Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86731
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱雅萍(Ya-Ping Chiu)
dc.contributor.authorYu-Shi Heren
dc.contributor.author何昱熙zh_TW
dc.date.accessioned2023-03-20T00:14:06Z-
dc.date.copyright2022-08-05
dc.date.issued2022
dc.date.submitted2022-07-29
dc.identifier.citation[1] P. Gao, M. Grätzel, and M. K. Nazeeruddin, “Organohalide lead perovskites for photovoltaic applications”, Energy Environ. Sci. 7, 2448 (2014) [2] S. Yang, W. Fu, Z. Zhang, “Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite”, J. Mater. Chem. A 5, 11462 (2017) [3] B. Chen, Z. -S. -J. Yu, S. Manzoor, “Blade-Coated Perovskites on Textured Silicon for 26%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells”, Joule. 4, 850 (2020) [4] A. Al-Ashouri, E. Köhnen, B. Li et al., “Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction”, Science 370, 1300 (2020) [5] F. Chiarella, A. Zappettini, F. Licci, “Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X=Cl, Br)”, Phys. Rev. B. 77, 045129 (2008) [6] G. E. Eperon, S. D. Stranks, C. Menelaou, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci. 7, 982 (2014) [7] E. Edri, S. Kirmayer, S. Mukhopadhyay, “Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells”, Nat. Commun. 5, 3461 (2014) [8] C. S. Ponseca, T. J. Savenije, M. Abdellah, “Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination”, J. Am. Chem. Soc. 136, 5189 (2014) [9] C. Wehrenfennig, M. H. Liu, J. Snaith, “Charge-carrier dynamics in vapor-deposited films of the organo-lead halide perovskite CH3NH3PbI3−xClx”, Energy Environ. Sci. 7, 2269 (2014) [10] F. Zheng, L. Z. Tan, S. Liu, “Rashba Spin–Orbit Coupling Enhanced Carrier Lifetime in CH3NH3PbI3”, Nano Lett. 15, 7794 (2015) [11] Z. G. Yu, “Effective-mass model and magneto-optical properties in hybrid perovskites”, Sci. Rep. 6, 28576 (2016) [12] J. Wang, C. Zhang, H. Liu, “Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites”, Nat. Commun. 10, 129 (2019) [13] V. V. Belykh, D. R. Yakovlev, M. M. Glazov, “Coherent spin dynamics of electrons and holes in CsPbBr3 perovskite crystals”, Nat. Commun. 10, 673 (2019) [14] M. Kim, J. Im, A. J. Freeman, “Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites”, Proc. Natl. Acad. Sci. USA 111, 6900 (2014) [15] G. Bihlmayer, O. Rader, R. Winkler, “Focus on the Rashba effect”, New J. Phys. 17, 050202 (2015) [16] A. Manchon, H. C. Koo, J. Nitta, “New perspectives for Rashba spin–orbit coupling”, Nat. Mater. 14, 871 (2015) [17] T. Etienne, E. Mosconi, F. De Angelis, “Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells ?”, J. Phys. Chem. Lett. 7, 1638 (2016) [18] X. Chen, L. Liu, D. Shen, “n-type Rashba spin splitting in a bilayer inorganic halide perovskite with external electric field”, J. Phys.: Condens. Matter 30, 265501 (2018) [19] E. Mosconi, T. Etienne, F. De Angelis, “Rashba Band Splitting in Organohalide Lead Perovskites: Bulk and Surface Effects”, J. Phys. Chem. Lett. 8, 2247 (2017) [20] G. Binnig, H. Rohrer, “Scanning Tunneling Microscopy”, Surf. Sci 126, 236-444 (1983) [21] M. F. Crommie, C. P. Lutz, D. M. Eigler, “Confinement of Electrons to Quantum Corrals on a Metal Surface”, Science 262, 218-220 (1993) [22] H. C. Manoharan, C. P. Lutz, D. M. Eigler, “Quantum mirages formed by coherent projection of electronic structure”, Nature 403, 512-515 (2000) [23] R. Yamachika, M. Grobis, A. Wachowiak, M. F. Crommie, “Controlled atomic doping of a single C60 molecule”, Science 304, 281-284 (2004) [24] C. B. Duke, “Tunneling in Solids.”, Academic Press. New York (1969) [25] W. Greiner, “Quantum Mechanics: An Introduction.”, Springer-Verlag. Berlin (2001) [26] M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Imaging standing waves in a two-dimensional electron gas”, Nature (London) 363, 524 (1993) [27] P. Avouris, I. Lyo, R. E. Walkup, and Y. Hasegawa, “Real space imaging of electron scattering phenomena at metal surfaces”, J. Vac. Sci. Technol. B 12, 1447 (1994) [28] P. T. Sprunger, L. Petersen, E. W. Plummer et al., “Giant Friedel Oscillations on the Beryllium(0001) Surface”, Science 275, 1764 (1997) [29] L. Petersen, P. T. Sprunger, P. Hofmann, “Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM”, Phys. Rev. B. 57, R6858 (1998) [30] J. E. Hoffman, K. McElroy, D. H. Lee et al., “Imaging Quasiparticle Interference in Bi2Sr2CaCu2O8+δ”, Science 297, 1148 (2002) [31] Q. -H. Wang, D. -H. Lee, “Quasiparticle scattering interference in high-temperature superconductors”, Phys. Rev. B 67, 020511(R) (2003) [32] J. I. Pascual, G. Bihlmayer, Y. M. Koroteev et al., “Role of Spin in Quasiparticle Interference”, Phys. Rev. Lett. 93, 196802 (2004) [33] T. Zhang, P. Cheng, X. Chen et al., “Experimental Demonstration of Topological Surface States Protected by Time-Reversal Symmetry”, Phys. Rev. Lett. 103, 266803 (2009) [34] P. Aynajian, E. H. da Silva Neto, A. Gyenis et al., “Visualizing heavy fermions emerging in a quantum critical Kondo lattice”, Nature (London) 486, 201 (2012) [35] M. P. Allan, F. Massee, D. K. Morr et al., “Imaging Cooper pairing of heavy fermions in CeCoIn5”, Nat. Phys. 9, 468 (2013) [36] I. Zeljkovic, Y. Okada, C. Y. Huang et al., “Mapping the unconventional orbital texture in topological crystalline insulators”, Nat. Phys. 10, 572 (2014) [37] H. Zheng, S. Y. Xu, G. Bian, “Atomic-Scale Visualization of Quantum Interference on a Weyl Semimetal Surface by Scanning Tunneling Microscopy”, ACS Nano 10, 1378 (2016) [38] H. Inoue, A. Gyenis, Z. Wang et al., “Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal”, Science 351, 1184 (2016) [39] C. A. Marques, M. S. Bahramy, C. Trainer et al., “Tomographic mapping of the hidden dimension in quasi-particle interference”, Nat Commun 12, 6739 (2021) [40] A. R. Schmidt, M. H. Hamidian, P. Wahl, et al., “Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2”, Nature 465, 570 (2010) [41] T. Yuan, J. Figgins, D. K. Morr, “Hidden order transition in URu2Si2: evidence for the emergence of a coherent Anderson lattice from scanning tunneling spectroscopy”, Phys. Rev. B 86, 035129 (2012) [42] T. Watashige, Y. Tsutsumi, T. Hanaguri et al., “Evidence for time-reversal symmetry breaking of the superconducting state near twin-boundary interfaces in FeSe revealed by scanning tunneling spectroscopy”, Phys. Rev. X 5, 031022 (2015) [43] J. Friedel, “Metallic Alloys”, Nuovo Cimento (Suppl.) 7, 287 (1958) [44] L. M. Roth, H. J. Zeiger, T. A. Kaplan, “Generalization of the Ruderman-Kittel-Kasuya-Yosida Interaction for Non-spherical Fermi Surfaces”, Phys. Rev. 149, 519 (1966) [45] F. Herman and R. Schrieffer, “Generalized Ruderman-Kittel-Kasuya-Yosida theory of oscillatory exchange coupling in magnetic multilayers”, Phys. Rev. B 46, 5806 (1992) [46] Y. Hasegawa, Ph. Avouris, “Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy”, Phys. Rev. Lett. 71, 1071 (1993) [47] P. Hofmann, B. G. Briner, M. Doering et al., “Anisotropic Two-Dimensional Friedel Oscillations”, Phys. Rev. Lett. 79, 265 (1997) [48] K. McElroy, R.W. Simmonds, J. E. Hoffman, “Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ”, Nature (London) 422, 592 (2003) [49] G. D. Nguyen, J. -W. Lee, T. Berlijn et al., “Visualization and manipulation of magnetic domains in the quasi-two-dimensional material Fe3GeTe2” Phys. Rev. B 97, 014425 (2018) [50] P. Hosur, “Friedel oscillations due to Fermi arcs in Weyl semimetals”, Phys. Rev. B 86, 195102 (2012) [51] T. Ojanen, “Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals”, Phys. Rev. B 87, 245112 (2013) [52] F. Moresco, L. Gross, M. Alemani, K.-H. Rieder, “Probing the Different Stages in Contacting a Single Molecular Wire”, Phys. Rev. Lett. 91, 036601 (2003) [53] L. Diekhӧner, M. A. Schneider, A. N. Baranov et al., “Surface States of Cobalt Nano-islands on Cu(111)”, Phys. Rev. Lett. 90, 236801 (2003) [54] M. Vershinin, S. Misra, S. Ono, “Local Ordering in the Pseudogap State of the High-Tc Superconductor Bi2Sr2CaCu2O8+δ”, Science 303, 1995 (2004) [55] S. Murakami, N. Nagaosa, S. C. Zhang, “Dissipationless quantum spin current at room temperature” Science 301, 1348 (2003) [56] S. D. Ganichev, “Spin-galvanic effect and spin orientation by current in non-magnetic semiconductors”, Int. J. Mod. Phys. B 22, 1 (2008) [57] L. Liu et al., “Spin-torque switching with the giant spin Hall effect of tantalum”, Science 336, 555 (2012) [58] Y. Onose et al., “Observation of the magnon Hall effect”, Science 329, 297 (2010) [59] N. Nagaosa, Y. Tokura, “Topological properties and dynamics of magnetic skyrmions”, Nat. Nanotech. 8, 899 (2013) [60] H. Kurebayashi et al., “An anti-damping spin–orbit torque originating from the Berry curvature”, Nature Nanotech. 9, 211 (2014) [61] J. Sinova, S. O. Valenzuela, J. Wunderlich et al., “Spin Hall effects”, Rev. Mod. Phys. 87, 1213 (2015) [62] C. Chappert, A. Fert, F. N. Van Dau, “The emergence of spin electronics in data storage”, Nat. Mater. 6, 813–823 (2007) [63] J. Wunderlich et al., “Spin-injection Hall effect in a planar photovoltaic cell”, Nat. Phys. 5, 675 (2009) [64] I. M. Miron et al., “Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection”, Nature 476, 189–193 (2011) [65] T. Jungwirth, J. Wunderlich, K. Olejnik, “Spin Hall effect devices” Nat. Mater. 11, 382–390 (2012) [66] K. D. Petersson et al., “Circuit quantum electrodynamics with a spin qubit”, Nature 490, 380 (2012) [67] J. C. Rojas-Sánchez et al., “Spin to charge conversion using Rashba coupling at the interface between non-magnetic materials”, Nat. Commun. 4, 2944 (2013) [68] P. Wadley, B. Howells, J. Železný et al., “Electrical switching of an antiferromagnet”, Science 351, 6273 (2016) [69] G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures”, Phys. Rev. 100, 580 (1955) [70] E. Rashba, “Properties of semiconductors with an extremum loop”, Sov. Phys. Solid State 2, 1109 (1960) [71] M. I. Dyakonov, & V. Y. Kachorovskii, “Spin relaxation of two-dimensional electrons in non-centrosymmetric semiconductors”, Sov. Phys. Semicond. 20, 110 (1986) [72] E. O. Kane, “Handbook on Semiconductors”, North-Holland, New York, I, 193 (1982) [73] R. Eppenga, M. F. H. Schuurmans, “Effect of bulk inversion asymmetry on [001], [110], and [111] GaAs/AlAs quantum wells”, Phys. Rev. B 37, 10923(R) (1988) [74] Y. A. Bychkov and E. I. Rashba, “Oscillatory effects and the magnetic susceptibility of carriers in inversion layers”, J. Phys. C 17, 6039 (1984) [75] Y. A. Bychkov E. I. Rashba, “Properties of a 2D electron gas with lifted spectral degeneracy”, Pis’ma Zh. Eksp. Teor. Fiz. 39, 66 (1984) [76] J. Schilemann, J. Carlos Egues, D. Loss, “Non-ballistic Spin-Field-Effect Transistor”, Phys. Rev. Lett. 90, 146801 (2003) [77] B. Andrei Bernevig, J. Orenstein, S. -C. Zhang, “Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System”, Phys. Rev. Lett. 97, 236601 (2006) [78] M. Bode, M. Heide, K. von Bergmann, et al., “Chiral magnetic order at surfaces driven by inversion asymmetry”, Nature 447, 190 (2007) [79] V. Lechner, L. E. Golub, P. Olbrich, “Tuning of structure inversion asymmetry by the δ-doping position in (001)-grown GaAs quantum wells”, Appl. Phys. Lett. 94, 242109 (2009) [80] R. Rechciński, M. Galicka, M. Simma et al., “Structure Inversion Asymmetry and Rashba Effect in Quantum Confined Topological Crystalline Insulator Heterostructures”, Adv. Func. Mat. 31 23 (2021) [81] N. Marzari, A. A. Mostofi, J. R. Yates et al., “Maximally localized Wannier functions: Theory and applications”, Rev. Mod. Phys. 84, 1419 (2012) [82] M. Kato, T. Fujiseki, T. Miyadera et al., “Universal rules for visible-light absorption in hybrid perovskite materials”, J. Appl. Phys. 121, 115501 (2017) [83] S. -R. Park, C. Kim, “Microscopic mechanism for the Rashba spin-band splitting: perspective from formation of local orbital angular momentum”, J. Electron Spectrosc. Relat. Phenom. 201, 6 (2015) [84] J. Hong, J. -W. Rhim, C. Kim et al., “Quantitative analysis on electric dipole energy in Rashba band splitting”, Sci. Rep. 5, 13488 (2015) [85] L. Petersen, P. Hedegard, “A simple tight-binding model of spin–orbit splitting of sp-derived surface states”, Surf. Sci. 459, 49 (2000) [86] S. -R. Park, C. H. Kim, J. Yu et al., “Orbital-angular-momentum based origin of Rashba-type surface band splitting”, Phys. Rev. Lett. 107, 156803 (2011) [87] Y. Kohsaka, T. Machida, K. Iwaya et al., “Spin-orbit scattering visualized in quasiparticle interference”, Phys. Rev. B 95, 115307 (2017) [88] J. I. Pascual, G. Bihlmayer, Yu. M. Koroteev et al., “Role of Spin in Quasiparticle Interference”, Phys. Rev. Lett. 93, 196802 (2004) [89] P. Roushan, J. Seo, C. Parker et al., “Topological surface states protected from backscattering by chiral spin texture”, Nature 460, 1106 (2009) [90] Veronika Sunko, H. Rosner, P. Kushwaha et al., “Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking”, Nature 549, 492 (2017) [91] C. -M. Yim, D. Chakraborti, L. C. Rhodes et al., “Quasiparticle interference and quantum confinement in a correlated Rashba spin-split 2D electron liquid”, Sci. Adv. 7, 15 (2021) [92] M. Pederson, I. Bonicke, E. Laegsgaard et al., “Growth of Co on Cu (111): subsurface growth of trilayer Co islands”, Surf. Sci. 387, 86-101 (1997) [93] M. Sicot, O. Kurmosikov, O. A. O. Adam et al., “STM-induced desorption of hydrogen from Co nano-islands”, Phys. Rev. B. 77, 035417 (2008) [94] C. Wang, X. Liu, C. Wang et al., “Surface Analytical Investigation on Organometal Triiodide Perovskite”, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33, 032401 (2015) [95] Y. -Z Li, X. -M. Xu, C. -G. Wang et al., “Degradation by Exposure of Co-evaporated CH3NH3PbI3 Thin Films”, J. Phys. Chem. C 119, 42 (2015) [96] C. -C Wang, B. R. Ecker, H. -T. Wei et al., “Environmental Surface Stability of the MAPbBr3 Single Crystal”, J. Phys. Chem. C 122, 6 (2018) [97] D. Tjeertes, T. J. F. Verstijnen, A. Gonzalo et al., “N-nH complexes in GaAs studied at the atomic scale by cross-sectional scanning tunneling microscopy”, Phys. Rev. B. 102, 125304 (2020) [98] R. S. R. Gajjela, A. L. Hendriks, A. Alzeidan et al., “Cross-sectional scanning tunneling microscopy of InAs/GaAs (001) sub-monolayer quantum dots”, Phys. Rev. Mater. 4, 114601 (2020) [99] A. J. Yost, A. Pimachev, C. -C. Ho et al., “Coexistence of Two Electronic Nano-Phases on a CH3NH3PbI3−xClx Surface Observed in STM Measurements”, ACS Appl. Mater. Interfaces 8, 29110−29116 (2016) [100] P. -C. Huang, S. -K. Huang, T. -C. Lai et al., “Visualizing band alignment across 2D/3D perovskite heterointerfaces of solar cells with light-modulated scanning tunneling microscopy”, Nano Energy 89, 106362 (2021) [101] T. -Yu. Chien, L. F. Kourkoutis et al., “Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides”, Nat. commun. 4, 2336 (2013) [102] S. -h. Kim, M. Ye, K. Kuroda, Y. Yamada, “Surface Scattering via Bulk Continuum States in the 3D Topological Insulator Bi2Se3”, Phys. Rev. Lett. 107, 056803 (2011) [103] V. S. Stolyarov, S. Pons, S. Vlaic, “Superconducting Long-Range Proximity Effect through the Atomically Flat Interface of a Bi2Te3 Topological Insulator”, J. Phys. Chem. Lett. 12, 9068–9075 (2021) [104] A. Wang, T. -Y. Chien, “Perspectives of cross-sectional scanning tunneling microscopy and spectroscopy for complex oxide physics”, Phys. Lett. A 382, 11 (2018) [105] S. K. Khanna, J. Lambe, “Inelastic electron tunneling spectroscopy”, Science 220, 4604 (1983) [106] A. L. Vázquez de Parga, O. S. Hernán, R. Miranda et al., “Electron resonances in sharp tips and their role in tunneling spectroscopy” Phys. Rev. Lett. 80, 357 (1998) [107] C. Chen, “Introduction to Scanning Tunneling Microscopy” OUP Oxford (2008) [108] N. Onoda-Yamanuro O. Yamamuro, T. Matsuo, H. Suga, “p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals”, J. Phys. Chem. Solids 53, 2 (1992) [109] C. A. Lopez, M. V. Martinez-Huerta, M. C. Alvarez-Galvan et al., “Elucidating the Methylammonium (MA) Conformation in MAPbBr3 Perovskite with Application in Solar Cells”, Inorg. Chem. 56, 14214 (2017) [110] K. -H. Wang, L. -C. Li, M. Shellaiah et al., “Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr3) Single Crystals”, Sci Rep 7, 13643 (2017) [111] W. Geng, C. -J. Tong, Z. -K. Tang et al., “Effect of Surface Composition on Electronic Properties of Methylammonium Lead Iodide Perovskite”, J. Materiomics 1, 213 (2015) [112] X. Huang, T. R. Paudel, P. A. Dowben et al., “Electronic structure and stability of the CH3NH3PbBr3 (001) surface”, Phys. Rev. B 94, 195309 (2016) [113] T. Komesu, X. Huang, T. R. Paudel et al., “Surface Electronic Structure of Hybrid Organo-Lead Bromide Perovskite Single Crystals”, J. Phys. Chem. C 120, 21710−21715 (2016) [114] R. Comin, M. K. Crawford, A. H. Said et al., “Lattice dynamics and the nature of structural transitions in organolead halide perovskites”, Phys. Rev. B 94, 094301 (2016) [115] R. Ohmann, L. K. Ono, H. -S. Kim et al., “Real space imaging of the atomic structure of organic–inorganic perovskite”, J. Am. Chem. Soc. 137, 51 (2015) [116] L. -M. She, M. -Z. Liu, D. Y. Zhong, “Atomic Structures of CH3NH3PbI3 (001) Surfaces”, ACS Nano 10, 1 (2016) [117] H. -C. Hsu, B. -C. Huang, S. -C. Chin et al., “Photodriven dipole reordering: key to carrier separation in metalorganic halide perovskites”, ACS Nano 13 4 (2019) [118] K. L. Brown, S. F. Parker, I. R. García et al., “Molecular orientational melting within a lead halide octahedron framework: The order-disorder transition in CH3NH3PbBr3”, Phys. Rev. B: Condens. Matter Mater. Phys. 96, 174111 (2017) [119] F. Zu, P. Amsalem, D. A. Egger et al., “Constructing the electronic structure of CH3NH3PbI3 and CH3NH3PbBr3 perovskite thin films from single-crystal band structure measurements,” J. Phys. Chem. Lett. 10, 601 (2019) [120] A. Poglitsch, D. Weber, “Dynamic disorder in methylammonium trihalogeno plumbates (II) observed by millimeter-wave spectroscopy”, J. Chem. Phys. 87, 6373 (1987) [121] J. Yang, M. Meissner, T. Yamaguchi et al., “Surface geometry determined temperature-dependent band structure evolutions in organic halide perovskite single crystals,” arXiv:2006.08121 (2020) [122] K. Ono, Y. Qi, “Surface and interface aspects of organometal halide perovskite materials and solar cells”, J. Phys. Chem. Lett. 7, 4764 (2016) [123] J. M. Frost, K. T. Butler, A. Walsh, “Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells”, APL Materials 2, 081506 (2014) [124] T. Richards, M. Bird, H. Sirringhaus, “A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces”, J. Chem. Phys. 128, 234905 (2008) [125] B. Chen, X. Zheng, M. Yang et al., “Interface band structure engineering by ferroelectric polarization in perovskite solar cells”, Nano Energy 13, 582 (2015) [126] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, “Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties”, Inorg. Chem. 52, 15 (2013) [127] E. L. Unger, E. T. Hoke, C. D. Bailie et al., “Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells”, Energy Environ. Sci. 7, 3690 (2014) [128] B. Chen, M. Yang, X. Zheng et al., “Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells”, J. Phys. Chem. Lett. 6, 4693 (2015) [129] J. Wei, Y. Zhao, H. Li et al., “Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells”, J. Phys. Chem. Lett. 5, 3937 (2014) [130] Y. Yang, M. -J. Yang, Z. Li et al., “Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy”, J. Phys. Chem. Lett. 6, 4688 (2015) [131] D. Priante, I. Dursun, M. S. Alias et al., “The Recombination Mechanisms Leading to Amplified Spontaneous Emission at the True-Green Wavelength in CH3NH3PbBr3 Perovskites”, Appl. Phys. Lett. 106, 081902 (2015) [132] B. Wu, H. T. Nguyen, Z. -L. Ku et al., “Discerning the Surface and Bulk Recombination Kinetics of Organic–Inorganic Halide Perovskite Single Crystals”, Adv. Energy Mater. 6, 1600551 (2016) [133] A. Buin, R. Comin, J. -X. Xu et al., “Halide-Dependent Electronic Structure of Organolead Perovskite Materials”. Chem. Mater. 27, 4405 (2015) [134] K. Amnuyswat, P. Thanomngam, “Improvement of energy gap prediction for hybrid perovskite materials by first-principle calculation”, AIP Conference Proceedings 2010, 020009 (2018) [135] A. K. Tagantsev, I. Stolichnov, N. Setter et al., “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films”, Phys. Rev. B 66, 214109 (2002) [136] M. Vopsaroiu, J. Blackburn, M. G. Cain, P. M. Weaver, “Thermally activated switching kinetics in second-order phase transition ferroelectrics”, Phys. Rev. B 82, 024109 (2010) [137] D. Niesner, M. Wilhelm, I. Levchuk et al., “Giant Rashba Splitting in CH3NH3PbBr3 Organic-Inorganic Perovskite”, Phys. Rev. Lett. 117, 126401 (2016) [138] T. -T. Shi, W. -J. Yin, F. Hong et al., “Unipolar self-doping behavior in perovskite CH3NH3PbBr3”, Appl. Phys. Lett. 106, 103902 (2015) [139] T. Gallet, D. Grabowski, T. Kirchartz, A. Redinger, “Fermi-level pinning in methylammonium lead iodide perovskites”, Nanoscale 11, 16828 (2019) [140] K. Galkowski, A. Mitioglu, A. Miyata et al., “Determination of the exciton binding energy and effective masses for the methylammonium and formamidinium lead tri-halide perovskite family” Energy Environ. Sci. 9, 962 (2016) [141] Z. -H. Huang, S. R. Vardeny, T. -H. Wang et al., “Observation of spatially resolved Rashba states on the surface of CH3NH3PbBr3 single crystals”, Appl. Phys. Rev. 8, 031408 (2021) [142] R. M. Feenstra, J. A. Stroscio, A. P. Fein, “Tunneling spectroscopy of the Si(111) 2x1 surface”, J. Vac. Sci. Technol. B 5, 295 (1987) [143] A. J. Macdonald, Y. S. Tremblay-Johnston, S. Grothe et al., “Dispersing artifacts in FT-STS: a comparison of set point effects across acquisition modes”, Nanotechnology 27, 414004 (2016) [144] A. Kostin, P. O. Sprau, A. Kreisel et al., “Imaging orbital-selective quasiparticles in the Hund’s metal state of FeSe”, Nat. Mater. 17, 869 (2018) [145] T. Hanaguri, K. Iwaya, Y. Kohsaka et al., “Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSx”, Sci. Adv. 4, 6419 (2018) [146] L. C. Davis, M. P. Everson, R. C. Jaklevic, and W. Shen, “Theory of the local density of surface states on a metal: Comparison with scanning tunneling spectroscopy of a Au(111) surface”, Phys. Rev. B 43, 3821 (1991) [147] C. J. Butler, P. -Y. Yang, R. Sankar et al., “Quasiparticle Scattering in the Rashba Semiconductor BiTeBr: The Roles of Spin and Defect Lattice Site”, ACS Nano 10, 9361 (2016) [148] C. J. Butler, Y. -M. Wu, C. -R. Hsing et al., “Quasiparticle interference in ZrSiS: Strongly band-selective scattering depending on impurity lattice site”, Phys. Rev. B 96, 195125 (2017) [149] W. -H. Zhang, K. -L. Bu, F. -Z. Ai et al., “Projective quasiparticle interference of a single scatterer to analyze the electronic band structure of ZrSiS”, Phys. Rev. Research 2, 023419 (2020) [150] A. Mahmood, P. Mallet, J. Y. Veuillen et al., “Quasiparticle scattering off phase boundaries in epitaxial graphene”, Nanotechnology 23, 055706 (2012) [151] S. H. Simon, “Oxford Solid State Basics” (2013) [152] C. -K. Chan, C. -J. Wu, W. -C. Lee, S. Das Sarma, “Anisotropic-Fermi-liquid theory of ultracold fermionic polar molecules: Landau parameters and collective modes”, Phys. Rev. A 81, 023602 (2010) [153] R. M. Fernandes, J. W. F. Venderbos, “Nematicity with a twist: Rotational symmetry breaking in a moiré superlattice” Sci. Adv. 6, 8834 (2020) [154] L. Fu, “Hexagonal Warping Effects in the Surface States of the Topological Insulator Bi2Te3” Phys. Rev. Lett. 103, 266801 (2009) [155] I. Battisti, W. O. Tromp, S. Riccò et al., “Direct comparison of ARPES, STM, and quantum oscillation data for band structure determination in Sr2RhO4”, npj Quantum Mater. 5, 91 (2020) [156] D. Y. Usachov, I. A. Nechaev, G. Poelchen et al., “Cubic Rashba Effect in the Surface Spin Structure of Rare-Earth Ternary Materials”, Phys. Rev. Lett. 124 237202 (2020) [157] E. Mosconi, P. Umar, F. De Angelis, “Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis”, Phys. Chem. Chem. Phys. 18, 27158 (2016)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86731-
dc.description.abstract太陽能電池這個研究課題的討論在近幾年的熱絡程度可見一斑,而作為太陽能電池表現性能的指標,能量轉換效率值(PCE)的突破是研究學者們一直以來所追求的目標。其中,有機–無機混態的鈣鈦礦材料在這項數值上展現了可觀的進步幅度,背後諸多的特殊物理性質也吸引了研究者的注意。甲基胺溴化鉛,作為混態鈣鈦礦材料的一員,具有的不僅僅是在作為太陽能電池材料上佔據優勢的光電特性,其本質上的強自旋軌道藕荷更讓它成為自旋電子學上的研究材料之一。 該材料的表面原子及電子結構正是這些特性與現象的關鍵成因,然而這其中依然有諸多揣想及未被證明的地方。我們透過剖面掃描穿隧式電子顯微鏡與能譜術,建立出甲基胺溴化鉛在表面照光之下的完整結電子結構。另外,從實驗結果分析來看,表面電子的能量與動量關係確實符合自旋軌道藕荷作用下的趨勢。zh_TW
dc.description.abstractSolar cell has become prevailing these few years and achieving upmost power conversion efficiency (PCE) is the ultimate goal scientists seek for. Among tons of candidates, organic-inorganic hybrid perovskite (OIHP) shows its amazingly progressive pace in PCE, besides which there are also other unique characters of this material that attract researchers’ attention. MAPbBr3, as a member of the OIHP family, is not only a promising material in solar cell, but its intrinsic strong spin-orbit interaction also makes it interesting in spintronics application. It is its surface electronic characteristics that makes it such anticipated, but a more detailed insight is still blurred, and the actual mechanism is yet in argument. With the aid of Cross-section Scanning Tunneling Microscopy/Spectroscopy (XSTM/S), we reveal a complete scheme of the surface electronic structure of MAPbBr3 upon laser irradiation, and further demonstrate the considerable influence that spin-orbit interaction exerts on it.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:14:06Z (GMT). No. of bitstreams: 1
U0001-2807202214213500.pdf: 7919962 bytes, checksum: e7188674db043397576d6f526c0f7a5c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction 1 Chapter 2 Theory 3 2.1 Scanning Tunneling Microscopy 3 2.1.1 Quantum tunneling effect 3 2.1.2 Bardeen’s method for single-electron transition rate 6 2.1.3 Total transition rate under Fermi’s Golden Rule 11 2.1.4 Matrix element approximation 14 2.2 Quasiparticle Interference 15 2.3 Rashba Effect 18 2.3.1 Spin-orbit coupling (SOC) 18 2.3.2 SOC combined with inversion asymmetry 19 2.3.3 Surface Rashba effect in perovskite material MAPbBr3 24 2.3.4 Permitted scattering channels of the two Rashba splitting cases 29 Chapter 3 Experimental Method 33 3.1 UHV Chamber and Cryostat for LT-STM 33 3.2 In-situ Cleavage 35 3.3 Scanning Tunneling Microscopy and Spectroscopy 36 3.3.1 Scanning Tunneling Microscopy (STM) 36 3.3.2 Scanning Tunneling Spectroscopy (STS) 38 Chapter 4 Results and Discussion 42 4.1 Structural and Electronic Properties of the MAPbBr3 Surface 42 4.1.1 Identification of the surface phase 42 4.1.2 Characteristic I-V curve of the MAPbBr3 surface from STS 48 4.2 Scanning Criteria for QPI Measurement on Rashba Splitting 55 4.2.1 Limitation on the scanning area and the bias voltage 55 4.2.2 Phase-boundary scattering off the massive hole-shaped breakage 60 4.3 In-depth Exploration of Surface Conduction Band via QPI over a Wide Range of Energy 67 4.3.1 Surface topography and FFT 67 4.3.2 Normalized differential conductance mapping and FFT 73 4.3.3 Voltage dependence of interference signals in reciprocal space 76 4.3.4 Evidence to SIA-based band splitting mechanism and Rashba effect from QPI characteristics 86 Chapter 5 Conclusion 101 Future Prospective 102 REFERENCE 103
dc.language.isozh-TW
dc.subject自旋軌道藕荷zh_TW
dc.subject有機無機混態鈣鈦礦zh_TW
dc.subject剖面掃描穿隧顯微鏡與能譜zh_TW
dc.subject照光zh_TW
dc.subject表面電子結構zh_TW
dc.subject類粒子散射zh_TW
dc.subject拉什巴效應zh_TW
dc.subject有機無機混態鈣鈦礦zh_TW
dc.subject剖面掃描穿隧顯微鏡與能譜zh_TW
dc.subject照光zh_TW
dc.subject表面電子結構zh_TW
dc.subject自旋軌道藕荷zh_TW
dc.subject類粒子散射zh_TW
dc.subject拉什巴效應zh_TW
dc.subjectilluminationen
dc.subjectCross-section Scanning Tunneling Microscopy/Spectroscopyen
dc.subjectsurface electronic structureen
dc.subjectorganic-inorganic hybrid perovskiteen
dc.subjectRashba effecten
dc.subjectquasi-particle scatteringen
dc.subjectspin-orbit couplingen
dc.subjectorganic-inorganic hybrid perovskiteen
dc.subjectCross-section Scanning Tunneling Microscopy/Spectroscopyen
dc.subjectilluminationen
dc.subjectsurface electronic structureen
dc.subjectspin-orbit couplingen
dc.subjectquasi-particle scatteringen
dc.subjectRashba effecten
dc.title以掃描穿隧顯微術探討鈣鈦礦太陽能材料表面的拉什巴效應zh_TW
dc.titleExploration of Surface Rashba Effect on Perovskite Single Crystal through Cross-sectional STM/Sen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張嘉升(Chia-Seng Chang),魏金明(Ching-Ming Wei)
dc.subject.keyword有機無機混態鈣鈦礦,剖面掃描穿隧顯微鏡與能譜,照光,表面電子結構,自旋軌道藕荷,類粒子散射,拉什巴效應,zh_TW
dc.subject.keywordorganic-inorganic hybrid perovskite,Cross-section Scanning Tunneling Microscopy/Spectroscopy,illumination,surface electronic structure,spin-orbit coupling,quasi-particle scattering,Rashba effect,en
dc.relation.page118
dc.identifier.doi10.6342/NTU202201828
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
dc.date.embargo-lift2024-07-31-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-2807202214213500.pdf7.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved