Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86763
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周佳靚(Chia-Ching Chou)
dc.contributor.authorTsung-Wan Hsiaoen
dc.contributor.author蕭綜萬zh_TW
dc.date.accessioned2023-03-20T00:16:10Z-
dc.date.copyright2022-08-05
dc.date.issued2022
dc.date.submitted2022-07-28
dc.identifier.citationSrikanth, S., et al., Property Enhancement in metastable 301LN austenitic stainless steel through strain-induced martensitic transformation and its reversion (SIMTR) for metro coach manufacture. Int. J. Metall. Eng, 2013. 2(2): p. 203-213. Guo, C., W. Song, and Z. Dai, Structural design inspired by beetle elytra and its mechanical properties. Chinese Science Bulletin, 2012. 57(8): p. 941-947. Wegst, U.G., et al., Bioinspired structural materials. Nature materials, 2015. 14(1): p. 23-36. Jackson, A., J.F. Vincent, and R. Turner, The mechanical design of nacre. Proceedings of the Royal society of London. Series B. Biological sciences, 1988. 234(1277): p. 415-440. Woesz, A., et al., Micromechanical properties of biological silica in skeletons of deep-sea sponges. Journal of Materials Research, 2006. 21(8): p. 2068-2078. Okubo, K., T. Fujii, and Y. Yamamoto, Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied Science and Manufacturing, 2004. 35(3): p. 377-383. Naleway, S.E., et al., Structural Design Elements in Biological Materials: Application to Bioinspiration. Advanced Materials, 2015. 27(37): p. 5455-5476. Bacheva, D., M. Elsayed, and R. Trask, The skeleton of Euplectella aspergillum as foundation for the development of novel composite aerospace structures. methods, 2011. 1: p. 3. Weaver, J.C., et al., Unifying design strategies in demosponge and hexactinellid skeletal systems. The Journal of Adhesion, 2010. 86(1): p. 72-95. Falcucci, G., et al., Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. Nature, 2021. 595(7868): p. 537-541. Fernandes, M.C., et al., Mechanical and hydrodynamic analyses of helical strake-like ridges in a glass sponge. Journal of the Royal Society Interface, 2021. 18(182): p. 20210559. Weaver, J.C., et al., Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of Structural Biology, 2007. 158(1): p. 93-106. Monn Michael, A., et al., New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum. Proceedings of the National Academy of Sciences, 2015. 112(16): p. 4976-4981. Aizenberg, J., et al., Biological glass fibers: correlation between optical and structural properties. Proceedings of the National Academy of Sciences, 2004. 101(10): p. 3358-3363. Robson Brown, K., D. Bacheva, and R. Trask, The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures. Journal of the Royal Society Interface, 2019. 16(154): p. 20180965. Fernandes, M.C., et al., Mechanically robust lattices inspired by deep-sea glass sponges. Nature Materials, 2021. 20(2): p. 237-241. Li, L., et al., Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties. Bioinspiration & Biomimetics, 2020. 15(3): p. 036006. Chayaamor-Heil, N., F. Guéna, and N. Hannachi-Belkadi, Biomimétisme en architecture. État, méthodes et outils. Les Cahiers de la recherche architecturale urbaine et paysagère, 2018(1). Sloane, Z.Y., Euplectella Aspergillum’s Natural Lattice Structure for Structural Design & Stability Landscape of Thin Cylindrical Shells with Dimple Imperfections. 2022. Wang, P., et al., Anisotropic compression behaviors of bio-inspired modified body-centered cubic lattices validated by additive manufacturing. Composites Part B: Engineering, 2022. 234: p. 109724. He, M., et al., Compressive performance and fracture mechanism of bio-inspired heterogeneous glass sponge lattice structures manufactured by selective laser melting. Materials & Design, 2022. 214: p. 110396. Sharma, D. and S.S. Hiremath, Bio-inspired repeatable lattice structures for energy absorption: Experimental and finite element study. Composite Structures, 2022. 283: p. 115102. A Wide-Range Stiffness-Tunable Soft Actuator Inspired by Deep-Sea Glass Sponges. Soft Robotics. 0(0): p. null. Limmahakhun, S., et al., 3D-printed cellular structures for bone biomimetic implants. Additive Manufacturing, 2017. 15: p. 93-101. Ghazlan, A., et al., Performance of a 3D printed cellular structure inspired by bone. Thin-Walled Structures, 2020. 151: p. 106713. Rahim, A. and R. Adibah. Computational modelling of trabecular bone structure using fluid-structure interaction approach. 2018. Parkinson, I.H. and N.L. Fazzalari, Characterisation of Trabecular Bone Structure, in Skeletal Aging and Osteoporosis: Biomechanics and Mechanobiology, M.J. Silva, Editor. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 31-51. Silva, S., et al., Cork: properties, capabilities and applications. International Materials Reviews, 2005. 50(6): p. 345-365. Lagorce-Tachon, A., et al., The cork viewed from the inside. Journal of Food Engineering, 2015. 149: p. 214-221. Jiang, H., et al., Bioinspired multilayered cellular composites with enhanced energy absorption and shape recovery. Additive Manufacturing, 2020. 36: p. 101430. Insects, G.P.N.C. Honeycomb structure. Available from: https://asknature.org/strategy/honeycomb-structure-is-space-efficient-and-strong/. Qi, C., F. Jiang, and S. Yang, Advanced honeycomb designs for improving mechanical properties: A review. Composites Part B: Engineering, 2021. 227: p. 109393. Jin, X., et al., Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes. Composite Structures, 2018. 187: p. 27-35. Han, X.-H., et al., A review of metal foam and metal matrix composites for heat exchangers and heat sinks. Heat Transfer Engineering, 2012. 33(12): p. 991-1009. Tian, J., et al., The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. International Journal of Heat and Mass Transfer, 2004. 47(14): p. 3171-3186. Huang, J., H. Durden, and M. Chowdhury, Bio-inspired armor protective material systems for ballistic shock mitigation. Materials & Design, 2011. 32(7): p. 3702-3710. Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 2001. 46(6): p. 559-632. Sven, B., et al., Bio-inspired Design to Support Reduced Energy Consumption Via the'Light Weighting'of Machine System Elements. International Journal of Modeling and Optimization, 2015. 5(1): p. 82. Yang, X., et al., Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load. Materials & Design, 2017. 135: p. 275-290. André, D., J. Girardot, and C. Hubert, A novel DEM approach for modeling brittle elastic media based on distinct lattice spring model. Computer Methods in Applied Mechanics and Engineering, 2019. 350: p. 100-122. Cusatis, G., D. Pelessone, and A. Mencarelli, Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory. Cement and Concrete Composites, 2011. 33(9): p. 881-890. Libonati, F., et al., Computational framework to predict failure and performance of bone-inspired materials. ACS Biomaterials Science & Engineering, 2017. 3(12): p. 3236-3243. Li, Q., G.-F. Zhao, and J. Lian, Further development of the distinct lattice spring model for quasi-brittle crack propagation in concrete and its application in underground engineering. Tunnelling and Underground Space Technology, 2019. 92: p. 103061. Du, P., S.W. Rick, and R. Kumar, Towards a coarse-grained model of the peptoid backbone: the case of N, N-dimethylacetamide. Physical Chemistry Chemical Physics, 2018. 20(36): p. 23386-23396. Glass, D.C., et al., REACH Coarse-Grained Simulation of a Cellulose Fiber. Biomacromolecules, 2012. 13(9): p. 2634-2644. Mehandzhiyski, A.Y., et al., A novel supra coarse-grained model for cellulose. Cellulose, 2020. 27(8): p. 4221-4234. Chen, H., E. Lin, and Y. Liu, A novel Volume-Compensated Particle method for 2D elasticity and plasticity analysis. International Journal of Solids and Structures, 2014. 51(9): p. 1819-1833. Afra, B., et al., An immersed boundary-lattice Boltzmann method combined with a robust lattice spring model for solving flow–structure interaction problems. Applied Mathematical Modelling, 2018. 55: p. 502-521. Verlet, L., Computer' experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 1967. 159(1): p. 98. Chiang, Y., T.-W. Chiu, and S.-W. Chang, ImageMech: From Image to Particle Spring Network for Mechanical Characterization. Frontiers in Materials, 2022. 8. MatWeb. FLX9795-DM. Available from: https://www.matweb.com/search/datasheet.aspx?matguid=cf727bc33c75475cbb41a26f9fc66e22&ckck=1. Öchsner, A., W. Winter, and G. Kuhn, On an elastic-plastic transition zone in cellular metals. Archive of Applied Mechanics, 2003. 73(3): p. 261-269.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86763-
dc.description.abstract自然界中的生物為適應環境發展出許多特殊結構,以實現各種功能。近年來,透過解析與模仿生物結構設計為工程領域提供不同以往的設計理念。生物體內的多孔的細胞狀結構(cellular structure)使結構同時兼具高強度、輕量和高韌性等機械性質,尤其是深海玻璃海綿(Euplectella aspergillum)以特殊棋盤結構聞名,憑藉輕量、高承重和容易加工的週期性晶格特性,適合發展於航太、橋樑工業中。本研究針對深海玻璃海綿啟發之仿生晶格和工程上常見方形晶格,用於桁架和晶格套筒結構,固定重量下施以單軸向壓縮並更換材料,討論不同結構的抗壓行為。我們使用顆粒模擬方法,將晶格結構的桁架等效成顆粒和彈簧組成的模型,藉由諧和彈簧(harmonic spring)和諧和扭轉彈簧(harmonic torsion spring)串接,實現受負載之機械行為,得以探索仿生結構的變形機制與能量分布等機械性質。並且搭配視覺化諧和彈簧的長度伸縮量與諧和扭轉彈簧角度變化資訊,了解應力集中與變形之關係。首先,結果顯示,在二維的桁架結構中,仿生結構封閉和開放交錯排列的晶格具有優異的機械性質,依靠特殊的對角線排列幫助吸收更多能量。並且顯示沒有對角線支撐的方形結構出現單邊側向變形,具有不抗壓和不穩定性質。在三維晶格套筒結構中,我們比較對角線支撐的結構,仿生結構具有最大的線彈性區域,使其擁有最高的強度。我們接著對比不同硬度材料,較硬的材料線彈性區變小、結構破壞猛烈。綜合上述結果,仿生結構在固定材料使用量下,擁有最好的抗挫曲性質,放大結構挫曲發生前的彈性區域,達成高強度重量比目標。最後,顆粒模擬方法有效指出應力集中於彈簧長度、角度變化大的位置。利用彈簧斷裂特性,擷取結構中的破壞機制,顯示顆粒模擬用於仿生結構變形的優勢。zh_TW
dc.description.abstractTo achieve various specific functions, animals and plants in nature have developed multiple structures to adapt to the environment. In recent years, through the analysis and mimic of biological structures, structural designs have provided different design concepts for the engineering field. For instance, porous cellular structure in organisms possesses mechanical properties such as high strength, lightweight and high toughness. In particular, Euplectella aspergillum, known for its special checkerboard arrangement structure, it is suitable for development in the aerospace and bridge industries due to its lightweight, high load-bearing, and periodic lattice properties for easy manufacturing. This study focuses on the design of bionic lattice inspired by deep-sea glass sponge and its comparison to common square lattice in engineering. Using all design in truss and lattice tube structures, and with a constant weight, uniaxial compression, and material replacement, this study aims to discuss the compressive response of the different structures. By using a particle simulation method, the lattice structure is converted into a model formed by particles and springs. The mechanical behavior under loading is achieved by connecting harmonic springs in series with harmonic torsion springs. Therefore, it is possible to explore the mechanical properties of the bionic structure such as deformation mechanism and energy distribution, and to understand the relationship between stress concentration by visualizing the information on the length extension of the harmonic spring and the angular change of the harmonic torsion spring. The results show that in the two-dimensional truss structure, the bionic structure with closed and open alternating arrangement of lattices has excellent mechanical properties, relying on the special diagonal arrangement to improve energy absorption. Moreover, it is shown that the square structure without diagonal support does not perform well under compression, and the resulting single lateral deformation indicates an undesirable structural instability. In 3D lattice tube structures, the bionic structure has the largest area of linear elastic zone compared to the diagonally supported structure, giving it the highest strength. In comparison with materials of different hardness, the linear elasticity zone of the harder material decreases and the structure failure occurs rapidly and prematurely. In summary, under the premise of fixed material usage, the bionic structure can achieve the highest strength-to-weight ratio by enlarging the elastic region of the structure before the buckling occurs. Finally, the results show that the stresses are concentrated on the locations where the change of spring length and angle is significant. As the structural damage in hard materials is showcased by the characteristics of spring breakage, it demonstrates the advantage of utilizing particle simulation in predicting the deformation of bio-structure.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:16:10Z (GMT). No. of bitstreams: 1
U0001-2707202215355100.pdf: 11219189 bytes, checksum: d74db57659ae8a4742b75ce4892cca05 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v 第1章. 緒論 1 1.1、 研究動機與目的 1 1.2、 文獻回顧 3 1.2.1 仿生結構設計 3 1.2.2 深海玻璃海綿之跨尺度結構 4 1.2.3 細胞狀結構 8 1.3、 仿生材料與結構之模擬 11 1.4、 論文架構 14 第2章. 研究理論與分析方法 15 2.1、 顆粒模擬方法 15 2.1.1 晶格彈簧模型 15 2.1.2 以方形晶格彈簧發想之顆粒模擬方法 17 2.1.3 力場與系綜 19 2.1.4 韋爾萊積分法 20 2.1.5 能量最小化及共軛梯度法 21 2.1.6 虎克定律 22 2.1.7 尤拉負載 23 2.2、 材料參數 26 2.3、 模型建構 26 2.3.1 四種設計之單位晶格定義 27 2.3.2 二維方形晶格桁架模型 29 2.3.3 三維方形晶格套筒模型 31 2.4、 模擬流程 34 2.5、 模擬參數 36 2.6、 後處理分析方法 37 2.6.1 應力應變圖與結構變形分區之分析 37 2.6.2 視覺化分析 38 2.6.3 標準化 39 第3章. 二維方形晶格桁架結構之模擬結果與討論 40 3.1、 軟材之二維晶格桁架結構模型 40 3.1.1 顆粒模型擬合文獻實驗 40 3.1.2 二維晶格桁架結構之機械性質 43 3.1.3 二維晶格桁架結構之應力分布分析 46 3.1.4 二維晶格桁架結構之鍵結長度變化分析 48 3.1.5 二維晶格桁架結構之角度分布分析 50 3.1.1 對角線之應力分布分析 52 3.2、 硬材之二維晶格桁架結構模型 53 3.2.1 硬材於二維晶格桁架結構之機械性質 53 3.2.2 硬材於二維晶格桁架結構之視覺化分析 56 3.3、 不同材料之變形機制比較 61 3.3.1 機械性質比較 61 3.3.2 開放與封閉晶格對角線能量比較 62 第4章. 三維方形晶格套筒之模擬結果與討論 64 4.1、 軟材之三維晶格套筒模型 64 4.1.1 軟材於三維晶格套筒結構之機械性質 64 4.1.2 軟材於三維晶格套筒結構之視覺化分析 67 4.2、 硬材之三維晶格套筒結構模型 71 4.2.1 硬材於三維晶格套筒結構之機械性質 71 4.2.2 硬材於三維晶格套筒結構之視覺化分析 74 4.2.3 三維套筒結構之單軸向壓縮試驗文獻結果比較 78 4.3、 不同材料之變形機制比較 79 4.3.1 機械性質比較 79 4.3.2 開放與封閉晶格的對角線能量比較 80 第5章. 結論與未來展望 81 5.1、 結論 81 5.2、 未來展望 83 參考文獻 84
dc.language.isozh-TW
dc.subject仿生結構zh_TW
dc.subject深海玻璃海綿zh_TW
dc.subject晶格結構zh_TW
dc.subject顆粒結構模擬zh_TW
dc.subject晶格彈簧模型zh_TW
dc.subject深海玻璃海綿zh_TW
dc.subject晶格結構zh_TW
dc.subject仿生結構zh_TW
dc.subject顆粒結構模擬zh_TW
dc.subject晶格彈簧模型zh_TW
dc.subjectlattice structureen
dc.subjectbionic structureen
dc.subjectlattice spring modelen
dc.subjectDeep-sea glass spongeen
dc.subjectlattice structureen
dc.subjectbionic structureen
dc.subjectparticle structure simulationen
dc.subjectDeep-sea glass spongeen
dc.subjectlattice spring modelen
dc.subjectparticle structure simulationen
dc.title利用顆粒模擬探討以深海玻璃海綿啟發之高強度和輕量仿生結構與力學行為zh_TW
dc.titleParticles-Based Simulations of High Strength and Lightweight Structures Inspired by Deep-sea Glass Spongeen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊杉(Chuin-Shan Chen),陳柏宇(Po-Yu Chen),張書瑋(Shu-Wei Chang)
dc.subject.keyword深海玻璃海綿,晶格結構,仿生結構,顆粒結構模擬,晶格彈簧模型,zh_TW
dc.subject.keywordlattice spring model,Deep-sea glass sponge,lattice structure,bionic structure,particle structure simulation,en
dc.relation.page88
dc.identifier.doi10.6342/NTU202201784
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2022-08-05-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-2707202215355100.pdf10.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved