請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86737
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 常玉強 | zh_TW |
dc.contributor.advisor | Yuh-Chyang Chrang | en |
dc.contributor.author | 賴冠傑 | zh_TW |
dc.contributor.author | Kuan-Chieh Lai | en |
dc.date.accessioned | 2023-03-20T00:14:28Z | - |
dc.date.available | 2024-09-17 | - |
dc.date.copyright | 2022-08-04 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 馮潔雯. 2008. 純化及分析大腸菌中大量表現之大豆 proglycinin Gy5 改造蛋白.
Adachi, M., J. Kanamori, T. Masuda, K. Yagasaki, K. Kitamura, B. Mikami, and S. Utsumi. 2003. Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer. Proceedings of the National Academy of Sciences 100 (12):7395-7400. Adachi, M., Y. Takenaka, A. B. Gidamis, B. Mikami, and S. Utsumi. 2001. Crystal structure of soybean proglycinin A1aB1b homotrimer. Journal of molecular biology 305 (2):291-305. Anzalone, A. V., P. B. Randolph, J. R. Davis, A. A. Sousa, L. W. Koblan, J. M. Levy, P. J. Chen, C. Wilson, G. A. Newby, and A. Raguram. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576 (7785):149-157. Beilinson, V., Z. Chen, R. Shoemaker, R. Fischer, R. Goldberg, and N. Nielsen. 2002. Genomic organization of glycinin genes in soybean. Theoretical and Applied Genetics 104 (6):1132-1140. Bortesi, L., and R. Fischer. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology advances 33 (1):41-52. Butt, H., G. S. Rao, K. Sedeek, R. Aman, R. Kamel, and M. Mahfouz. 2020. Engineering herbicide resistance via prime editing in rice. Plant biotechnology journal 18 (12):2370. Carroll, D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188 (4):773-782. Chen, L., Y. Cai, X. Liu, C. Guo, S. Sun, C. Wu, B. Jiang, T. Han, and W. Hou. 2018a. Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. The crop journal 6 (2):162-171. Chen, L., Y. Cai, X. Liu, W. Yao, C. Guo, S. Sun, C. Wu, B. Jiang, T. Han, and W. Hou. 2018b. Improvement of Soybean Agrobacterium-Mediated Transformation Efficiency by Adding Glutamine and Asparagine into the Culture Media. International Journal of Molecular Sciences 19 (10):3039. Cheng, Y., X. Wang, L. Cao, J. Ji, T. Liu, and K. Duan. 2021. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods 17 (1):1-12. Cho, H. J., Y. Moy, N. A. Rudnick, T. M. Klein, J. Yin, J. Bolar, C. Hendrick, M. Beatty, L. Castañeda, and A. J. Kinney. 2022. Development of an efficient marker‐free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1. Plant biotechnology journal 20 (5):977-990. Daniell, H., B. Muthukumar, and S. Lee. 2001. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Current Genetics 39 (2):109-116. Day, A., and M. Goldschmidt‐Clermont. 2011. The chloroplast transformation toolbox: selectable markers and marker removal. Plant biotechnology journal 9 (5):540-553. Di, Y.-H., X.-J. Sun, Z. Hu, Q.-Y. Jiang, G.-H. Song, B. Zhang, S.-S. Zhao, and H. Zhang. 2019. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochemical and Biophysical Research Communications 519 (4):819-823. Fukazawa, C., T. Momma, H. Hirano, K. Harada, and K. Udaka. 1985. Glycinin A3B4 mRNA. Cloning and sequencing of double-stranded cDNA complementary to a soybean storage protein. Journal of Biological Chemistry 260 (10):6234-6239. Green, R., and E. J. Rogers. 2013. Transformation of chemically competent E. coli. Methods in Enzymology 529:329-336. Hiei, Y., S. Ohta, T. Komari, and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T‐DNA. The Plant Journal 6 (2):271-282. Hu, L., H. Li, R. Qin, R. Xu, J. Li, L. Li, P. Wei, and J. Yang. 2016. Plant phosphomannose isomerase as a selectable marker for rice transformation. Scientific reports 6 (1):1-10. Hughes, S. A., and P. A. Murphy. 1983. Varietal influence on the quality of glycinin in soybeans. Journal of Agricultural and Food Chemistry 31 (2):376-379. Jia, X., X. Lin, and J. Chen. 2017. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites. Amb Express 7 (1):1-8. Jiang, Y.-Y., Y.-P. Chai, M.-H. Lu, X.-L. Han, Q. Lin, Y. Zhang, Q. Zhang, Y. Zhou, X.-C. Wang, and C. Gao. 2020. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome biology 21 (1):1-10. Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337 (6096):816-821. Kim, C.-S., S. Kamiya, T. Sato, S. Utsumi, and M. Kito. 1990. Improvement of nutritional value and functional properties of soybean glycinin by protein engineering. Protein Engineering, Design and Selection 3 (8):725-731. Kim, W.-S., and H. B. Krishnan. 2019. Impact of co-expression of maize 11 and 18 kDa δ-zeins and 27 kDa γ-zein in transgenic soybeans on protein body structure and sulfur amino acid content. Plant Science 280:340-347. Krishnan, H. B., and J. M. Jez. 2018. The promise and limits for enhancing sulfur-containing amino acid content of soybean seed. Plant Science 272:14-21. Krishnan, H. B., and R. L. Nelson. 2011. Proteomic analysis of high protein soybean (Glycine max) accessions demonstrates the contribution of novel glycinin subunits. Journal of Agricultural and Food Chemistry 59 (6):2432-2439. Krishnan, H. B., B. Song, N. W. Oehrle, J. C. Cameron, and J. M. Jez. 2018. Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome. Scientific reports 8 (1):1-14. Kumar, S., Z.-B. Liu, N. Sanyour-Doyel, B. Lenderts, A. Worden, A. Anand, H.-J. Cho, J. Bolar, C. Harris, and L. Huang. 2022. Efficient gene targeting in soybean using Ochrobactrum haywardense-mediated delivery of a marker-free donor template. Plant Physiology 189 (2):585-594. Lee, H., S.-Y. Park, and Z. J. Zhang. 2013. An overview of genetic transformation of soybean: IntechOpen. Li, H., J. Li, J. Chen, L. Yan, and L. Xia. 2020a. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Molecular plant 13 (5):671-674. Li, H., X. Li, Y. Xu, H. Liu, M. He, X. Tian, Z. Wang, X. Wu, Q. Bu, and J. Yang. 2020b. High-efficiency reduction of rice amylose content via CRISPR/Cas9-mediated base editing. Rice Science 27 (6):445. Li, S., Y. Cong, Y. Liu, T. Wang, Q. Shuai, N. Chen, J. Gai, and Y. Li. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in plant science 8:246. Li, X., Y. Song, K. Century, S. Straight, P. Ronald, X. Dong, M. Lassner, and Y. Zhang. 2001. A fast neutron deletion mutagenesis‐based reverse genetics system for plants. The Plant Journal 27 (3):235-242. Li, X., L. Zhou, B.-Q. Gao, G. Li, X. Wang, Y. Wang, J. Wei, W. Han, Z. Wang, and J. Li. 2022. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nature communications 13 (1):1-9. Lin, Q., S. Jin, Y. Zong, H. Yu, Z. Zhu, G. Liu, L. Kou, Y. Wang, J.-L. Qiu, and J. Li. 2021. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nature Biotechnology 39 (8):923-927. Lin, Q., Y. Zong, C. Xue, S. Wang, S. Jin, Z. Zhu, Y. Wang, A. V. Anzalone, A. Raguram, and J. L. Doman. 2020. Prime genome editing in rice and wheat. Nature biotechnology 38 (5):582-585. Lu, Y., Y. Tian, R. Shen, Q. Yao, D. Zhong, X. Zhang, and J. K. Zhu. 2021. Precise genome modification in tomato using an improved prime editing system. Plant Biotechnology Journal 19 (3):415. Maes, T., P. De Keukeleire, and T. Gerats. 1999. Plant tagnology. Trends in plant science 4 (3):90-96. Maruyama, N., L. C. Mun, M. Tatsuhara, M. Sawada, M. Ishimoto, and S. Utsumi. 2006. Multiple vacuolar sorting determinants exist in soybean 11S globulin. The Plant Cell 18 (5):1253-1273. Murphy, P. A., and A. P. Resurreccion. 1984. Varietal and environmental differences in soybean glycinin and. beta.-conglycinin content. Journal of Agricultural and Food Chemistry 32 (4):911-915. Nemudryi, A., K. Valetdinova, S. Medvedev, and S. Zakian. 2014. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae (англоязычная версия) 6 (3 (22)):19-40. Nielsen, N. C., C. D. Dickinson, T.-J. Cho, V. H. Thanh, B. J. Scallon, R. L. Fischer, T. L. Sims, G. N. Drews, and R. B. Goldberg. 1989. Characterization of the glycinin gene family in soybean. The Plant Cell 1 (3):313-328. Nishimasu, H., X. Shi, S. Ishiguro, L. Gao, S. Hirano, S. Okazaki, T. Noda, O. O. Abudayyeh, J. S. Gootenberg, and H. Mori. 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361 (6408):1259-1262. Ohmura, T., T. Ueda, Y. Hashimoto, and T. Imoto. 2001. Tolerance of point substitution of methionine for isoleucine in hen egg white lysozyme. Protein engineering 14 (6):421-425. Olhoft, P. M., L. M. Bernal, L. B. Grist, D. S. Hill, S. L. Mankin, Y. Shen, M. Kalogerakis, H. Wiley, E. Toren, and H.-S. Song. 2007. A novel Agrobacterium rhizogenes-mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. In Vitro Cellular & Developmental Biology-Plant 43 (6):536-549. Olhoft, P. M., L. E. Flagel, C. M. Donovan, and D. A. Somers. 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216 (5):723-735. Pallen, C., C. Friry-Santini, C. Herouet-Guicheney, and A. Capt. 2014. Technical variability of 2D gel electrophoresis–application to soybean allergens. Toxicology reports 1:734-742. Pornprom, T., S. Surawattananon, and P. Srinives. 2000. Ammonia accumulation as an index of glufosinate-tolerant soybean cell lines. Pesticide Biochemistry and Physiology 68 (2):102-106. Rees, H. A., and D. R. Liu. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics 19 (12):770-788. Rogers, C., J. Wen, R. Chen, and G. Oldroyd. 2009. Deletion-based reverse genetics in Medicago truncatula. Plant Physiology 151 (3):1077-1086. Sammour, R. H. 2006. Molecular manipulation and modification of the genes encoding the G2 and G4 glycinin subunits. Genetics and Molecular Biology 29:543-550. Scallon, B., V. Thanh, L. Floener, and N. Nielsen. 1985. Identification and characterization of DNA clones encoding group-II glycinin subunits. Theoretical and applied genetics 70 (5):510-519. Song, S., W. Hou, I. Godo, C. Wu, Y. Yu, I. Matityahu, Y. Hacham, S. Sun, T. Han, and R. Amir. 2013. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine. Journal of Experimental Botany 64 (7):1917-1926. Staswick, P. E., M. A. Hermodson, and N. C. Nielsen. 1981. Identification of the acidic and basic subunit complexes of glycinin. Journal of Biological Chemistry 256 (16):8752-8755. Tu, Z., G. He, K. X. Li, M. J. Chen, J. Chang, L. Chen, Q. Yao, D. P. Liu, H. Ye, and J. Shi. 2005. An improved system for competent cell preparation and high efficiency plasmid transformation using different Escherichia coli strains. Electronic Journal of Biotechnology 8 (1):113-120. Tumer, N., V. H. Thanh, and N. Nielsen. 1981. Purification and characterization of mRNA from soybean seeds. Identification of glycinin and beta-conglycinin precursors. Journal of Biological Chemistry 256 (16):8756-8760. Utsumi, S., N. Maruyama, R. Satoh, and M. Adachi. 2002. Structure-function relationships of soybean proteins revealed by using recombinant systems. Enzyme and Microbial Technology 30 (3):284-288. Utsumi, S., and Y. Matsumura. 1997. Structure-Function Relationships. Food proteins and their applications 80:257. Varma, A., H. Padh, and N. Shrivastava. 2007. Plant genomic DNA isolation: an art or a science. Biotechnology Journal: Healthcare Nutrition Technology 2 (3):386-392. Wang, L., H. B. Kaya, N. Zhang, R. Rai, M. R. Willmann, S. C. Carpenter, A. C. Read, F. Martin, Z. Fei, and J. E. Leach. 2021. Spelling changes and fluorescent tagging with prime editing vectors for plants. Frontiers in Genome Editing 3:617553. Wright, D. 1988. seed globulins. II. Developments in food proteins. Xu, R., J. Li, X. Liu, T. Shan, R. Qin, and P. Wei. 2020. Development of plant prime-editing systems for precise genome editing. Plant Communications 1 (3):100043. Yang, X.-f., X.-q. Yu, Z. Zhou, W.-J. Ma, and G.-x. Tang. 2016. A high-efficiency Agrobacterium tumefaciens mediated transformation system using cotyledonary node as explants in soybean (Glycine max L.). Acta physiologiae plantarum 38 (3):1-10. Zhu, H., C. Li, and C. Gao. 2020. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology 21 (11):661-677. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86737 | - |
dc.description.abstract | 基因編輯(gene editing)技術應用個別基因專一序列,定點突變目標基因,產生插入(insertion)、刪除(deletion)、置換(substitution)等突變,而CRISPR/Cas9為當今最廣泛被應用的工具。CRISPR/Cas9主要使目標基因產生插入/刪除(indel)突變而失去功能(loss of function),最近發展的先導編輯(prime editing)技術則利用連接反轉錄酶的Cas9 nickase,能夠在指定位置專一且有效地造成目標基因之指定鹼基對發生置換,使得該基因有機會獲得新功能(gain of function)。本研究旨在利用先導編輯使大豆的儲存蛋白 Glycinin基因之15個修飾位點發生置換,在不改變總蛋白含量以及影響蛋白結構為前提之下提升原本較缺乏的硫胺基酸Methionine(Met)。透過農桿菌轉殖技術,目前已成功將其中A410、I070、V429、L123、L386等5個辨識突變位點的pegRNA與所需之Cas9融合蛋白構築轉入Williams 82大豆,雖然尚未從T0轉植株中找到發生預期突變之個體,後續將繼續確認更多的轉基因大豆並檢測其突變概況,篩選指定編碼修飾為ATG之子代,分析其Met與總蛋白含量。為了往後能夠有效且大量地篩選突變株,本研究先行使用轉基因水稻透過自動移液器與三維振列的結合,成功建立一套能夠有效率地分析轉殖株的篩選系統。 | zh_TW |
dc.description.abstract | Gene editing techniques can achieve specific and precise gene modification by DNA insertion, deletion or substitution. CRISPR/Cas9 system has been proven as the most powerful tool for genome modification, while most efforts result in knock-out of gene because of DNA double strands break by Cas9. Recently, Prime Editing(PE) was developed that directly writes desired codon into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase. In this study, prime editing was used to edit soybean storage protein gene for encoding more methionine without affecting the total protein content and its structure. By Agrobacterium transformation system, five pegRNAs that recognize the desired mutation sites and required Cas9 fusion protein have been successfully transferred into Williams 82 soybean, however, we haven’t confirmed any desired mutation occurred. We are going to create more successful transgenic soybean plants, harboring desired target (ATG) for protein content, T-DNA free, and off-target analyses. The successful outcome may provide an alternative breeding method of soybean. | en |
dc.description.provenance | Made available in DSpace on 2023-03-20T00:14:28Z (GMT). No. of bitstreams: 1 U0001-1807202216515700.pdf: 3843111 bytes, checksum: f59341836e25bcdb9d2c5278c7cb3726 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………….. i
中文摘要…………………………………………………………………………….. ii 英文摘要……………………………………………………………………………. iii 目錄…….…………………………………………………………………………… iv 圖目錄………………………………………………………………………………. vi 表目錄……………………………………………………………………………….vii 附錄目錄………………………………………………………………………...… viii 壹、 前言………………………………………………………………………. .. 1 一、 大豆儲存蛋白……………………………………………………………… 1 二、 基因編輯技術的進展…………………………………………………….... 4 三、 先導編輯應用於植物之實例對本研究之影響..………………………..… 7 四、 大豆儲存蛋白基因修飾之考量…………………………………………… 8 五、 單鹼基置換突變體之篩選及設計三維陣列混合樣品執行PCR……...…. 9 六、 利用先導編輯修飾大豆儲存蛋白基因之初探…………………………... 10 貳、 材料方法…………………………………………………………………… 12 一、 轉殖質粒設計與構築……………………………………………………… 12 二、 製備大腸桿菌勝任細胞…………………………………………………… 13 三、 大腸桿菌之轉型…………………………………………………………… 13 四、 質粒DNA的萃取與純化………………………………………………… 14 五、 大豆農桿菌轉殖…………………………………………………………… 14 六、 水稻農桿菌轉殖…………………………………………………………… 17 七、 Genomic DNA的萃取…………………………………………………….. 18 八、 PCR檢測轉殖株………………………………………………………….. 19 九、 以OT-2自動移液器分析突變位點……………………………………… 21 參、 結果………………………………………………………………..…...…. 23 一、 轉殖載體之構築……………………………………………………….…. 23 二、 PCR檢測轉殖株……..………………………….……………………….. 23 三、 檢測儲存蛋白之鹼基對是否發生置換………………………………….. 24 四、 OT-2自動移液器與三維陣列的運行…..……………………………….. 24 肆、 討論……………………………………………………………………….. 27 伍、 參考文獻………………………………………………………………….. 31 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用先導編輯修飾大豆儲存蛋白基因之初探 | zh_TW |
dc.title | Modification of soybean storage protein gene by Prime Editing | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 杜鎮;洪傳揚 | zh_TW |
dc.contributor.oralexamcommittee | Jenn Tu;Chwan-Yang Hong | en |
dc.subject.keyword | 先導編輯,大豆基因轉殖,大豆儲存蛋白,G5蛋白,三維陣列篩選, | zh_TW |
dc.subject.keyword | Prime editing,G5 protein,transgene,knock-in,soybean storage protein, | en |
dc.relation.page | 71 | - |
dc.identifier.doi | 10.6342/NTU202201529 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-07-29 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農藝學系 | - |
dc.date.embargo-lift | 2027-07-01 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2027-07-01 | 3.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。