. Zannad F, McMurray JJ, et al. Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms. New England Journal of Medicine. 2011;364(1):11. 58. Serenelli M, Bohm M, et al. Effect of Dapagliflozin According to Baseline Systolic Blood Pressure in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF). European Heart Journal. 2020;41(36):3402. 59. Packer M, Anker SD, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413. 60. Zannad F, Ferreira JP, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. The Lancet. 2020;396(10254):819. 61. Wilson JR, Reichek N, et al. Effect of Diuresis on the Performance of the Failing Left Ventricle in Man. The American Journal of Medicine. 1981;70(2):234. 62. Richardson A, Bayliss J, et al. Double-Blind Comparison of Captopril Alone Against Frusemide Plus Amiloride in Mild Heart Failure. The Lancet. 1987;2(8561):709. 63. Ellison DH, Felker GM. Diuretic Treatment in Heart Failure. New England Journal of Medicine. 2017;377(20):1964. 64. Mullens W, Damman K, et al. The Use of Diuretics in Heart Failure with Congestion – Position Statement from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure 2019;21(2):137. 65. Ponikowski P, Voors AA, et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure. 2016;18(8):891. 66. Yancy CW, Jessup M, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137. 67. Krum H, Roecker EB, et al. Effects of Initiating Carvedilol in Patients with Severe Chronic Heart Failure: Results from the COPERNICUS Study. Jama. 2003;289(6):712. 68. Lam PH, Packer M, et al. Early Effects of Starting Doses of Enalapril in Patients with Chronic Heart Failure in the SOLVD Treatment Trial. The American Journal of Medicine. 2020;133(2):e25. 69. McMurray JJV, Packer M. How Should We Sequence the Treatments for Heart Failure and a Reduced Ejection Fraction?: A Redefinition of Evidence-Based Medicine. Circulation. 2021;143(9):875. 70. Tromp J, Ouwerkerk W, et al. A Systematic Review and Network Meta-Analysis of Pharmacological Treatment of Heart Failure with Reduced Ejection Fraction. JACC Heart Failure. 2022;10(2):73. 71. Antman EM, Loscalzo J. Precision Medicine in Cardiology. Nature Reviews Cardiology. 2016;13(10):591. 72. Desai AS, McMurray JJ, et al. Effect of the Angiotensin-Receptor-Neprilysin Inhibitor LCZ696 Compared with Enalapril on Mode of Death in Heart Failure Patients. European Heart Journal. 2015;36(30):1990. 73. Rohde LE, Chatterjee NA, et al. Sacubitril/valsartan and Sudden Cardiac Death According to Implantable Cardioverter-Defibrillator Use and Heart Failure Cause: A PARADIGM-HF Analysis. JACC Heart Failure. 2020;8(10):844. 74. Packer M, McMurray JJ, et al. Angiotensin Receptor Neprilysin Inhibition Compared with Enalapril on the Risk of Clinical Progression in Surviving Patients with Heart Failure. Circulation. 2015;131(1):54. 75. McMurray JJ, Packer M, et al. Dual Angiotensin Receptor and Neprilysin Inhibition as an Alternative to Angiotensin-Converting Enzyme Inhibition in Patients with Chronic Systolic Heart Failure: Rationale for and Design of the Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial (PARADIGM-HF). European Journal of Heart Failure 2013;15(9):1062. 76. Figal DP, Wachter R, et al. Rationale and design of TRANSITION: A Multi-Center, Randomised, Open-Label Study Comparing Pre-Versus Post-Discharge Initiation of Sacubitril/valsartan in Hospitalised Patients with ADHF and HFrEF. Conference Abstract. European Journal of Heart Failure. 2017;19:412. 77. Velazquez EJ, Morrow DA, et al. Rationale and design of the comParIson Of sacubitril/valsartaN versus Enalapril on Effect on nt-pRo-bnp in patients stabilized from an acute Heart Failure episode (PIONEER-HF) trial. American Heart Journal. 2018;198:145. 78. Senni M, Wachter R, et al. Initiation of Sacubitril/valsartan Shortly after Hospitalisation for Acutely Decompensated Heart Failure in Patients with Newly Diagnosed (de novo) Heart Failure: A Subgroup Analysis of the TRANSITION Study. European Journal of Heart Failure. 2020;22(2):303. 79. DeVore AD, Braunwald E, et al. Initiation of Angiotensin-Neprilysin Inhibition After Acute Decompensated Heart Failure: Secondary Analysis of the Open-label Extension of the PIONEER-HF Trial. JAMA Cardiology. 2020;5(2):202. 80. Januzzi JL, Jr., Prescott MF, et al. Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide Following Initiation of Sacubitril/valsartan Treatment with Cardiac Structure and Function in Patients with Heart Failure with Reduced Ejection Fraction. Jama. 2019;322(11):1085. 81. Tsutsui H, Momomura SI, et al. Efficacy and Safety of Sacubitril/valsartan in Japanese Patients with Chronic Heart Failure and Reduced Ejection Fraction - Results from the PARALLEL-HF Study. Circulation Journal. 2021;85(5):584. 82. Mann DL, Givertz MM, et al. Effect of Treatment with Sacubitril/valsartan in Patients with Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA Cardiology. 2022;7(1):17. 83. Simpson J, Jhund PS, et al. Prognostic Models Derived in PARADIGM-HF and Validated in ATMOSPHERE and the Swedish Heart Failure Registry to Predict Mortality and Morbidity in Chronic Heart Failure. JAMA Cardiology. 2020;5(4):432. 84. Moliner-Abos C, Mojon Alvarez D, et al. A Simple Score to Identify Super-Responders to Sacubitril/valsartan in Ambulatory Patients with Heart Failure. Frontiers in Physiology. 2021;12:642117. 85. Chang HY, Feng AN, et al. Sacubitril/valsartan in Heart Failure with Reduced Ejection Fraction Patients: Real World Experience on Advanced Chronic Kidney Disease, Hypotension, and Dose Escalation. Journal of Cardiology. 2019;74(4):372. 86. Chang HY, Chen KC, et al. Recovery of Left Ventricular Dysfunction after Sacubitril/valsartan: Predictors and Management. Journal of Cardiology. 2020;75(3):233. 87. Lee YH, Chiou WR, et al. Different Left Ventricular Remodelling Patterns and Clinical Outcomes Between Non-Ischaemic and Ischaemic Aetiologies in Heart Failure Patients Receiving Sacubitril/valsartan Treatment. European heart journal Cardiovascular pharmacotherapy. 2022;8(2):118. 88. Bayard G, Da Costa A, et al. Impact of Sacubitril/valsartan on Echo Parameters in Heart Failure Patients with Reduced Ejection Fraction a Prospective Evaluation. International Journal of Cardiology Heart & Vasculature. 2019;25:100418. 89. Pellicori P, Urbinati A, et al. What Proportion of Patients with Chronic Heart Failure are Eligible for Sacubitril-valsartan? European Journal of Heart Failure. 2017;19(6):768. 90. Martens P, Beliën H, et al. Insights into Implementation of Sacubitril/valsartan into Clinical Practice. ESC Heart Failure. 2018;5(3):275. 91. 張朝凱 (2021)。心臟衰竭病人使用sacubitril-valsartan腎功能惡化與死亡或心臟移植之相關性,國立臺灣大學臨床藥學研究所碩士論文,未出版,臺北。https://doi.org/10.6342/ntu202103985 92. 林奕軒 (2021)。左心室射出分率低下之心臟衰竭病人使用sacubitril-valsartan治療之死亡或心臟移植預測因子,國立臺灣大學臨床藥學研究所碩士論文,未出版,臺北。https://doi.org/10.6342/ntu202103343 93. Vergaro G, Ghionzoli N, et al. Noncardiac Versus Cardiac Mortality in Heart Failure With Preserved, Midrange, and Reduced Ejection Fraction. Journal of the American Heart Association. 2019;8(20):e013441. 94. Hsiao FC, Wang CL, et al. Angiotensin Receptor Neprilysin Inhibitor for Patients With Heart Failure and Reduced Ejection Fraction: Real-World Experience From Taiwan. Journal of Cardiovascular Pharmacology and Therapeutics. 2020;25(2):152. 95. Cohen-Solal A, Jacobson AF, et al. Beta Blocker Dose and Markers of Sympathetic Activation in Heart Failure Patients: Interrelationships and Prognostic Significance. ESC Heart Failure. 2017;4(4):499. 96. Felker GM, Ellison DH, et al. Diuretic Therapy for Patients with Heart Failure: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2020;75(10):1178. 97. Hennig C. Dissolution Point and Isolation Robustness: Robustness Criteria for General Cluster Analysis Methods. Journal of Multivariate Analysis. 2008;99(6):1154. 98. Rousseeuw PJ. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics. 1987;20:53. 99. Cox DR. Regression Models and Life‐Tables. Journal of the Royal Statistical Society: Series B (Methodological). 1972;34(2):187. 100. Therneau T. Survival: A Package for Survival Analysis in R. R package version 3.4.0. 2022. https://CRAN.R-project.org/package=survival. 101. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. 1 ed. Springer; 1997:XIV. 102. Paul HCE, Marx BD. Flexible Smoothing with B-splines and Penalties. Statistical Science. 1996;11(2):89. 103. Chang W, Cheng J, et al. Shiny: Web application framework for R. R package version 1.7.1. 2021. https://CRAN.R-project.org/package=shiny. 104. Vardeny O, Claggett B, et al. Efficacy of Sacubitril/valsartan vs. Enalapril at Lower than Target Doses in Heart Failure with Reduced Ejection Fraction: The PARADIGM-HF Trial. European Journal of Heart Failure. 2016;18(10):1228. 105. Jhund PS, McMurray JJ. The Neprilysin Pathway in Heart Failure: A Review and Guide on the Use of Sacubitril/valsartan. Heart. 2016;102(17):1342. 106. Zhuang J, Wang Y, et al. Association Between Left Atrial Size and Atrial Fibrillation Recurrence after Single Circumferential Pulmonary Vein Isolation: A Systematic Review and Meta-Analysis of Observational sStudies. Europace. 2012;14(5):638. 107. Simpson J, Jhund PS, et al. Comparing LCZ696 with Enalapril According to Baseline Risk Using the MAGGIC and EMPHASIS-HF Risk scores: An Analysis of Mortality and Morbidity in PARADIGM-HF. Journal of the American College of Cardiology. 2015;66(19):2059. 108. Caraballo C, Desai NR, et al. Clinical Implications of the New York Heart Association Classification. Journal of the American Heart Association. 2019;8(23):e014240. 109. Ohtake T, Kobayashi S. Impact of Vascular Calcification on Cardiovascular Mortality in Hemodialysis Patients: Clinical Significance, Mechanisms and Possible Strategies for Treatment. Renal Replacement Therapy. 2017;3(1) 110. Novartis Pharmaceuticals Corporation. Entresto (sacubitril and valsartan) tablets. U.S. Food and Drug Administration website. Updated Feb 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207620Orig1s000lbl.pdf 111. Feng Z, Wang X, et al. Pharmacokinetics and Pharmacodynamics of Sacubitril/valsartan in Maintenance Hemodialysis Patients with Heart Failure. Blood Purification. 2022;51(3):270. 112. Mullens W, Damman K, et al. Evaluation of Kidney Function Throughout the Heart Failure Trajectory – The Position Statement from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure 2020;22(4):584. 113. Go AS, Chertow GM, et al. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. The New England Journal of Medicine. 2004;351(13):1296. 114. Damman K, Valente MA, et al. Renal Impairment, Worsening Renal Function, and Outcome in Patients with Heart Failure: An Updated Meta-analysis. European Heart Journal. 2014;35(7):455. 115. Solomon SD, Claggett B, et al. Influence of Ejection Fraction on Outcomes and Efficacy of Sacubitril/Valsartan (LCZ696) in Heart Failure with Reduced Ejection Fraction: The Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) Trial. Circulation Heart failure. 2016;9(3):e002744. 116. Hasselblad V, Gattis Stough W, et al. Relation Between Dose of Loop Diuretics and Outcomes in a Heart Failure Population: Results of the ESCAPE trial. European Journal of Heart Failure 2007;9(10):1064. 117. Curtain JP, Campbell RT, et al. Clinical Outcomes Related to Background Diuretic Use and New Diuretic Initiation in Patients With HFrEF. JACC Heart Failure. 2022;10(6):415. 118. Okumura N, Jhund PS, et al. Effects of Sacubitril/valsartan in the PARADIGM-HF Trial (Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) According to Background Therapy. Circulation Heart failure. 2016;9(9) 119. Vardeny O, Claggett B, et al. Reduced Loop Diuretic Use in Patients Taking Sacubitril/valsartan Compared with Enalapril: The PARADIGM-HF Trial. European Journal of Heart Failure. 2019;21(3):337. 120. Walshe JJ, Venuto RC. Acute Ooliguric Renal Failure Induced by Indomethacin: Possible Mechanism. Annals of Internal Medicine. 1979;91(1):47. 121. Gislason GH, Rasmussen JN, et al. Increased Mortality and Cardiovascular Morbidity Associated with Use of Nonsteroidal Anti-Inflammatory Drugs in Chronic Heart Failure. Archives of Internal Medicine. 2009;169(2):141. 122. Collet JP, Thiele H, et al. 2020 ESC Guidelines for The Management of Acute Coronary Syndromes in Patients Presenting Without Persistent ST-Segment Elevation. European Heart Journal. 2021;42(14):1289. 123. Anand IS, Gupta P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation. 2018;138(1):80. 124. Yang TY, Lee CM, et al. Anemia Warrants Treatment to Improve Survival in Patients with Heart Failure receiving Sacubitril-valsartan. Scientific Reports. 2022;12(1):8186. 125. Kido K, Bianco C, et al. Evaluating Sacubitril/Valsartan Dose Dependence on Clinical Outcomes in Patients with Heart Failure with Reduced Ejection Fraction. Ann Pharmacother. 2021;55(9):1069. 126. Tarkin JM, Kaski JC. Nicorandil and Long-acting Nitrates: Vasodilator Therapies for the Management of Chronic Stable Angina Pectoris. European Cardiology Review. 2018;13(1):23. 127. Gori T, Parker JD. Nitrate Tolerance: A Unifying Hypothesis. Circulation. 2002;106(19):2510. 128. Ahmed LA. Nicorandil: A Drug with Ongoing Benefits and Different Mechanisms in Various Diseased Conditions. Indian Journal of Pharmacology. 2019;51(5):296. 129. Frydman AM, Chapelle P, et al. Pharmacokinetics of Nicorandil. American Journal of Cardiology. 1989;63(21):25j. 130. Jujo K, Minami Y, et al. Persistent High Blood Urea Nitrogen Level is Associated with Increased Risk of Cardiovascular Events in Patients with Acute Heart Failure. ESC Heart Failure. 2017;4(4):545. 131. Klein L, Massie BM, et al. Admission or Changes in Renal Function During Hospitalization for Worsening Heart Failure Predict Postdischarge Survival: Results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circulation Heart Failure. 2008;1(1):25. 132. Schrier RW. Renal and Electrolyte Disorders. Lippincott Williams & Wilkins; 2010. 133. Kazory A. Emergence of Blood Urea Nitrogen as a Biomarker of Neurohormonal Activation in Heart Failure. American Journal of Cardiology. 2010;106(5):694. 134. Sands JM. Mammalian Urea Transporters. Annual Review of Physiology. 2003;65:543. 135. Mullens W, Martens P, et al. Renal Effects of Guideline-Directed Medical Therapies in Heart Failure: A Consensus Document from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure 2022;24(4):603. 136. Solomon SD, Vaduganathan M, et al. Sacubitril/valsartan Across the Spectrum of Ejection Fraction in Heart Failure. Circulation. 2020;141(5):352. 137. Devereux RB, Lutas EM, et al. Standardization of M-mode Echocardiographic Left Ventricular Anatomic Measurements. Journal of the American College of Cardiology. 1984;4(6):1222. 138. McDonagh T, Damy T, et al. Screening, Diagnosis and Treatment of Iron Deficiency in Chronic Heart Failure: Putting the 2016 European Society of Cardiology heart failure Guidelines into Clinical Practice. European Journal of Heart Failure. 2018;20(12):1664. 139. Kao DP, Lewsey JD, et al. Characterization of Subgroups of Heart Failure Patients with Preserved Ejection Fraction with Possible Implications for Prognosis and Treatment Response. European Journal of Heart Failure 2015;17(9):925. 140. Lanza ST, Rhoades BL. Latent Class Analysis: An Alternative Perspective on Subgroup Analysis in Prevention and Treatment. Prevention Science. 2013;14(2):157. 141. Nagin DS, Odgers CL. Group-Based Trajectory Modeling in Clinical Research. Annual Review of Clinical Psychology. 2010;6:109. 142. Banna M, Indik JH. Risk Stratification and Prevention of Sudden Death in Patients with Heart Failure. Current Treatment Options in Cardiovascular Medicine. 2011;13(6):517. 143. American Diabetes A. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes 2021. Diabetes Care. 2021;44(Suppl 1):S111.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86782-
dc.description.abstract研究背景 臨床試驗顯示sacubitril/valsartan對心臟衰竭合併左心室射出分率低下 (heart failure with reduced ejection fraction, HFrEF) 的病人有降低死亡率與逆轉心臟重塑的臨床效益,但臨床使用sacubitril/valsartan時可能面臨病人腎功能下降或心臟超音波 (ultrasound cardiography, UCG) 量測之重塑指標改善有限等情境。目前較無實證探討前述問題對於預後的影響,因此本研究希望納入腎功能下降與心臟重塑變化等相關變項,建立風險評估模型,協助臨床醫療人員進行風險估計與決策。 研究方法 本回溯性世代追蹤研究以臺大醫院HFrEF病人為研究對象,透過臺大醫院電子病歷系統收集其可能與預後相關的臨床變項,主要研究終點為全因性死亡與接受心臟移植之複合事件,亦評估啟用sacubitril/valsartan後短期內心臟重塑變化與發生心血管相關住院的相關性。 研究第一部份透過集群分析 (cluster analysis) 的方式,根據HFrEF病人啟用sacubitril/valsartan後6個月的UCG量測數值進行分群 (clustering),加權後以Kaplan-Meier方法估計不同群間的風險比值 (hazard ratio)。 研究第二部份建立多變項time-dependent Cox’s regression model (Cox’s model) 探討多個變項與預後的相關性。透過逐步選取法 (stepwise selection) 進行變項篩選以獲得最終模型,同時於過程當中搭配penalized spline評估連續變項與預後是否符合線性關係,並產生用以分層的臨界值。 研究結果 根據收案條件初步篩選291位HFrEF病人,追蹤期間中位數為33.6個月。集群分析顯示病人可分為「Cluster 01」與「Cluster 02」兩個次族群,當中Cluster 01的病人心臟衰竭病程較長且啟用sacubitril/valsartan前最近一次N端B型利鈉利尿胜肽原 (N-terminal pro B-type natriuretic peptide) 的中位數較高。加權後分析顯示Cluster 01族群後續有較高的心血管相關住院發生率,但是兩個次族群間並未觀察到主要複合事件的顯著差異。 多變項Cox’s model顯示與預後負相關之變項包含末期腎臟病透析、使用非類固醇類消炎止痛藥之用藥史、事件發生前9個月內血液尿素氮 (blood urea nitrogen, BUN) 上升幅度,以及事件發生前3個月內腎絲球過濾率 (estimated glomerular filtration rate, eGFR) 降低幅度等。與預後正相關之變項包含追蹤期間平均左心室射出分率、事件發生前1個月之sacubitril/valsartan日劑量與追蹤期間的血紅素 (hemoglobin, Hb) 數值等。本研究建構之預後模型亦呈現於互動式網頁當中,臨床醫療人員可以根據病人的臨床狀況估算預後做為參考。 結論 本研究利用Cox’s model呈現心臟重塑指標、血紅素、sacubitril/valsartan每日劑量、以eGFR與BUN為基礎的腎臟功能變化指標與預後的相關性。結果也強調HFrEF病人使用sacubitril/valsartan時,除了定期監測病人UCG,應同時評估Hb、eGFR與BUN等腎臟功能相關參數。希望透過密切關注病人的臨床變化並據此權衡病人潛在風險與效益,能幫助病人接受適當的sacubitril/valsartan耐受劑量。zh_TW
dc.description.abstractBackground Sacubitril/valsartan is considered an effective therapy for patients with heart failure with reduced ejection fraction (HFrEF). Several clinical trials have indicated that sacubitril/valsartan can help reduce mortality and reverse cardiac remodeling. However, renal function decline and blunt changes in systolic cardiac function are the two most common problems associated with the real-world use of sacubitril/valsartan. Because information on how these unfavorable responses affect patient prognosis is limited, identifying individuals at an increased risk of such situations and recommending more specific dosage adjustments based on patients’ responses are complex. Therefore, in this study, we aim to develop a risk assessment model to aid clinicians with risk estimation and decision-making. Methods In this retrospective cohort study, we analyzed data from patients with HFrEF undergoing sacubitril/valsartan therapy at National Taiwan University Hospital. Potential clinical covariates reported in the patients’ electronic health records were considered. The primary endpoint of the study was defined as a composite of all-cause mortality and heart transplantation. In addition, the association between short-term changes in ultrasound cardiography (UCG) parameters after the initiation of sacubitril/valsartan and cardiovascular-related hospitalization (CVH) was assessed. In the first part of the study, the echocardiographic phenotypes were identified using k-means clustering based on UCG parameters after 6 months. The hazard ratios adjusted using the inverse probability of the weight of both the primary endpoint and CVH were then estimated using the Kaplan–Meier method. In the second part, multivariate analysis was conducted by fitting Cox’s proportional hazards models with time-dependent covariates, called the Cox’s model, to estimate the adjusted effects of clinical covariates. The stepwise variable selection procedure was applied to obtain the final model. The penalized spline smoothing method was used to determine the linearity of and yield optimal cut-off values for the continuous covariates during the variable selection procedure. Results A total of 291 patients with HFrEF with a median follow-up of 33.6 months met the eligibility criteria and were included in the study. Two echocardiographic phenotypes were identified (“Cluster 01” and “Cluster 02”) using the k-means clustering method. Compared with the patients in Cluster 02, the patients included in Cluster 01had a longer heart failure duration and a higher median N-terminal pro-B-type natriuretic peptide level at baseline. After weighting was performed for other unbalanced covariates except for the UCG parameters, the Cluster 01 group was discovered to have an increased rate of CVH. However, no considerable differences were observed in the primary composite events. In the multivariable Cox’s model, dialysis for end-stage renal disease, non-steroid anti-inflammatory drug usage at baseline, an increased blood urea nitrogen (BUN) level within 9 months, and a decreased estimated glomerular filtration rate (eGFR) within 3 months were found to be significantly associated with an increased risk of composite events. In addition, the average left ventricular ejection fraction, hemoglobin level, and the daily dose of sacubitril/valsartan were found to have prognostic benefits. An interactive website was developed to allow clinicians to access and predict prognoses depending on the clinical condition of patients. Conclusion The significant findings of the Cox’s model revealed target values for measuring UCG parameters, dose-dependent responses of sacubitril/valsartan, and, most importantly, eGFR-based and BUN-based clinical criteria for evaluating renal function changes in patients with HFrEF. The results emphasized the importance of routinely carefully examining the entire renal function panel rather than the creatinine levels alone and of assessing cardiac responses during the sacubitril/valsartan treatment period. By closely monitoring the clinical status of patients and identifying potential risks accordingly, clinicians can determine optimal sacubitril/valsartan doses for patients with HFrEF in clinical practice.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:17:25Z (GMT). No. of bitstreams: 1
U0001-2609202212291100.pdf: 17722806 bytes, checksum: 8ba1168b075907e5c7c70caf36b5ca8a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xi 第一章、緒論 1 壹、心臟衰竭簡介 1 一、心臟衰竭的流行病學 1 二、心臟衰竭的病因學與共病症 2 三、心臟衰竭的病理生理學 3 四、心臟衰竭的臨床診斷 5 五、心臟衰竭的分類與分級 7 六、心臟衰竭的相關預後因子 8 貳、心臟衰竭的藥物治療 9 一、國際治療指引之主要建議藥品 9 二、Sacubitril/valsartan文獻回顧 13 參、使用sacubitril/valsartan之臨床案例討論 18 肆、臨床治療困境 20 伍、研究目的 22 第二章、研究方法 23 壹、研究資料來源 23 貳、研究設計與架構 23 參、追蹤起訖時間與研究終點之定義 23 肆、研究族群之篩選與建立 25 一、病人族群之初步篩選 25 二、後續研究分析族群之建立 26 伍、研究族群之資料收集與處理 27 一、資料擷取範圍與時間點之定義 27 二、資料前處理 28 陸、統計分析 30 一、研究族群數據呈現 30 二、研究第一部份:用藥後短期之心臟超音波指標與預後之關聯性 31 三、研究第二部份:建立時間相依共變數與多變項預後解釋模型 33 柒、互動式網頁應用程式之建立 41 第三章、研究結果 42 壹、整體研究族群建立結果 42 貳、研究第一部份:集群分析相關結果 42 一、研究族群後續分群結果與群集間特性比較 42 二、存活分析之結果 44 參、研究第二部份:多變項預後解釋模型相關結果 45 一、插補前後LVEF_Teich與LVEF_MOD關係比較 45 二、研究族群特性與用藥情形 45 三、研究族群發生複合事件之單變項分析 50 四、建立研究族群之多變項預後解釋模型 52 第四章、討論 54 壹、本研究族群與PARADIGM-HF試驗收案族群之比較 54 一、心臟衰竭基準特性 54 二、追蹤期間sacubitril/valsartan劑量之分佈 54 貳、研究第一部份:集群分析相關結果之討論 55 一、Cluster01與Cluster02次族群病人特性之比較 55 二、Cluster01與Cluster02次族群後續預後之相關探討 56 三、總結與後續研究設計之探討 57 參、研究第二部份:多變項預後解釋模型相關結果之討論 58 一、研究族群發生複合事件之單變項分析 58 二、Cox’smodel:多變項預後解釋模型 60 三、總結與臨床意義之探討 66 肆、臨床案例討論 67 第五章、研究特點與限制 68 壹、研究特色與優點 68 貳、研究限制 69 第六章、結論與展望 73 第七章、圖 74 第八章、表 89 參考文獻 130 附錄 143 壹、專有名詞之中英文暨縮寫對照表 143 貳、臺大醫院研究倫理委員會行政中心之變更案許可書 150 參、研究第二部份經逐步選取法(stepwiseselection)篩選的變項列表 151
dc.language.isozh-TW
dc.title利用醫院電子病歷建立心臟衰竭病人使用sacubitril/valsartan死亡或心臟移植之風險評估工具zh_TW
dc.titleUtilizing Electronic Health Records for Risk Assessment of Death or Heart Transplantation in Patients with Heart Failure Treated with Sacubitril/Valsartanen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-2250-1813
dc.contributor.oralexamcommittee李啟明(Chii-Ming Lee),黃道民(Tao-Ming Huang),陳崇鈺(Chung-Yu Chen),劉建浩(Jiann-Haw Liou)
dc.contributor.oralexamcommittee-orcid李啟明(0000-0002-1075-5787)
dc.subject.keyword心臟衰竭,左心室射出分率,血液尿素氮,腎絲球過濾率,血紅素,sacubitril/valsartan,zh_TW
dc.subject.keywordheart failure,left ventricular ejection fraction,blood urea nitrogen,estimated glomerular filtration rate,hemoglobin,sacubitril/valsartan,en
dc.relation.page155
dc.identifier.doi10.6342/NTU202204068
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床藥學研究所zh_TW
dc.date.embargo-lift2027-09-01-
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
U0001-2609202212291100.pdf
  此日期後於網路公開 2027-09-01
17.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved