Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86751
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖國偉zh_TW
dc.contributor.advisorKuo-Wei Liaoen
dc.contributor.author蘇柏年zh_TW
dc.contributor.authorPo-Nien Suen
dc.date.accessioned2023-03-20T00:15:22Z-
dc.date.available2023-12-26-
dc.date.copyright2022-07-29-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAlhnaity, B., Pearson, S., Leontidis, G., & Kollias, S. (2020). Using deep learning to predict plant growth and yield in greenhouse environments. Acta Horticulturae, 1296, 425–431. https://doi.org/10.17660/ActaHortic.2020.1296.55
Al-Mofleh, H., Daniels, J., & Mckean, J. (2018). Variogram Fitting Based on the Wilcoxon Norm Meta Analysis of Multiple Baseline for Intervention Time Series Models View project. https://www.researchgate.net/publication/309211984
Arnesano, M., Revel, G. M., & Seri, F. (2016). A tool for the optimal sensor placement to optimize temperature monitoring in large sports spaces. Automation in Construction, 68, 223–234. https://doi.org/10.1016/j.autcon.2016.05.012
Awasthi, A. , R. S. R. N. (2013). Monitoring for Precision Agriculture using Wireless Sensor Network-A review. Global Journal of Computer Science and Technology Network, Web & Security.
Azaza, M., Tanougast, C., Fabrizio, E., & Mami, A. (2016). Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring. ISA Transactions, 61, 297–307. https://doi.org/10.1016/j.isatra.2015.12.006
Balendonck, J. (2010). Monitoring Spatial and Temporal Distribution of Temperature and Relative Humidity in Greenhouses based on Wireless Sensor Technology.
Castañeda-Miranda, A., & Castaño, V. M. (2017). Smart frost control in greenhouses by neural networks models. Computers and Electronics in Agriculture, 137, 102–114. https://doi.org/10.1016/j.compag.2017.03.024
Castello, C. C., Fan, J., Davari, A., & Chen, R. X. (2010). Optimal sensor placement strategy for environmental monitoring using wireless sensor networks. Proceedings of the Annual Southeastern Symposium on System Theory, 275–279. https://doi.org/10.1109/SSST.2010.5442825
Chen, L., Zhang, B., Yao, F., & Cui, L. (2016). Modeling and simulation of a solar greenhouse with natural ventilation based on error optimization using fuzzy controller. Chinese Control Conference, CCC, 2016-August, 2097–2102. https://doi.org/10.1109/ChiCC.2016.7553676
Dariouchy, A., Aassif, E., Lekouch, K., Bouirden, L., & Maze, G. (2009). Prediction of the intern parameters tomato greenhouse in a semi-arid area using a time-series model of artificial neural networks. Measurement: Journal of the International Measurement Confederation, 42(3), 456–463. https://doi.org/10.1016/j.measurement.2008.08.013
Eil, D., Ryul, K., Don, H., & Hoon, K. (2012). 엔트로피 이론과 유전자 알고리즘을 결합한 상수관망의 최적 압력 계측위치 결정 Determination of Optimal Pressure Monitoring Locations of Water Distribution Systems Using Entropy Theory and Genetic Algorithm. In Journal of Korean Society of Water and Wastewater (Vol. 26, Issue 1).
Fatnassi, H., Boulard, T., & Bouirden, L. (2002). Simulation of air flux and temperature patterns in a large scale greenhouse equipped with insect proof nets. Acta Horticulturae, 578, 329–337. https://doi.org/10.17660/ActaHortic.2002.578.41
Feng, L., Li, H., & Zhi, Y. (2013). Greenhouse CFD simulation for searching the sensors optimal placements. 2013 2nd International Conference on Agro-Geoinformatics: Information for Sustainable Agriculture, Agro-Geoinformatics 2013, 504–507. https://doi.org/10.1109/Argo-Geoinformatics.2013.6621972
Fourati, F., & Chtourou, M. (2007). A greenhouse control with feed-forward and recurrent neural networks. Simulation Modelling Practice and Theory, 15(8), 1016–1028. https://doi.org/10.1016/j.simpat.2007.06.001
Groener, B., Knopp, N., Korgan, K., Perry, R., Romero, J., Smith, K., Stainback, A., Strzelczyk, A., & Henriques, J. (2015). Preliminary Design of a Low-cost Greenhouse with Open Source Control Systems. Procedia Engineering, 107, 470–479. https://doi.org/10.1016/j.proeng.2015.06.105
Gupta, G. sen, & Quan, V. M. (2018). Multi-sensor integrated system for wireless monitoring of greenhouse environment. 2018 IEEE Sensors Applications Symposium, SAS 2018 - Proceedings, 2018-January, 1–6. https://doi.org/10.1109/SAS.2018.8336723
Haixia Lia, b,c,1, Y. G. H. Z. Y. W. D. C. (2021). Towards automated greenhouse: A state of the art review on greenhouse monitoring methods and technologies based on internet of things. In Computers and Electronics in Agriculture (Vol. 191). Elsevier B.V. https://doi.org/10.1016/j.compag.2021.106558
He, F., & Ma, C. (2010). Modeling greenhouse air humidity by means of artificial neural network and principal component analysis. Computers and Electronics in Agriculture, 71(SUPPL. 1). https://doi.org/10.1016/j.compag.2009.07.011
Juan Carlos Durón Lara, S. G. F. R. (2019). Low Cost Greenhouse Monitoring System Based on Internet of Things. 2019 IEEE International Conference on Engineering Veracruz (ICEV).
Jung, D. H., Kim, H. S., Jhin, C., Kim, H. J., & Park, S. H. (2020). Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Computers and Electronics in Agriculture, 173. https://doi.org/10.1016/j.compag.2020.105402
Kang, B. J., Park, D. H., Cho, K. R., Shin, C. S., Cho, S. E., & Park, J. W. (2008). A study on the greenhouse auto control system based on wireless sensor network. Proceedings - 2008 International Conference on Security Technology, SecTech 2008, 41–44. https://doi.org/10.1109/SecTech.2008.60
Kim, S. Y., Lee, S. M., Park, K. S., & Ryu, K. H. (2018). Prediction model of internal temperature using backpropagation algorithm for climate control in greenhouse. Horticultural Science and Technology, 36(5), 713–729. https://doi.org/10.12972/KJHST.20180071
Lee, S. yeon, Lee, I. bok, Yeo, U. hyeon, Kim, R. woo, & Kim, J. gyu. (2019a). Optimal sensor placement for monitoring and controlling greenhouse internal environments. Biosystems Engineering, 188, 190–206. https://doi.org/10.1016/j.biosystemseng.2019.10.005
Lee, S. yeon, Lee, I. bok, Yeo, U. hyeon, Kim, R. woo, & Kim, J. gyu. (2019b). Optimal sensor placement for monitoring and controlling greenhouse internal environments. Biosystems Engineering, 188, 190–206. https://doi.org/10.1016/j.biosystemseng.2019.10.005
Liu, D., Cao, X., Huang, C., & Ji, L. (2016). Intelligent agriculture greenhouse environment monitoring system based on IOT technology. Proceedings - 2015 International Conference on Intelligent Transportation, Big Data and Smart City, ICITBS 2015, 487–490. https://doi.org/10.1109/ICITBS.2015.126
Liu, H., Meng, Z., & Cui, S. (2007). A Wireless Sensor Network Prototype for Environmental Monitoring in Greenhouses.
Liu, Y., Chen, J., Lv, Y., & Li, X. (2014). Temperature Simulation of Greenhouse with CFD Methods and Optimal Sensor Placement. In Sensors & Transducers (Vol. 26). http://www.sensorsportal.com
Lloyd, C. D., & Atkinson, P. M. (2001). Assessing uncertainty in estimates with ordinary and indicator kriging. In Computers & Geosciences (Vol. 27).
López Riquelme, J. A., Soto, F., Suardíaz, J., Sánchez, P., Iborra, A., & Vera, J. A. (2009). Wireless Sensor Networks for precision horticulture in Southern Spain. Computers and Electronics in Agriculture, 68(1), 25–35. https://doi.org/10.1016/j.compag.2009.04.006
Mistriotis, A., Arcidiacono ’, C., Picuno, P., Bot, G. P. A., & Scarascia-Mugnozza, G. (1997). Computational analysis of ventilation in greenhouses at zero-and low-wind-speeds. In Agricultural and Forest Meteorology (Vol. 88).
Muhammad Faizan Siddiqui, A. ur R. K. N. H. M. A. N. M. A. K. (2017). Automation and Monitoring of Greenhouse. IEEE.
Patil, S. L., Tantau, H. J., & Salokhe, V. M. (2008). Modelling of tropical greenhouse temperature by auto regressive and neural network models. Biosystems Engineering, 99(3), 423–431. https://doi.org/10.1016/j.biosystemseng.2007.11.009
Sai Kumar, T., & Bhaskar Rao, Y. (2018). Design of greenhouse environment monitoring system based on wireless sensor network. In International Journal of Advance Research. www.IJARIIT.com
Singh, G., Singh, P. P., Lubana, P. P. S., & Singh, K. G. (2006). Formulation and validation of a mathematical model of the microclimate of a greenhouse. Renewable Energy, 31(10), 1541–1560. https://doi.org/10.1016/j.renene.2005.07.011
Singh, P., & Saikia, S. (2017, April 20). Arduino-based smart irrigation using water flow sensor, soil moisture sensor, temperature sensor and ESP8266 WiFi module. IEEE Region 10 Humanitarian Technology Conference 2016, R10-HTC 2016 - Proceedings. https://doi.org/10.1109/R10-HTC.2016.7906792
Umer, M., Kulik, L., & Tanin, E. (2010). Spatial interpolation in wireless sensor networks: Localized algorithms for variogram modeling and Kriging. GeoInformatica, 14(1), 101–134. https://doi.org/10.1007/s10707-009-0078-3
van Anh Vu, D. C. T. T. C. T. T. D. B. (2018). Design of automatic irrigation system for greenhouse based on LoRa technology. IEEE.
Vox, G., Losito, P., Valente, F., Consoletti, R., Scarascia-Mugnozza, G., Schettini, E., Marzocca, C., & Corsi, F. (2014). A wireless telecommunications network for real-time monitoring of greenhouse microclimate. Journal of Agricultural Engineering, 45(2), 70–79. https://doi.org/10.4081/jae.2014.237
Wang, C., Zhao, C., Qiao, X., Zhang, X., & Zhang, Y. (2008). The design of wireless sensor networks node for measuring the greenhouse’s environment parameters. IFIP International Federation for Information Processing, 259, 1037–1045. https://doi.org/10.1007/978-0-387-77253-0_36
Wang, M., Zhang, G., Zhang, C., Zhang, J., & Li, C. (2013). An IoT-based appliance control system for smart homes. Proceedings of the 2013 International Conference on Intelligent Control and Information Processing, ICICIP 2013, 744–747. https://doi.org/10.1109/ICICIP.2013.6568171
Zhang, X., Zhang, M., Meng, F., Qiao, Y., Xu, S., & Hour, S. (2019). A Low-Power Wide-Area Network Information Monitoring System by Combining NB-IoT and LoRa. IEEE Internet of Things Journal, 6(1), 590–598. https://doi.org/10.1109/JIOT.2018.2847702
丁邦安. (2017). The Technology Selection Research for Using Low-Power Wide-Area Network in Internet of Things.
薛仲宏. (2005). 中 華 大 學 碩 士 論 文 題目:類神經網路與一般克利金法在空間內 插之比較 Comparison of Artificial Neural Networks and Ordinary Kriging Method in Spatial Interpolation.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86751-
dc.description.abstract溫室農業在台灣非常普及,許多溫室納入物聯網監測系統以幫助溫室進行環境控制。然而在台灣,由於大多數農戶屬於中小型業者,過度的放置溫度感測器除了可能無益於作物的生長,同時會增加成本支出,在維護上以及農作上也倍具考驗。本研究將開發出一套低價的物聯網監測系統幫助降低監測成本,隨後利用普通克利金法決定溫室所需溫度感測器數量幫助農民決定合宜的感測器數量,奠定往後針對溫室感測器對於作物生長的影響的相關研究的基礎。本研究選用位於台北以及台中兩處溫室,於台北的溫室探討不同操作模式對於溫室所需感測器的影響,於台中的溫室則探討不同感測器初始位置對於所需感測器數量的影響。本研究共開發出三種決定感測器數量的策略。結果顯示策略一最嚴格,策略二次之,策略三最寬鬆。三者所代表的物理意義不同,農民可以基於自己的需求進行挑選。此外,不同環控情境下最適合用以回歸的變異函數亦不相同,以台北溫室的例子,在環控採自動控制時適合用gaussian變異函數,在負壓風扇開啟時適合用spherical變異函數,在負壓風扇及水簾同時開啟時適合用exponential變異函數,在台中的溫室無論感測器布置為何,最適合之變異函數均為exponential變異函數。研究中也發現,溫室內部平均溫度與溫室內部溫度分散程度呈現高度正相關。負壓風扇的開啟能夠幫助感測器數目減少,然而水簾的作用會抑制負壓風扇的作用,使得所需感測器數量變多。zh_TW
dc.description.abstractGreenhouse farming is very ubiquitous in Taiwan, and many greenhouses are equipped with IoT monitoring systems to help environmental control. However, in Taiwan, since most farmers are small and medium-sized businesses, the excessive placement of temperature sensors may not only be benefitial to the growth of crops, but also increase costs, and it is also more challenging in maintenance and farming. This research first expects to develop a low-cost IoT monitoring system to help reduce monitoring costs, and then develop strategies based on ordinary kriging to determine the number of temperature sensors needed in a greenhouse to help farmers determine the appropriate number of sensors, laying the foundation for future research on the impact of greenhouse sensors on crop growth. Two greenhouses in Taipei and Taichung were selected for this study. The effect of different operation modes on the sensors required in the greenhouse was investigated in the greenhouse in Taipei, and the effect of different initial positions of the sensors on the number of sensors required in the greenhouse in Taichung was investigated. Three strategies for determining the number of sensors were developed in this study. The results show that strategy 1 is the strictest, strategy 2 is the second, and strategy 3 is the most lenient. The physical meanings represented by the three are different, and farmers can choose based on their own needs. In addition, the most suitable variogram for regression under different environmental control situations are different. Take the Taipei greenhouse as an example, the gaussian variogram is suitable when the environmental control adopts automatic control, and the spherical variogram is suitable when the fan is turned on. When the fan and the water curtain are turned on at the same time, the exponential variogram is suitable. When the fan and the water curtain are turned on at the same time, the exponential variogram is suitable. In the greenhouse in Taichung, no matter what the sensor arrangement is, the most suitable variogram is the exponential variogram. The study also found that the average temperature inside the greenhouse was highly positively correlated with the degree of temperature dispersion inside the greenhouse. Turning on fan can help reduce the number of sensors. However, the function of the water curtain will inhibit the function of the negative pressure fan, so that the number of required sensors is slightly increased.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:15:22Z (GMT). No. of bitstreams: 1
U0001-2707202211463600.pdf: 30554364 bytes, checksum: 020fde00677f0bd1815c4e9389a24fda (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i
誌 謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究架構 2
第二章 文獻回顧 4
2.1 溫室物聯網相關研究 4
2.2 溫室環境模擬及預測 9
2.3 感測器數量及位置 11
2.4 克利金法 12
第三章 研究材料與方法 14
3.1 溫室溫度感測器開發 14
3.2 研究廠址 18
3.3 溫度資料蒐集 21
3.4 溫度感測器佈置 21
3.5 溫度場建立方法 31
3.6 模型驗證 37
3.7 模擬區域建立 41
3.8 決定感測器數量策略 42
3.9網格大小敏感度分析 49
第四章 結果與討論 51
4.1 溫度資料蒐集 51
4.2 資料分析 55
4.3 模型驗證 64
4.4 剔除感測器順序 87
4.5 決定感測器數量—策略一 94
4.6 決定感測器數量—策略二 94
4.7 決定感測器數量—策略三 95
4.8 網格敏感度分析 132
4.9 方法分析 134
第五章 結論與建議 137
5.1 結論 137
5.2 建議 138
參考文獻 139
附錄 144
溫度場圖 144
-
dc.language.isozh_TW-
dc.subject物聯網zh_TW
dc.subject溫室zh_TW
dc.subject普通克利金zh_TW
dc.subject溫度場zh_TW
dc.subject溫室zh_TW
dc.subject物聯網zh_TW
dc.subject普通克利金zh_TW
dc.subject溫度場zh_TW
dc.subjectGreenhouseen
dc.subjectInternet of Thingsen
dc.subjectOrdinary Krigingen
dc.subjectTemperature Fielden
dc.subjectGreenhouseen
dc.subjectInternet of Thingsen
dc.subjectOrdinary Krigingen
dc.subjectTemperature Fielden
dc.title利用物聯網及普通克利金法進行溫室溫度感測器最佳化設計zh_TW
dc.titleOptimal Design of Greenhouse Temperature Sensors Using IoT and Ordinary Krigingen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林裕彬;姚銘輝zh_TW
dc.contributor.oralexamcommitteeYu-Pin Lin;Ming-Hwi Yaoen
dc.subject.keyword溫室,物聯網,普通克利金,溫度場,zh_TW
dc.subject.keywordGreenhouse,Internet of Things,Ordinary Kriging,Temperature Field,en
dc.relation.page179-
dc.identifier.doi10.6342/NTU202201767-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-07-28-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2024-07-31-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf29.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved