Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86701Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 游政谷(Cheng-Ku Yu) | |
| dc.contributor.author | Brian Jeng | en |
| dc.contributor.author | 鄭秉恩 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:12:12Z | - |
| dc.date.copyright | 2022-08-10 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-01 | |
| dc.identifier.citation | Akaeda, K., T. Yokoyama, M. I. A. Tabata, and H. Sakakibara 1991: Evolution of the Kinematic structure within a meso-β-scale convective system in the growing and mature stages, Mon. Weather Rev., 119, 2664–2676. Akter, N., and K. Tsuboki, 2012: Numerical simulation of Cyclone Sidr using a cloud-resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789–810. Amburn, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator, Weather and forecasting, 12(3), 473–478. Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure, and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 208 pp. Betts, A. K., 1976: The thermodynamic transformation of the tropical subcloud layer by precipitation and downdrafts. J. Atmos. Sci., 33, 1008–1020. Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192–207. Chong, M., P. Amayenc, G. Scialom, and J. Testud, 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part I: Kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev.,115, 670–694. Chow, K. C., K. L. Chan, and A. K. H. Lau, 2002: Generation of moving spiral bands in tropical cyclones. J. Atmos. Sci., 59, 2930–2950. Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 3073–3091. De Szoeke, S. P., Skyllingstad, E. D., Zuidema, P., and Chandra, A. S., 2017: Cold pools and their influence on the tropical marine boundary layer. J. Atmos. Sci, 74, 1149– 1168. Didlake, A. C., and R. A. Houze Jr., 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 3269–3293. Diercks, J. W., and R. A. Anthes, 1976: Diagnostic studies of spiral rainbands in a nonlinear hurricane model. J. Atmos. Sci., 33, 959–975. Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 2081–2104. ——, T. L. Gardner, M. C. Link, and K. C. Smith, 2012: Surface cold pools in the outer rainbands of Tropical Storm Hanna (2008) near landfall. Mon. Wea. Rev., 140, 471–491. Engerer, N. A., and D. J. Stensrud, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 4839–4849. Hauser, D., F. Roux, and P. Amayenc, 1988: Comparison of two methods for the retrieval of thermodynamic and microphysical variables from Doppler-radar measurements: Application to the case of a tropical squall line. J. Atmos. Sci., 45, 1285–1303. Houze, R. A., Jr., 1993: Cloud Dynamics, Academic Press, 573 pp. Lee, W-C., M. M. Bell, and K. E. Goodman Jr., 2008: Supercells and mesocyclones in outer rainbands of Hurricane Katrina (2005). Geophys. Res. Lett., 35, L16803. Li, Q., Wang, Y., and Duan, Y. 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74(1), 203–227. Lin, C.- Y., and C.- K. Yu, 2021: Taiwan rainbands formed in the outer region of tropical cyclones. Mon. Wea. Rev., 149, 1403-1418. Lin, Y-J., H. Shen, and R. Pasken. 1991: Kinetic energy budgets of a subtropical squall line determined from TAMEX dual-Doppler measurements. Mon. Wea, Rev 119:2654-2663. Kingsmill, D. E., and R. A. Houze, 1999: Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool.Quart. J.Roy.Meteor. Soc., 125, 1209–1229. Kurihara, Y., 1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci., 33, 940–958. Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 2452–2463. Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465. Moon, Y., and D. S. Nolan, 2015: Spiral rainbands in a numerical simulation of Hurricane Bill (2009). Part II: Propagation of inner rainbands. J. Atmos. Sci., 72, 191–215. Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485. Roux, F., J. Testud, M. Payen, and B. Pinty, 1984: West African squall-line thermodynamic structure retrieved from dual-Doppler radar observations. J. Atmos. Sci., 41, 3104-3121. ——, 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406–426. ——, and S. Ju, 1990: Single-Doppler observations of a West African squall line on 27–28 May 1981 during COPT 81: Kinematics, thermodynamics, and water budget. Mon. Wea. Rev., 118, 1826–1854. Sawada, M., and T. Iwasaki, 2007: Impacts of ice phase processes on tropical cyclone development. J. Meteor. Soc. Japan, 85, 479–494. ——, ——, 2010: Impacts of evaporation from raindrops on tropical cyclones. Part II: Features of rainbands and asymmetric structure. J. Atmos. Sci., 67, 71–81. Shi, L., Olabarrieta, M., Nolan, D. S., Warner, J. C., 2020: Tropical cyclone rainbands can trigger meteotsunamis. Nat. Comm., 11(1), 1– 14. Simpson, J. E., and R. E. Britter, 1980: A laboratory model of an atmospheric mesofront. Quart. J. Roy. Meteor. Soc., 106, 485–500. Sharma, R. N., and P. J. Richards, 1999: A re-examination of the characteristics of tropical cyclone winds. J Wind Eng. Ind. Aerodyn. 83:21–23. Skwira, G. D., J. L. Schroeder, and R. E. Peterson, 2005: Surface observations of landfalling hurricane rainbands. Mon. Wea. Rev., 133, 454–465. Szeto, K. K., and H.-R. Cho, 1994: A numerical investigation of squall lines. Part II: Mechanics of evolution. J. Atmos. Sci., 51, 425–433. Teng, J-H., C-S. Chen, T-C. C. Wang, and Y-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev, 128, 1123–1138. Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci. 58, 1650–1672. Torri, G., and Z. Kuang, 2016: Rain evaporation and moist patches in tropical boundary layers. Geophys. Res. Lett., 43, 9895–9902. Wakimoto, R.M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082. Wang, T-C. C., Y-J. Lin, R. W. Pasken, and H. Shen, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part I: Kinematic structure. J. Atmos. Sci, 47, 2357-2381. Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273. Willoughby, H. E., Marks, F. D. Jr. and Feinberg, R. J. 1984 Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189–3211. ——, 1988: The dynamics of the tropical hurricane core. Aust. Meteor. Mag., 36, 183–191. Yang Y, Chen X, and Qi Y, 2013: Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J. Geophys. Res. 118 1896–905. Yu, C.-K., and C.-L. Tsai, 2010: Surface pressure features of landfalling typhoon rainbands and their possible causes. J. Atmos. Sci., 67, 2893–2911. ——, and Y. Chen, 2011: Surface fluctuations associated with tropical cyclone rainbands observed near Taiwan during 2000–08. J. Atmos. Sci., 68, 1568–1585. ——, and C.-L. Tsai, 2013: Structural and surface features of arc-shaped radar echoes along an outer tropical cyclone rainband. J. Atmos. Sci., 70, 56–72. ——, and C.- Y. Lin, 2017: Formation and maintenance of a long-lived Taiwan rainband during 1-3 March 2003. J. Atmos. Sci., 74, 1211-1232. ——, C.-Y. Lin, L.-W. Cheng, J.-S. Luo, C.-C. Wu, and Y. Chen, 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Sci. Rep., 8, 8247. ——, ——, and J.-S. Luo, 2019: Tracking a long-lasting outer tropical cyclone rainband: Origin and convective transformation. J. Atmos. Sci., 76, 3267–3283. ——, L.- W. Cheng, C.- C. Wu, and C.- L. Tsai, 2020: Outer tropical cyclone rainbands associated with Typhoon Matmo (2014). Mon. Wea. Rev., 148, 2935-2952. Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799–814. ——, 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 1568–1589. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86701 | - |
| dc.description.abstract | 颱風雨帶是一個複雜的降水系統,其可能的機制和不確定性甚多,也引發了相關研究人員的熱烈爭論。根據對流受內核渦旋環流影響的程度,颱風雨帶可以分為內圍和外圍雨帶。先前的研究表明,外圍雨帶發生在對流可用位能(CAPE)相對較大的環境中,並且經常表現出類似於颮線對流系統的結構和地面特徵。本研究使用氣象都卜勒雷達觀測、高時間解析度地面觀測、臺灣電力公司整合型落雷偵測系統(TLDS)和ERA5再分析資料來進一步探索外圍雨帶的對流特徵及其與颮線的相似度。本研究特別透過模糊邏輯方法開發出對流強度指數(Convective Intensity Index, CII)和颮線相似度指數(Squal-line Similarity Index SSI),這兩項參數分別量化了外圍雨帶的對流強度以及外圍雨帶和颮線之間的相似程度,兩者的值介於0和1之間。2002-2019年總共從97個颱風中挑選出了824條外圍雨帶個案,其中有223個雨帶通過了地面測站,因此可檢視雨帶的地面特徵。統計分析表明,當對流可用位能小於500 J kg-1時,CII隨著環境對流可用位能的增加而增加。超過一半的外圍雨帶並沒有檢測到閃電,而當CII達到0.4時,外圍雨帶發生閃電的機率開始顯著增加,當CII達到0.9時,發生閃電的機率達到最大值90%。冷池強度與CII相關性較弱,然而越強的冷池通常出現在對流不穩定度較大的環境中,且中低層的相當位溫相對較低。經過分析只有約30%的外圍雨帶與颮線具有較高的相似度(即SSI > 0.5)。此外,外圍雨帶在垂直雨帶方向的移行速度與理論預測的冷池傳播速度普遍不一致且其相關係數較低,僅為0.2。這些結果不僅顯示出外圍雨帶對流特徵的多樣性與複雜度,而且多數外圍雨帶與颮線對流特徵存在著不小差異。 | zh_TW |
| dc.description.abstract | Tropical cyclone rainbands (TCRs) are a complex precipitation system with a lot of possible causes and uncertainties which trigger heated debate among researchers. TCRs can be divided into inner and outer rainbands based on the degree to which convection is influenced by the inner-core vortex circulation. Previous research suggests that outer TCRs (OTCRs) develop in an environment with relatively larger convective available potential energy (CAPE) and frequently exhibit structural and surface characteristics similar to ordinary convective systems such as squall lines. In this study, radar measurements, high temporal resolution surface observations, lightning data from the total lightning detection system (TLDS), and ERA5 reanalysis data are used to further explore the degree of similarity between OTCRs and squall lines from a comprehensive OTCR dataset. A convective intensity index (CII) and squall-line similarity index (SSI) are developed based on fuzzy logic. CII quantifies the convective intensity of OTCRs and SSI determines the degree of similarity between OTCRs and squall-lines, both of which range from 0 and 1. A total of 824 OTCR cases associated with 97 TCs as they approached Taiwan are identified during 2002-2019. In this OTCR dataset, 223 cases passed over the surface stations. The statistical analyses indicate that CII increases with the ambient CAPE when the CAPE values are less than 500 J kg-1. Over half of the OTCRs did not have any lightning detected. The probability of lightning occurrence in the OTCRs increases significantly when the CII reaches 0.4 and has a maximum of 75% when CII reaches 0.9. Intensities of cold pools and CII are weakly related; however, stronger cold pools occur in an environment with larger convective instability due to lower θ_e in the low-to-mid levels. Only about 30% of the analyzed OTCRs have a higher similarity with squall lines (i.e., SSI>0.5). In addition, the cross-band propagation speeds of OTCRs are generally not consistent with theoretically predicted propagation speeds of cold pools, with relatively low correlation coefficient at only 0.2. These results suggest not only that the convective characteristics associated with OTCRs are complicated and diverse but also that most of them are not closely related to squall-line convective processes. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:12:12Z (GMT). No. of bitstreams: 1 U0001-1006202212162400.pdf: 5855082 bytes, checksum: 227001bd712a44a1abd35ebbe9c72fc6 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 國立台灣大學碩士學位論文口試委員會審定書 I Acknowledgments II 摘要 III Abstract IV Table of Contents VI List of Tables VIII List of Figures IX Chapter 1. Introduction 1 Chapter 2. Data and Methods 4 2.1 Data 4 2.2 Identification of OTCRs 5 Chapter 3. Convective Intensity of OTCRs 7 3.1 Convective intensity index (CII) 7 3.2 Lightning analysis during the occurrence of OTCRs 12 Chapter 4. Convective Cold Pool 15 4.1 Surface features of OTCRs 15 4.2 The relationship between cold pools and CII 16 4.3 Convective instability and the intensities of cold pools 17 Chapter 5. Propagation of OTCRs 22 5.1 The estimation of propagation 22 5.2 Propagation characteristics 23 5.3 The relationship between cold pools and the propagation of OTCRs 24 Chapter 6. The Similarity Between Squall Lines and OTCRs 27 6.1 Squall line similarity index (SSI) 27 6.2 SSI and the propagation of OTCRs 31 Chapter 7. Conclusions 33 Reference 36 Tables 41 Figures 53 | |
| dc.language.iso | en | |
| dc.subject | 颱風外圍雨帶 | zh_TW |
| dc.subject | 颮線 | zh_TW |
| dc.subject | 冷池 | zh_TW |
| dc.subject | 對流強度 | zh_TW |
| dc.subject | 氣象都卜勒雷達 | zh_TW |
| dc.subject | 地面觀測 | zh_TW |
| dc.subject | 颱風外圍雨帶 | zh_TW |
| dc.subject | 颮線 | zh_TW |
| dc.subject | 冷池 | zh_TW |
| dc.subject | 對流強度 | zh_TW |
| dc.subject | 氣象都卜勒雷達 | zh_TW |
| dc.subject | 地面觀測 | zh_TW |
| dc.subject | Outer tropical cyclone rainband | en |
| dc.subject | Outer tropical cyclone rainband | en |
| dc.subject | convective intensity | en |
| dc.subject | surface observations | en |
| dc.subject | cold pool | en |
| dc.subject | squall lines | en |
| dc.subject | radar observations | en |
| dc.subject | radar observations | en |
| dc.subject | surface observations | en |
| dc.subject | convective intensity | en |
| dc.subject | cold pool | en |
| dc.subject | squall lines | en |
| dc.title | 颱風外圍雨帶的對流特徵及其與颮線的相似度 | zh_TW |
| dc.title | Convective Characteristics of Outer Tropical Cyclone Rainbands and Their Similarity with Squall Lines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-6381-375X | |
| dc.contributor.advisor-orcid | 游政谷(0000-0002-5522-4998) | |
| dc.contributor.oralexamcommittee | 吳俊傑(Chun-Chieh Wu),鍾高陞(Kao-Shen Chung),周昆炫(Kun-Hsuan Chou),鄧旭峰(Hsu-Feng Teng) | |
| dc.contributor.oralexamcommittee-orcid | 吳俊傑(0000-0002-3612-4537),鍾高陞(0000-0003-1459-7242),周昆炫(0000-0001-8215-7850),鄧旭峰(0000-0001-6236-1651) | |
| dc.subject.keyword | 颱風外圍雨帶,地面觀測,氣象都卜勒雷達,對流強度,冷池,颮線, | zh_TW |
| dc.subject.keyword | Outer tropical cyclone rainband,surface observations,radar observations,convective intensity,cold pool,squall lines, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202200902 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-10 | - |
| Appears in Collections: | 大氣科學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1006202212162400.pdf | 5.72 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
