Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86740
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐永豐(Yung-Fong Hsu)
dc.contributor.authorHau-Hung Yangen
dc.contributor.author楊昊紘zh_TW
dc.date.accessioned2023-03-20T00:14:39Z-
dc.date.copyright2022-07-29
dc.date.issued2022
dc.date.submitted2022-07-28
dc.identifier.citationAbdellaoui, M., Bleichrodt, H., L’Haridon, O., & van Dolder, D. (2016). Measuring loss aversion under ambiguity: A method to make prospect theory completely observable. Journal of Risk and Uncertainty, 52(1), 1–20. https : / / doi . org / 10 . 1007 /s11166-016-9234-y Bedggood, P., Ahmad, A., Chen, A., Lim, R., Maqsudi, S., & Metha, A. (2020). Are you sure? The relationship between response certainty and performance in visual detection using a perimetry-style task. Journal of Vision, 20(8), 27–27. https://doi.org/10.1167/jov.20.8.27 Chung, K. L. (1954). On a stochastic approximation method. Annals of Mathematical Statistics, 25(3), 463–483. https://doi.org/10.1214/aoms/1177728716 Derman, C. (1957). Non-parametric up-and-down experimentation. Annals of Mathematical Statistics, 28(3), 795–798. https://doi.org/10.1214/aoms/1177706895 Dixon, W. J., & Mood, A. M. (1948). A method for obtaining and analyzing sensitivity data. Journal of the American Statistical Association, 43(241), 109–126. https : //doi.org/10.1080/01621459.1948.10483254 Faes, L., Nollo, G., Ravelli, F., Ricci, L., Vescovi, M., Turatto, M., Pavani, F., & Antolini, R. (2007). Small-sample characterization of stochastic approximation staircases in forced-choice adaptive threshold estimation. Perception & Psychophysics, 69(2), 254–262. https://doi.org/10.3758/BF03193747 Falmagne, J.-C. (1985). Elements of psychophysical theory. Oxford University Press. García-Pérez, M. A. (1998). Forced-choice staircases with fixed step sizes: Asymptotic and small-sample properties. Vision Research, 38(12), 1861–1881. https://doi.org/ 10.1016/S0042-6989(97)00340-4 García-Pérez, M. A. (2001). Yes-no staircases with fixed step sizes: Psychometric properties and optimal setup. Optometry and Vision Science, 78(1), 56–64. https://doi.org/10.1097/00006324-200101010-00015 Hsu, Y.-F., & Chen, Y.-H. (2009). Applications of nonparametric adaptive methods for simple reaction time experiments. Attention, Perception, & Psychophysics, 71(7), 1664–1675. https://doi.org/10.3758/APP.71.7.1664 Hsu, Y.-F., & Chin, C.-L. (2014). On the limitations of fixed‐step‐size adaptive methods with response confidence. British Journal of Mathematical and Statistical Psychology, 67(2), 266–283. https://doi.org/10.1111/bmsp.12018 Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down method. Perception & Psychophysics, 49(3), 227–229. https://doi.org/10.3758/BF03214307 Kaernbach, C. (2001). Adaptive threshold estimation with unforced-choice tasks. Perception & Psychophysics, 63(8), 1377–1388. https://doi.org/10.3758/BF03194549 Kesten, H. (1958). Accelerated stochastic approximation. Annals of Mathematical Statistics, 29(1), 41–59. https://doi.org/10.1214/aoms/1177706705 Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49(2, Pt. 2), 467–477. https://doi.org/10.1121/1.1912375 Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195070019.001.0001 Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11), 2074–2102. R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ Robbins, H., & Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 22(3), 400–407. https://doi.org/10.1214/aoms/1177729586 Ross, S. M. (1997). Simulation. Academic Press, San Diego, CA. https://doi.org/10.1016/C2011-0-04574-X Sacks, J. (1958). Asymptotic distribution of stochastic approximation procedures. Annals of Mathematical Statistics, 29, 373–405. https : / / doi . org / 10 . 1214 / aoms /1177706619 Thurstone, L. L. (1927). Psychophysical analysis. American Journal of Psychology, 100(3-4), 587–609. https://doi.org/10.2307/1415006 Trachel, R., Brochier, T., & Clerc, M. (2013). Adaptive and warning displays with braincomputer interfaces: Enhanced visuospatial attention performance. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), 367–370. https://doi.org/10.1109/NER.2013.6695948 Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35(17), 2503–2522. https://doi.org/10.1016/0042-6989(95)00016-X Wagenmakers, E.-J., & Brown, S. (2007). On the linear relation between the mean and the standard deviation of a response time distribution. Psychological Review, 114(3),830–841. https://doi.org/10.1037/0033-295X.114.3.830
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86740-
dc.description.abstract在傳統心理物理學研究中,閾值及其背後表徵一直以來都深受研究者重視,因此如何測量特定閾值機率所對應的刺激強度是一個重要的議題。過去文獻中研究者發展了多個適測方法來測量閾值,其可分為變動步距的適測方法與固定步距的適測方法。而適測方法的特色在於該類方法會以受試者在先前的回答(通常為是/否的判斷)決定下一回合的刺激強度,其中廣為人知的變動步距適測方法是透過應用Robbins-Monro 過程發展而來。過去的文獻中的Robbins-Monro 適測方法僅以是/否的判斷作為受試者的反應,未嘗試使用其他變數拓展適測方法。本研究透過加入其他反應變數如反應時間與信心程度來拓展Robbins-Monro 適測方法,並證明拓展後的方法仍具有一致性以及在何種條件下新的方法應更為有效。此外本研究也以蒙地卡羅模擬實驗來驗證拓展的Robbins-Monro 適測方法在模擬的情境下有更快的收斂速度,並在之後討論模擬研究中使用的適測方法與先前定理中提到的條件的關聯。zh_TW
dc.description.abstractIn classical psychophysics, the study of threshold and underlying representations is of theoretical interest, and the relevant issue of finding the stimulus (intensity) corresponding to a certain threshold level is an important topic. In the literature, researchers have developed various adaptive (also known as`up-down') methods, including the fixed step-size and variable step-size methods, for the estimation of threshold. A common feature of this family of methods is that the stimulus to be assigned to the current trial depends upon the participant's response in the previous trial(s), and very often the Yes-No (binary) response format is adopted.A well-known earlier work of the variable step-size adaptive methods is the application of the Robbins-Monro process. However, previous studies have paid little attention to other facets of response variables (in addition to the Yes-No response variable) that could be used to facilitate the performance of the Robbins-Monro process. This thesis concerns the generalization of the Robbins-Monro process by incorporating other response variables, such as response time and response confidence, into the process. I first proved the consistency of the generalized method and explored possible requirements, under which the proposed method achieves (at least) the same efficiency as the original method does. I then conducted a Monte Carlo simulation study to explore some properties of the sampling distribution of the estimator from the generalized method and compared its performance with the original method. The results showed that the generalized Robbins-Monro process can improve the speed of convergence. I also discussed the issue of relative efficiency (in terms of MSE), focusing on the relationship between the implemented generalized algorithms in the simulation and the conditions specified in the theorems .en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:14:39Z (GMT). No. of bitstreams: 1
U0001-1107202217071300.pdf: 2704955 bytes, checksum: 402117c5e8d3211473ed6a8e963699fd (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii 摘要v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 The Robbins-Monro process and its generalization 5 2.1 The Robbins-Monro process . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The generalized Robbins-Monro process . . . . . . . . . . . . . . . 7 Chapter 3 Simulation 15 3.1 The psychometric function . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 The distribution of response time . . . . . . . . . . . . . . . . . . . 16 3.3 The distribution of response confidence . . . . . . . . . . . . . . . . 17 3.4 Modifications of algorithms . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 4 Results 21 4.1 Modifications with response time . . . . . . . . . . . . . . . . . . . 22 4.2 Modifications with response confidence . . . . . . . . . . . . . . . 25 Chapter 5 Discussion: The issue of relative efficiency 29 Chapter 6 Concluding remarks 33 References 35 Appendix A — Proof of Theorem 2 39 Appendix B — Proof of Theorem 3 43 Appendix C — Proof of Theorem 4 45 Appendix D — Simulation results with response time as the variable of interest 49 Appendix E — Simulation results with response confidence as the variable of interest 55 Appendix F — Other simulation results: 75% threshold 61
dc.language.isoen
dc.subject反應時間zh_TW
dc.subject信心程度zh_TW
dc.subject信心程度zh_TW
dc.subject閾值測量zh_TW
dc.subject加速隨機逼近法zh_TW
dc.subject隨機逼近法zh_TW
dc.subject適測方法zh_TW
dc.subject反應時間zh_TW
dc.subject加速隨機逼近法zh_TW
dc.subject心理計量函數zh_TW
dc.subject隨機逼近法zh_TW
dc.subject閾值測量zh_TW
dc.subject適測方法zh_TW
dc.subject心理計量函數zh_TW
dc.subjectthresholden
dc.subjectadaptive methoden
dc.subjectstochastic approximationen
dc.subjectaccelerated stochastic approximationen
dc.subjectresponse confidenceen
dc.subjectresponse timeen
dc.subjectpsychometric functionen
dc.subjectadaptive methoden
dc.subjectstochastic approximationen
dc.subjectaccelerated stochastic approximationen
dc.subjectthresholden
dc.subjectresponse confidenceen
dc.subjectresponse timeen
dc.subjectpsychometric functionen
dc.titleRobbins-Monro 適測方法的延展及其於心理物理實驗閾 值估計的應用zh_TW
dc.titleThe generalized Robbins-Monro process and its application to psychophysical experiments for threshold estimationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江金倉(Chin-Tsang Chiang),黃從仁(Tsung-Ren Huang)
dc.subject.keyword適測方法,隨機逼近法,加速隨機逼近法,閾值測量,信心程度,反應時間,心理計量函數,zh_TW
dc.subject.keywordadaptive method,stochastic approximation,accelerated stochastic approximation,threshold,response confidence,response time,psychometric function,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202201404
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
dc.date.embargo-lift2022-07-29-
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
U0001-1107202217071300.pdf2.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved