請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86756完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳柏華(Albert Y. Chen) | |
| dc.contributor.author | Yu-Chia Cheng | en |
| dc.contributor.author | 鄭又嘉 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:15:42Z | - |
| dc.date.copyright | 2022-08-02 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-27 | |
| dc.identifier.citation | Alfsen, D., Møller, T. P., Egerod, I., & Lippert, F. K. (2015). Barriers to recognition of out-of-hospital cardiac arrest during emergency medical calls: A qualitative inductive thematic analysis. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 23(1), 1–8. Baker, Susan P.Brian O’Neill. William Haddon, . Willian B Long. (1974). THE_INJURY_SEVERITY_SCORE__A_METHOD_FOR_DESCRIBING.1.pdf. In The Journal of trauma (Vol. 14, Issue No3, pp. 187–196). Balcerek, J., Pawlowski, P., & Dabrowski, A. (2017). Classification of emergency phone conversations with artificial neural network. Signal Processing - Algorithms, Architectures, Arrangements, and Applications Conference Proceedings, SPA, 2017-September, 343–348. BĂRĂNESCU, M., VASILCA, I.-S., TABARCIA, M., CIOCOIU, N., & NEN, M. (2021). Analysis of Abusive 112 Emergency Calls in Romania. Journal of Administrative Sciences and Technology, 1–26. Blomberg, S. N., Christensen, H. C., Lippert, F., Ersbøll, A. K., Torp-Petersen, C., Sayre, M. R., Kudenchuk, P. J., & Folke, F. (2021). Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest during Calls to Emergency Medical Services: A Randomized Clinical Trial. JAMA Network Open, 4(1), 2032320. Blomberg, S. N., Folke, F., Ersbøll, A. K., Christensen, H. C., Torp-Pedersen, C., Sayre, M. R., Counts, C. R., & Lippert, F. K. (2019). Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation, 138, 322–329. Bohm, K., Kurland, L., Bartholdson, S., & Castrèn, M. (2015). Descriptions and presentations of sepsis – A qualitative content analysis of emergency calls. International Emergency Nursing, 23(4), 294–298. Bojanić, M., Delić, V., & Karpov, A. (2020). Call redistribution for a call center based on speech emotion recognition. Applied Sciences (Switzerland), 10(13), 4653. Byrne, J. P., Mann, N. C., Dai, M., Mason, S. A., Karanicolas, P., Rizoli, S., & Nathens, A. B. (2019). Association between Emergency Medical Service Response Time and Motor Vehicle Crash Mortality in the United States. JAMA Surgery, 154(4), 286–293. Creutz, M., & Lagus, K. (2007). Unsupervised models for morpheme segmentation and morphology learning. ACM Transactions on Speech and Language Processing (TSLP), 4(1), 1–34. Dessì, D., Helaoui, R., Kumar, V., Recupero, D. R., & Riboni, D. (2020). TF-IDF vs word embeddings for morbidity identification in clinical notes: An initial study. CEUR Workshop Proceedings, 2596(April), 1–12. Eberhardt, J. J., & Eberhardt, J. (2015). Bayesian Spam Detection. Morris Undergraduate Journal Undergraduate Journal, 2. Jones, K. S. (2004). IDF term weighting and IR research lessons. Journal of Documentation, 60(5), 521–523. Jones, S. P., Carter, B., Ford, G. A., Gibson, J. M. E., Leathley, M. J., Mcadam, J. J., O’Donnell, M., Punekar, S., Quinn, T., & Watkins, C. L. (2013). The identification of acute stroke: An analysis of emergency calls. International Journal of Stroke, 8(6), 408–412. Li, L., Wang, W., He, B., & Zhang, Y. (2017). A hybrid method for Chinese address segmentation. Http://Dx.Doi.Org/10.1080/13658816.2017.1379084, 32(1), 30–48. Li, P.-H., Fu, T.-J., & Ma, W.-Y. (2020). Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 8236–8244. Lima, A. C. E. S., De Castro, L. N., & Corchado, J. M. (2015). A polarity analysis framework for Twitter messages. Applied Mathematics and Computation, 270, 756–767. https://doi.org/10.1016/J.AMC.2015.08.059 Liu, K.-J., & Chen, S. (1992). WORD IDENTIFICATION FOR MANDARIN CIlINESE SENTENCES. Ma, K., Wang, W., Yuan, N., & Chi, X. (2016). Study on temporal patterns of medical emergency call. Proceedings - The 2015 10th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2015, 403–407. https://doi.org/10.1109/ISKE.2015.96 Ma, W.-Y., & Chen, K.-J. (n.d.). Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff. Markakis, E. K., Lykourgiotis, A., Politis, I., Dagiuklas, A., Rebahi, Y., & Pallis, E. (2017). EMYNOS: Next generation emergency communication. IEEE Communications Magazine, 55(1), 139–145. https://doi.org/10.1109/MCOM.2017.1600284CM Mccallum, A., & Nigam, K. (1998). A Comparison of Event Models for Naive Bayes Text Classification. In Citeseer. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings. Morimura, N., Ishikawa, J., Kitsuta, Y., Nakamura, K., Anze, M., Sugiyama, M., & Sakamoto, T. (2005). An analysis of spoken language expression during simulated emergency call triage. European Journal of Emergency Medicine, 12(2), 72–77. Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word Representation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1532–1543. Richards, C. T., Wang, B., Markul, E., Albarran, F., Rottman, D., Aggarwal, N. T., Lindeman, P., Stein-Spencer, L., Weber, J. M., Pearlman, K. S., Tataris, K. L., Holl, J. L., Klabjan, D., & Prabhakaran, S. (2017). Identifying Key Words in 9-1-1 Calls for Stroke: A Mixed Methods Approach. Prehospital Emergency Care, 21(6), 761–766. Riou, M., Ball, S., Williams, T. A., Whiteside, A., Cameron, P., Fatovich, D. M., Perkins, G. D., Smith, K., Bray, J., Inoue, M., O’Halloran, K. L., Bailey, P., Brink, D., & Finn, J. (2018). ‘She’s sort of breathing’: What linguistic factors determine call-taker recognition of agonal breathing in emergency calls for cardiac arrest? Resuscitation, 122, 92–98. Riou, M., Ball, S., Williams, T. A., Whiteside, A., O’Halloran, K. L., Bray, J., Perkins, G. D., Cameron, P., Fatovich, D. M., Inoue, M., Bailey, P., Brink, D., Smith, K., Della, P., & Finn, J. (2017). The linguistic and interactional factors impacting recognition and dispatch in emergency calls for out-of-hospital cardiac arrest: A mixed-method linguistic analysis study protocol. BMJ Open, 7(7), e016510. Sheshasaayee, A., & Thailambal, G. (2017). Comparison of Classification Algorithms in Text Mining. International Journal of Pure and Applied Mathematics, 116(22), 425–433. Singh, G., Kumar, B., Gaur, L., & Tyagi, A. (2019). Comparison between Multinomial and Bernoulli Nave Bayes for Text Classification. 2019 International Conference on Automation, Computational and Technology Management, ICACTM 2019, 593–596. Sun, J. (2012). Jieba chinese word segmentation tool. https://github.com/fxsjy/jieba Teahan, W. J., Wen, Y., McNab, R., & Witten, I. H. (2000). A Compression-based Algorithm for Chinese Word Segmentation. Computational Linguistics, 26(3), 375–393. Trstenjak, B., Mikac, S., & Donko, D. (2014). KNN with TF-IDF based Framework for Text Categorization. Procedia Engineering, 69, 1356–1364. Trujillo, A., Orellana, M., & Acosta, M. I. (2020). Design of Emergency Call Record Support System Applying Natural Language Processing Techniques. Advances in Intelligent Systems and Computing, 1099, 53–65. Valente, J. T., & Perez, M. A. (2020). Emergency Response to Vehicle Collisions: Feedback from Emergency Medical Service Providers. Safety, 6(4), 48. Viereck, S., Møller, T. P., Ersbøll, A. K., Bækgaard, J. S., Claesson, A., Hollenberg, J., Folke, F., & Lippert, F. K. (2017). Recognising out-of-hospital cardiac arrest during emergency calls increases bystander cardiopulmonary resuscitation and survival. Resuscitation, 115, 141–147. Vijayan, V. K., Bindu, K. R., & Parameswaran, L. (2017). A comprehensive study of text classification algorithms. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, 2017-January, 1109–1113. Wang, Z., & Qu, Z. (2018). Research on Web text classification algorithm based on improved CNN and SVM. International Conference on Communication Technology Proceedings, ICCT, 2017-October, 1958–1961. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86756 | - |
| dc.description.abstract | 準確識別重大創傷緊急報案,可以派遣與案件嚴重程度相應之救護車,提供病患更好的救護,以降低致命風險。根據本研究之了解,目前極少研究應用機器學習方法於緊急報案派遣階段實行創傷案件分類;因此,本研究旨在構建文本分類模型,以實現到院前啟動之重大創傷報案電話的自動化識別,並且找出代表創傷案件的顯著特徵。本研究的分析資料為隨機抽樣2018年台北市車禍報案電話,共114個車禍報案電話,其中72筆資料為非重大外傷,42筆為重大外傷案件。報案內容的文字分詞是由中研院中文知識和信息處理小組開發的分詞器所執行。此外,本研究使用TF-IDF實現特徵選擇,並採用伯努利樸素貝葉斯作為分類模式。為了評估模型的分類結果,本研究邀請台北市與新北市共6位緊急救護派遣員依據自身經驗對114筆案件進行判斷,並在判斷時給予答題的確定程度。本研究透過模型自動選出的特徵結合專業派遣員提供的關鍵詞,提出了半自動特徵選擇模型。此創新模型搭配上客製化的規則判斷設計,能夠在派遣員應答信心程度較低時,給予相對較高準確度的分類答案。這是第一個驗證在到院前急救醫療服務期間,透過機器學習模型識別到院前啟動之重大創傷與非重大創傷報案電話的研究。本研究設計的模型不僅提出識別創傷之重要關鍵字,並且能夠在派遣員信心較不足時,提高創傷案件分類的準確率;因此,此研究領域在創傷醫療派遣中,有許多探討之空間。 | zh_TW |
| dc.description.abstract | Accurate identification of major-trauma emergency calls enables the dispatch of an appropriate ambulance type to improve pre-hospital care, thereby potentially reducing risk of fatality. To the best of the author’s knowledge, very few studies have focused on classification of trauma cases based on machine learning frameworks. This study aims to construct a text classification model to achieve identification of Pre-hospital Activated Major Trauma (PAMT) and non-PAMT calls, and to discover significant features of these calls. In the analysis, 114 car accident calls in Taipei, Taiwan are randomly sampled from 2018. Among the calls, 72 are cases without pre-hospital major trauma activation and 42 are PAMT cases. The complete semantic word segmentation of the calls was performed via the Chinese Knowledge and Information Processing Tagger (CKIP Tagger). Moreover, the Term Frequency-Inverse Document Frequency (TF-IDF) was implemented to select features and the Bernoulli Nave Bayes was employed as the classification model. To evaluate the results, 6 Emergency Medical Dispatchers (EMDs) in Taipei City and New Taipei City participated in an interview to provide their judgment of PAMT and non-PAMT to the calls and whether they were certain when they answered. In this study, with the features automatically selected by the model and the keywords provided by the dispatchers, a semi-automatic feature selection model is proposed. This innovative model and combined with a customized rule-based judgement holds a better classification performance when dispatchers are uncertain about the particular case. This is the first study to validate the recognition of trauma calls by machine learning frameworks. The important keywords were detected, and the classification outcome was enhanced by the text classification model. Thus, this study area is worth of further investigation and development in trauma medical dispatch. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:15:42Z (GMT). No. of bitstreams: 1 U0001-2607202217070400.pdf: 1351374 bytes, checksum: b8323fcb2cf96f5d7dcafd6eac875fb8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii ABSTRACT iv TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Problem Statement 3 1.3 Objective 4 1.4 Thesis Organization 4 Chapter 2 LITERATURE REVIEW 5 2.1 Emergency Call Analysis 5 2.2 Text Classification 7 2.2.1 Word Segmentation 7 2.2.2 Feature Extraction 8 2.2.3 Classifier 9 2.3 Summary 9 Chapter 3 METHODOLOGY 11 3.1 Flowchart of Text Classification 11 3.2 Text Preprocessing 11 3.2.1 Word Segmentation 11 3.2.2 Stop Words Removal 12 3.2.3 Lemmatization 12 3.3 Feature Extraction 13 3.4 Bernoulli Nave Bayes Classifier 14 3.5 Feature Importance 15 3.6 Evaluation Metrics 16 Chapter 4 VALIDATION AND DISCUSSION 18 4.1 Data Description 18 4.2 Dispatcher Survey 20 4.3 Experimental Design 23 4.4 Results 25 4.4.1 Dispatcher Performance 25 4.4.2 Model Performance 27 4.4.3 Performance Comparison of the Dispatchers and Model 31 4.4.4 Performance of the Dispatchers and Model at Different Certainty Levels 32 4.4.5 Keywords 34 4.5 Discussion 38 Chapter 5 CONCLUSIONS AND FUTURE WORK 41 5.1 Conclusions 41 5.2 Future Work 41 REFERENCE 43 | |
| dc.language.iso | en | |
| dc.subject | 重大創傷判斷 | zh_TW |
| dc.subject | 緊急報案電話 | zh_TW |
| dc.subject | 緊急救護派遣員 | zh_TW |
| dc.subject | 文本分類 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 重大創傷判斷 | zh_TW |
| dc.subject | 緊急報案電話 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 文本分類 | zh_TW |
| dc.subject | 緊急救護派遣員 | zh_TW |
| dc.subject | text classification | en |
| dc.subject | emergency call | en |
| dc.subject | major trauma identification | en |
| dc.subject | machine learning | en |
| dc.subject | emergency medical dispatcher | en |
| dc.subject | emergency call | en |
| dc.subject | major trauma identification | en |
| dc.subject | machine learning | en |
| dc.subject | text classification | en |
| dc.subject | emergency medical dispatcher | en |
| dc.title | 透過機器學習之文本分析在緊急醫療派遣中提升識別重大創傷報案的準確率 | zh_TW |
| dc.title | Accuracy Enhancement of the Identification of Major Trauma Calls through Machine Learning-based Text Analysis in Emergency Medical Dispatch | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馬惠明(Huei-Ming Ma),江文莒(Wen-Chu Chiang),林志豪(Chih-Hao Lin) | |
| dc.subject.keyword | 緊急報案電話,重大創傷判斷,機器學習,文本分類,緊急救護派遣員, | zh_TW |
| dc.subject.keyword | emergency call,major trauma identification,machine learning,text classification,emergency medical dispatcher, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU202201739 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-02 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2607202217070400.pdf | 1.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
