Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86769
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorChiu-Lin Luanen
dc.contributor.author欒玖霖zh_TW
dc.date.accessioned2023-03-20T00:16:34Z-
dc.date.copyright2022-07-27
dc.date.issued2022
dc.date.submitted2022-07-27
dc.identifier.citationReference 1. Li, X., S. He, and B. Ma, Autophagy and autophagy-related proteins in cancer. Mol Cancer, 2020. 19(1): p. 12. 2. Galluzzi, L., et al., Autophagy in malignant transformation and cancer progression. EMBO J, 2015. 34(7): p. 856-80. 3. Levy, J.M.M., C.G. Towers, and A. Thorburn, Targeting autophagy in cancer. Nat Rev Cancer, 2017. 17(9): p. 528-542. 4. Wong, S.Q., et al., Autophagy in aging and longevity. Hum Genet, 2020. 139(3): p. 277-290. 5. Mihaylova, M.M. and R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol, 2011. 13(9): p. 1016-23. 6. Kim, J., et al., AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 2011. 13(2): p. 132-41. 7. Mizushima, N., The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol, 2010. 22(2): p. 132-9. 8. Turco, E., D. Fracchiolla, and S. Martens, Recruitment and Activation of the ULK1/Atg1 Kinase Complex in Selective Autophagy. J Mol Biol, 2020. 432(1): p. 123-134. 9. Zachari, M. and I.G. Ganley, The mammalian ULK1 complex and autophagy initiation. Essays Biochem, 2017. 61(6): p. 585-596. 10. Karanasios, E., et al., Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci, 2013. 126(Pt 22): p. 5224-38. 11. Pyo, J.O., J. Nah, and Y.K. Jung, Molecules and their functions in autophagy. Experimental and Molecular Medicine, 2012. 44(2): p. 73-80. 12. Funderburk, S.F., Q.J. Wang, and Z. Yue, The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol, 2010. 20(6): p. 355-62. 13. Itakura, E., et al., Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell, 2008. 19(12): p. 5360-72. 14. Thoresen, S.B., et al., A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res, 2010. 316(20): p. 3368-78. 15. Karanasios, E., et al., Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun, 2016. 7: p. 12420. 16. Lystad, A.H., S.R. Carlsson, and A. Simonsen, Toward the function of mammalian ATG12-ATG5-ATG16L1 complex in autophagy and related processes. Autophagy, 2019. 15(8): p. 1485-1486. 17. Otomo, C., et al., Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 2013. 20(1): p. 59-66. 18. Kaiser, S.E., et al., Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol, 2012. 19(12): p. 1242-9. 19. Taherbhoy, A.M., et al., Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell, 2011. 44(3): p. 451-61. 20. Satoo, K., et al., The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J, 2009. 28(9): p. 1341-50. 21. Agrotis, A., et al., Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins. J Biol Chem, 2019. 294(34): p. 12610-12621. 22. Yim, W.W. and N. Mizushima, Lysosome biology in autophagy. Cell Discov, 2020. 6: p. 6. 23. Nakamura, S. and T. Yoshimori, New insights into autophagosome-lysosome fusion. Journal of Cell Science, 2017. 130(7): p. 1209-1216. 24. Lamark, T. and T. Johansen, Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol, 2012. 2012: p. 736905. 25. Park, C. and A.M. Cuervo, Selective Autophagy: Talking with the UPS. Cell Biochemistry and Biophysics, 2013. 67(1): p. 3-13. 26. Rogov, V., et al., Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy. Molecular Cell, 2014. 53(2): p. 167-178. 27. Pohl, C. and I. Dikic, Cellular quality control by the ubiquitin-proteasome system and autophagy. Science, 2019. 366(6467): p. 818-822. 28. Lamark, T., et al., NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 2009. 8(13): p. 1986-1990. 29. Sun, D., et al., Phase Separation in Regulation of Aggrephagy. J Mol Biol, 2020. 432(1): p. 160-169. 30. Boland, B., et al., Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov, 2018. 17(9): p. 660-688. 31. Djebali, S., et al., Landscape of transcription in human cells. Nature, 2012. 489(7414): p. 101-8. 32. Statello, L., et al., Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 2021. 22(2): p. 96-118. 33. Yao, R.W., Y. Wang, and L.L. Chen, Cellular functions of long noncoding RNAs. Nat Cell Biol, 2019. 21(5): p. 542-551. 34. Akkipeddi, S.M.K., A.J. Velleca, and D.M. Carone, Probing the function of long noncoding RNAs in the nucleus. Chromosome Res, 2020. 28(1): p. 87-110. 35. Noh, J.H., et al., Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA, 2018. 9(3): p. e1471. 36. Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011. 43(6): p. 904-14. 37. Huarte, M., The emerging role of lncRNAs in cancer. Nat Med, 2015. 21(11): p. 1253-61. 38. Yang, G., X. Lu, and L. Yuan, LncRNA: a link between RNA and cancer. Biochim Biophys Acta, 2014. 1839(11): p. 1097-109. 39. Jiang, M.C., et al., Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res, 2019. 9(7): p. 1354-1366. 40. Liu, Y. and M. Zhao, lnCaNet: pan-cancer co-expression network for human lncRNA and cancer genes. Bioinformatics, 2016. 32(10): p. 1595-7. 41. Guzel, E., et al., Tumor suppressor and oncogenic role of long non-coding RNAs in cancer. North Clin Istanb, 2020. 7(1): p. 81-86. 42. Tao, W., et al., LncRNA DANCR contributes to tumor progression via targetting miR-216a-5p in breast cancer: lncRNA DANCR contributes to tumor progression. Biosci Rep, 2019. 39(4). 43. Liu, Y., et al., Over-expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol, 2015. 8(9): p. 11480-4. 44. Taniue, K. and N. Akimitsu, The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci, 2021. 22(2). 45. Liu, Q., et al., LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res, 2013. 41(9): p. 4976-87. 46. Jadaliha, M., et al., A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet, 2018. 14(11): p. e1007802. 47. Li, J., et al., LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med (Maywood), 2016. 241(6): p. 644-9. 48. Qian, Y., L. Shi, and Z. Luo, Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front Med (Lausanne), 2020. 7: p. 612393. 49. Liu, P.F., et al., Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol, 2020. 50. Yang, L., et al., Long non-coding RNAs involved in autophagy regulation. Cell Death Dis, 2017. 8(10): p. e3073. 51. Liang, J., L. Zhang, and W. Cheng, Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer, 2021. 1876(2): p. 188642. 52. Aboudehen, K., Regulation of mTOR signaling by long non-coding RNA. Biochim Biophys Acta Gene Regul Mech, 2020. 1863(4): p. 194449. 53. Liu, H., et al., lncRNA CASC19 Contributes to Radioresistance of Nasopharyngeal Carcinoma by Promoting Autophagy via AMPK-mTOR Pathway. Int J Mol Sci, 2021. 22(3). 54. Wang, X., et al., LncRNA SNHG6 promotes chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in colorectal cancer cells. Cancer Cell Int, 2019. 19: p. 234. 55. Zhao, W., et al., Long noncoding RNA H19 contributes to the proliferation and autophagy of glioma cells through mTOR/ULK1 pathway. Neuroreport, 2021. 32(5): p. 352-358. 56. Yu, Y. and X.H. Feng, TGF-beta signaling in cell fate control and cancer. Curr Opin Cell Biol, 2019. 61: p. 56-63. 57. Vander Ark, A., J. Cao, and X. Li, TGF-beta receptors: In and beyond TGF-beta signaling. Cell Signal, 2018. 52: p. 112-120. 58. Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res, 2009. 19(1): p. 128-39. 59. Zhang, Y., P.B. Alexander, and X.F. Wang, TGF-beta Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol, 2017. 9(4). 60. Katz, L.H., et al., Targeting TGF-beta signaling in cancer. Expert Opin Ther Targets, 2013. 17(7): p. 743-60. 61. Ramesh, S., et al., TGF beta-mediated BIM expression and apoptosis are regulated through SMAD3-dependent expression of the MAPK phosphatase MKP2. Embo Reports, 2008. 9(10): p. 990-997. 62. Jang, C.W., et al., TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nature Cell Biology, 2002. 4(1): p. 51-58. 63. Rostislavleva, K., et al., Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science, 2015. 350(6257): p. aac7365. 64. Szeto, J., et al., ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy, 2006. 2(3): p. 189-99. 65. Dikic, I., Proteasomal and Autophagic Degradation Systems. Annu Rev Biochem, 2017. 86: p. 193-224. 66. Zellner, S., M. Schifferer, and C. Behrends, Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling. Mol Cell, 2021. 81(6): p. 1337-1354 e8. 67. Lim, J. and Z. Yue, Neuronal aggregates: formation, clearance, and spreading. Dev Cell, 2015. 32(4): p. 491-501.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86769-
dc.description.abstract長鏈非編碼 RNA(LncRNA) 能調節許多生物反應,最近研究發現 lncRNAs 在自噬調節中扮演重要作用。然而目前對 lncRNAs 調控自噬的機制尚不清楚。本研究中,我們發現一種新型 lncRNA BCRP3 在多種腫瘤中的表達異常低,並做為自噬的正調節因子。進一步我們確認 BCRP3 主要位於細胞質中並能提高 VPS34 活性來啟動自噬。當細胞處於蛋白毒性刺激下會促進 BCRP3 的基因表現,進而促進泛素化蛋白質聚集體的清除。當蛋白質毒性刺激下, BCRP3 缺乏不僅影響蛋白質動態平衡的調節,還導致 TGF-β/Smad2 訊號被啟動,最後造成生長抑制、細胞凋亡。總上所述,我們研究揭示了 BCRP3 通過增強 Vps34 複合物的活性進而促進自噬作用來維持蛋白質動態平衡和細胞存活。zh_TW
dc.description.abstractLong noncoding RNAs (LncRNAs) have been implicated in regulating many biological processes. Recent studies have also shown that lncRNAs play important roles in autophagy regulation. However, the underlying mechanism of lncRNAs in autophagy has not been unveiled. In this study, we identified a novel lncRNA BCRP3 as a positive modulator of autophagy and with abnormally low expression in a variety of tumors. BCRP3 is mainly located in the cytoplasm and binds to the VPS34 complex, which in turn initiates autophagy under basal and starvation conditions. In response to proteasome inhibition or oxidative stress-induced proteotoxicity, BCRP3 is upregulated to promote autophagy, thus facilitating the clearance of ubiquitinated protein aggregates. BCRP3 deficiency under proteotoxic stress not only comprises the protein quality control, but also leads to growth inhibition, cell death, and apoptosis. These cell survival defects are mediated in part through the upregulation of the TGF-/Smad2 pathway. In conclusion, our study revealed the role of BCRP3 as a positive regulator of autophagy by binding to VPS34 complex and BCRP3 is important for the maintenance of protein homeostasis and cell survival.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:16:34Z (GMT). No. of bitstreams: 1
U0001-2607202210153400.pdf: 2292818 bytes, checksum: f693efea0ef4edc87a3747c2bd5ce34d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContent I. Introduction 1 Autophagy 1 1. Autophagy in cancer 1 2. Mechanism of autophagy 2 3. The roles of autophagy in aggrephagy 5 Long non-coding RNAs (lncRNAs) 7 1. Functions of lncRNAs 7 2. lncRNA in cancer 8 3. lncRNA in autophagy 11 TGF-beta pathway 13 1. Mechanism of TGF-ꞵ pathway 13 2. The functions and mechanisms of TGF-ꞵ pathway in regulating cell cycle and cell survival 14 II. Materials and Methods 16 Oligonucleotides 16 Plasmids 16 Antibodies 16 Primers 17 Chemicals 17 Cell culture and transfection 17 Lentiviral package and transduction 18 Western blotting 18 Immunoprecipitation 19 Quantitative real-time PCR (qRT-PCR) 19 Subcellular fractionation assay 20 PI3K activity assay 20 BrdU incorporation and MTT assays 21 Bioinformatics 21 Statistics 22 III. Results 23 BCRP3 promotes autophagy 23 BCRP3 promotes autophagy by enhancing VPS34 activity 24 BCRP3 is upregulated under proteotoxic stresses to promote the accumulation of ubiquitinated proteins 25 BCRP3 deficiency under proteotoxicity leads to the accumulation of growth/survival inhibitors and TGF-β pathway upregulation 26 BCRP3 protects against proteotoxicity causing growth arrest and apoptosis by downregulating TGF-β signaling 27 V. Discussion 29 BCRP3 promotes protein homeostasis by activating autophagy 29 BCRP3 upregulates Vps34 enzymatic activity 29 BCRP3 is induced under proteasome inhibitor and oxidative stressor 30 BCRP3 affects growth inhibition, apoptosis and TGF-β/Smad2 pathway under proteotoxicity 31 The importance of BCRP3 in cancer 32 VI. Figure 34 Figure 1. BCRP3 gene expression level in various cancers and normal tissues. 34 Figure 2. Overexpression of BCRP3 increases the resistance of tumor cells to chemotherapy but does not affect DNA damage repair. 35 Figure 3. Autophagy inhibition reverses BCRP3-induced chemoresistance. 36 Figure 4. BCRP3 increases LC3 lipidation. 37 Figure 5. BCRP3 is mainly localized in cytoplasm. 38 Figure 6. BCRP3 enhances Vps34 activity. 39 Figure 7. BCRP3 is upregulated by certain proteotoxic stresses. 40 Figure 8. BCRP3 deficiency increases the accumulations of ubiquitinated proteins under proteotoxic stresses. 41 Figure 9. BCRP3 deficiency under proteotoxic stress leads to the accumulation of proteins in growth arrest, apoptosis, and TGF- pathway. 42 Figure 10. BCRP3 deficiency under proteotoxicity enhances TGF- signaling towards growth inhibition and apoptosis. 43 Figure 11. BCRP3 deficiency under proteotoxicity decreases proliferation and cell viability. 44 Figure 12. BCRP3 deficiency under proteotoxicity enhances apoptosis. 45 Figure 13. TGF-β pathway enhances apoptosis in MG132-treated cells. 46 Figure 14. The model showing the mechanism for BCRP3 in protein homeostasis and cell survival by activating autophagy. 47 VII Appendix 48 Appendix 1. BCRP3 deficiency impairs omegasome formation. 48 Appendix 2. BCRP3 deficient did not affect ULK1, mTOR, and AMPK. 49 Reference 50
dc.language.isoen
dc.subjectTGF-beta信號zh_TW
dc.subjectLncRNAzh_TW
dc.subject自噬zh_TW
dc.subjectVPS34複合物zh_TW
dc.subject細胞死亡zh_TW
dc.subject癌症zh_TW
dc.subjectLncRNAzh_TW
dc.subject自噬zh_TW
dc.subjectVPS34複合物zh_TW
dc.subjectTGF-beta信號zh_TW
dc.subject細胞死亡zh_TW
dc.subject癌症zh_TW
dc.subjectTGF-beta signalingen
dc.subjectLncRNAen
dc.subjectTGF-beta signalingen
dc.subjectVPS34 complexen
dc.subjectcanceren
dc.subjectcell deathen
dc.subjectLncRNAen
dc.subjectVPS34 complexen
dc.subjectautophagyen
dc.subjectautophagyen
dc.subjectcanceren
dc.subjectcell deathen
dc.title一種新型長鏈非編碼 RNA BCRP3 通過激活自噬促進蛋白質穩態和細胞存活zh_TW
dc.titleA novel long noncoding RNA BCRP3 promotes protein homeostasis and cell survival by activating autophagyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光超(Guang-Chao Chen),朱雪萍(Hsueh-Ping Chu)
dc.subject.keywordLncRNA,自噬,VPS34複合物,TGF-beta信號,細胞死亡,癌症,zh_TW
dc.subject.keywordautophagy,cancer,cell death,LncRNA,TGF-beta signaling,VPS34 complex,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202201725
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
dc.date.embargo-lift2022-07-27-
Appears in Collections:基因體與系統生物學學位學程

Files in This Item:
File SizeFormat 
U0001-2607202210153400.pdf2.24 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved