Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭素芳(Suh-Fang Jeng)
dc.contributor.authorShiang-Chin Linen
dc.contributor.author林湘芩zh_TW
dc.date.accessioned2023-03-20T00:11:49Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-08-01
dc.identifier.citationAimsamrarn, P., Janyachareon, T., Rattanathanthong, K., Emasithi, A., & Siritaratiwat, W. (2019). Cultural translation and adaptation of the Alberta Infant Motor Scale Thai version. Early Human Development, 130, 65-70. Becker, A. S., Mueller, M., Stoffel, E., Marcon, M., Ghafoor, S., & Boss, A. (2018). Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. The British Journal of Radiology, 91, 20170576. Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. J. (2002). Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. Journal of the American Medical Association, 288, 728-737. Blencowe, H., Cousens, S., Oestergaard, M. Z., Chou, D., Moller, A.-B., Narwal, R., . . . Say, L. (2012). National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The Lancet, 379, 2162-2172. Boškoski, I., Orlandini, B., Papparella, L. G., Matteo, M. V., De Siena, M., Pontecorvi, V., & Costamagna, G. (2021). Robotics and artificial intelligence in gastrointestinal endoscopy: updated review of the literature and state of the art. Current Robotics Reports, 2, 43-54. Centers for Disease Control and Prevention. (2022). Developmental Disabilities. Retrieved July 20, 2021, from Centers for Disease Control and Preventionin United States website: https://www.cdc.gov/ncbddd/developmentaldisabilities/index.html Chen, H. J., Hsin-Ju Ko, M., Li, S. T., Chiu, N. C., & Hung, K. L. (2020). Prevalence of preschool children developmental disabilities in northeastern Taiwan - Screening with Taipei City Developmental Screening Checklist for Preschoolers, 2nd Version. Journal of the Formosan Medical Association, 119, 1174-1179. Cheong, J. L., Doyle, L. W., Burnett, A. C., Lee, K. J., Walsh, J. M., Potter, C. R., . . . Anderson, P. J. (2017). Association between moderate and late preterm birth and neurodevelopment and social-emotional development at age 2 years. American Journal of Diseases of Children, 171, e164805-e164805. Connolly, K. J., & Forssberg, H. (1997). The importance of fetal movements. Neurophysiology & Neuropsychology of Motor Development (pp. 42-53). London: Mac Keith Press. Coolman, R. B., Bennett, F. C., Sells, C. J., Swanson, M. W., Andrews, M. S., & Robinson, N. M. (1985). Neuromotor development of graduates of the neonatal intensive care unit: patterns encountered in the first two years of life. Journal of Developmental and Behavioral Pediatrics, 6, 327-333. Darrah, J., Bartlett, D., Maguire, T. O., Avison, W. R., & Lacaze‐Masmonteil, T. (2014). Have infant gross motor abilities changed in 20 years? A re‐evaluation of the A lberta I nfant M otor S cale normative values. Developmental Medicine and Child Neurology, 56, 877-881. Darrah, J., Piper, M., & Watt, M. J. (1998). Assessment of gross motor skills of at‐risk infants: predictive validity of the Alberta Infant Motor Scale. Developmental Medicine and Child Neurology, 40, 485-491. De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., . . . Visentin, D. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24, 1342-1350. De Kegel, A., Peersman, W., Onderbeke, K., Baetens, T., Dhooge, I., & Van Waelvelde, H. (2013). New reference values must be established for the Alberta Infant Motor Scales for accurate identification of infants at risk for motor developmental delay in Flanders. Child: Care, Health and Development, 39, 260-267. De Kieviet, J. F., Piek, J. P., Aarnoudse-Moens, C. S., & Oosterlaan, J. (2009). Motor development in very preterm and very low-birth-weight children from birth to adolescence: a meta-analysis. Journal of the American Medical Association, 302, 2235-2242. Drillien, C. M. (1972). Abnormal neurologic signs in the first year of life in low‐birthweight infants: possible prognostic significance. Developmental Medicine and Child Neurology, 14, 575-584. Dudek, F. J. (1979). The continuing misinterpretation of the standard error of measurement. Psychological Bulletin, 86, 335. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115-118. Faes, L., Liu, X., Wagner, S. K., Fu, D. J., Balaskas, K., Sim, D. A., . . . Denniston, A. K. (2020). A clinician's guide to artificial intelligence: how to critically appraise machine learning studies. Translational Vision Science and Technology, 9, 7. Fangyu, L., & Hua, H. (2018). Assessing the accuracy of diagnostic tests. Shanghai Archives of Psychiatry, 30, 207. Ferrari, F., Cioni, G., & Prechtl, H. (1990). Qualitative changes of general movements in preterm infants with brain lesions. Early Human Development, 23, 193-231. Fleuren, K., Smit, L., Stijnen, T., & Hartman, A. (2007). New reference values for the Alberta Infant Motor Scale need to be established. Acta Paediatrica, 96, 424-427. Hoogenboom, S. A., Bagci, U., & Wallace, M. B. (2020). Artificial intelligence in gastroenterology. The current state of play and the potential. How will it affect our practice and when? Techniques and Innovations in Gastrointestinal Endoscopy, 22, 42-47. Jeng, S. F., Yau, K. T., Chen, L. C., & Hsiao, S. F. (2000). Alberta infant motor scale: reliability and validity when used on preterm infants in Taiwan. Physical Therapy, 80, 168-178. Jeng, S. F., Yau, K. T., Liao, H. F., Chen, L. C., & Chen, P. S. (2000). Prognostic factors for walking attainment in very low-birthweight preterm infants. Early Human Development, 59, 159-173. Kassebaum, N., Kyu, H. H., Zoeckler, L., Olsen, H. E., Thomas, K., Pinho, C., . . . Ghiwot, T. T. (2017). Child and adolescent health from 1990 to 2015: findings from the global burden of diseases, injuries, and risk factors 2015 study. American Journal of Diseases of Children, 171, 573-592. Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointestinal Endoscopy, 92, 807-812. Kepenek-Varol, B., Hoşbay, Z., Varol, S., & Torun, E. (2020). Assessment of motor development using the Alberta Infant Motor Scale in full-term infants. The Turkish Journal of Pediatrics, 62, 94-102. Kerr-Wilson, C., Mackay, D., Smith, G., & Pell, J. (2012). Meta-analysis of the association between preterm delivery and intelligence. Journal of Public Health, 34, 209-216. Kononenko, I. (2001). Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine, 23, 89-109. Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15, 155-163. Kulikowski, C. A. (2015). An opening chapter of the first generation of artificial intelligence in medicine: the first Rutgers AIM workshop, June 1975. Yearbook of Medical Informatics, 24, 227-233. Kulikowski, C. A. (2019). Beginnings of artificial intelligence in medicine (AIM): computational artifice assisting scientific inquiry and clinical art–with reflections on present aim challenges. Yearbook of Medical Informatics, 28, 249-256. Lindström, K., Lindblad, F., & Hjern, A. (2011). Preterm birth and attention-deficit/hyperactivity disorder in schoolchildren. Pediatrics, 127, 858-865. Litt, J. S., Glymour, M., Hauser-Cram, P., Hehir, T., & McCormick, M. C. (2015). The effect of the Infant Health and Development Program on special education use at school age. The Journal of pediatrics, 166, 457-462. e451. Liu, L., Oza, S., Hogan, D., Chu, Y., Perin, J., Zhu, J., . . . Black, R. E. (2016). Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet, 388, 3027-3035. Liu, K. L., Wu, T., Chen, P.-T., Tsai, Y. M., Roth, H., Wu, M.-S., . . . Wang, W. (2020). Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation. Lancet Digit Health, 2, e303-e313. Luu, T. M., Rehman Mian, M. O., & Nuyt, A. M. (2017). Long-Term Impact of Preterm Birth: Neurodevelopmental and Physical Health Outcomes. Clinics in Perinatology, 44, 305-314. McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22, 276-282. Meisels, S. J. (1989). Can developmental screening tests identify children who are developmentally at risk? Pediatrics, 83, 578-585. Ministry of Health and Welfare in Taiwan. (2020). Annual Data of Early Intervention Services for Children with Developmental Disabilities. Retrieved July 31, 2021, from https://dep.mohw.gov.tw/DOS/cp-2978-13976-113.html Moccia, S., Migliorelli, L., Carnielli, V., & Frontoni, E. (2020). Preterm infants' pose estimation with spatio-temporal features. IEEE Transactions on Biomedical Engineering, 67, 2370-2380. Morales-Monforte, E., Bagur-Calafat, C., Suc-Lerin, N., Fornaguera-Martí, M., Cazorla-Sánchez, E., & Girabent-Farrés, M. (2017). The Spanish version of the Alberta infant motor scale: validity and reliability analysis. Developmental Neurorehabilitation, 20, 76-82. Moran, M. E. (2007). Evolution of robotic arms. Journal of Robotic Surgery, 1, 103-111. Olusanya, B. O., Davis, A. C., Wertlieb, D., Boo, N.-Y., Nair, M., Halpern, R., . . . Gladstone, M. (2018). Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Global Health, 6, 1100-1121. Petrini, J. R., Dias, T., McCormick, M. C., Massolo, M. L., Green, N. S., & Escobar, G. J. (2009). Increased risk of adverse neurological development for late preterm infants. The Journal of Pediatrics, 154, 169-176. Piper, M. C., Darrah, J., Piper, M. C., & Darrah, J. (1994). Alberta Infant Motor Scale: construction of motor assessment tool for the developing infant. Motor Assessment of the Developing Infant (pp. 25-35). Philadelphia, PA: Saunders WB Company. Porta, M., Fernandez, E., & Puigdomènech, E. (2006). Book citations: influence of epidemiologic thought in the academic community. Revista de Saúde Pública, 40, 50-56. Prechtl, H. F. (2001). General movement assessment as a method of developmental neurology: new paradigms and their consequences. Developmental Medicine and Child Neurology, 43, 836-842. Premature Baby Foundation of Taiwan. (2018). Preterm Infnats’ Follow-up and Examination. Retrieved July 31, 2021, from Premature Baby Foundation of Taiwan Website: https://www.pbf.org.tw/services/discharged-low-weight-checking Raudys, S. J., & Jain, A. K. (1991). Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 252-264. Reich, S., Zhang, D., Kulvicius, T., Bölte, S., Nielsen-Saines, K., Pokorny, F. B., . . . Einspieler, C. (2021). Novel AI driven approach to classify infant motor functions. Scientific Reports, 11, 1-13. Rosenberg, S. A., Zhang, D., & Robinson, C. C. (2008). Prevalence of developmental delays and participation in early intervention services for young children. Pediatrics, 121, 1503-1509. Saccani, R., & Valentini, N. C. (2013). Cross-cultural analysis of the motor development of Brazilian, Greek and Canadian infants assessed with the Alberta Infant Motor Scale. Revista Paulista de Pediatria, 31, 350-358. Saccani, R., Valentini, N. C., & Pereira, K. R. (2016). New Brazilian developmental curves and reference values for the Alberta infant motor scale. Infant Behavior and Development, 45, 38-46. Shahroudy, A., Liu, J., Ng, T.-T., & Wang, G. (2016). Ntu rgb+ d: A large scale dataset for 3d human activity analysis. Paper presented at the proceedings of the IEEE conference on computer vision and pattern recognition. (pp. 1010-1019). Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater reliability. Psychological Bulletin, 86, 420-428. Simpson, G. A., Colpe, L., & Greenspan, S. (2003). Measuring functional developmental delay in infants and young children: prevalence rates from the NHIS‐D. Paediatric and Perinatal Epidemiology, 17, 68-80. Spittle, A. J., Orton, J., Anderson, P. J., Boyd, R., & Doyle, L. W. (2015). Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database of Systematic Reviews, 11, 1-87. Spittle, A., Spencer-Smith, M. M., Cheong, J. L., Eeles, A. L., Lee, K. J., Anderson, P. J., & Doyle, L. W. (2013). General movements in very preterm children and neurodevelopment at 2 and 4 years. Pediatrics, 132, e452-e458. Sun, X., Shang, J., Liang, S., & Wei, Y. (2017). Compositional human pose regression. Paper presented at the proceedings of the IEEE International Conference on Computer Vision. (pp. 2602-2611). Sun, X., Xiao, B., Wei, F., Liang, S., & Wei, Y. (2018). Integral human pose regression. Paper presented at the Proceedings of the European Conference on Computer Vision. (pp. 529-545). Synnes, A., & Hicks, M. (2018). Neurodevelopmental outcomes of preterm children at school age and beyond. Clinics in Perinatology, 45, 393-408. Syrengelas, D., Kalampoki, V., Kleisiouni, P., Konstantinou, D., & Siahanidou, T. (2014). Gross motor development in full-term Greek infants assessed by the Alberta Infant Motor Scale: Reference values and socioeconomic impact. Early Human Development, 90, 353-357. Talge, N. M., Holzman, C., Wang, J., Lucia, V., Gardiner, J., & Breslau, N. (2010). Late-preterm birth and its association with cognitive and socioemotional outcomes at 6 years of age. Pediatrics, 126, 1124-1131. Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. Public Library of Science, 14, e0224365. Valentini, N. C., & Saccani, R. (2012). Brazilian validation of the alberta infant motor scale. Physical Therapy, 92, 440-447. Van Iersel, P. A., La Bastide-van Gemert, S., Wu, Y.-C., & Hadders-Algra, M. (2020). Alberta Infant Motor Scale: Cross-cultural analysis of gross motor development in Dutch and Canadian infants and introduction of Dutch norms. Early Human Development, 151, 105239. Vohr, B. (2013). Long-term outcomes of moderately preterm, late preterm, and early term infants. Clinics in Perinatology, 40, 739-751. Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Association for Computing Machinery, 9, 36-45. Woythaler, M. (2019). Neurodevelopmental outcomes of the late preterm infant. Seminars in Fetal and Neonatal Medicine, 24, 54-59. Yan, S., Xiong, Y., & Lin, D. (2018). Spatial temporal graph convolutional networks for skeleton-based action recognition. Paper presented at the Thirty-second AAAI Conference on Artificial Intelligence. (pp. 7444-7452). Yang, Y. J., & Bang, C. S. (2019). Application of artificial intelligence in gastroenterology. World Journal of Gastroenterology, 25, 1666. You, J., Shamsi, B. H., Hao, M. C., Cao, C. H., & Yang, W. Y. (2019). A study on the neurodevelopment outcomes of late preterm infants. BMC Neurology, 19, 108. Zablotsky, B., Black, L. I., Maenner, M. J., Schieve, L. A., Danielson, M. L., Bitsko, R. H., . . . Boyle, C. A. (2019). Prevalence and trends of developmental disabilities among children in the United States: 2009–2017. Pediatrics, 144. Zeng, Y. X. (2012). F-measure. Retrieved May 23, 2022, from National Academy for Educational Research website: http://terms.naer.edu.tw/detail/1679003/ Zhou, X., Huang, Q., Sun, X., Xue, X., & Wei, Y. (2017). Towards 3d human pose estimation in the wild: a weakly-supervised approach. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision. (pp. 398-407).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86695-
dc.description.abstract背景與目的:早產兒為神經發展障礙的高危險族群,其中又以動作發展障礙最早與最常出現。近年來,數位技術機革新及機器學習演算法進步,使得人工智慧模型能夠用以追蹤人體骨骼架構,這項進步也成為動作追蹤及動作辨識模型的基石。本研究之目的為使用深度機器學習方法為足月兒和早產兒開發人工智慧初步的動作識別模型。方法:本研究總共收集95名嬰幼兒,其中包括39名足月兒和56名早產兒,在年齡4至18個月時實施阿爾伯塔嬰幼兒動作量表評估以紀錄其動作發展變化。評估過程中有5部錄影機以不同角度同時進行拍錄,並對所有嬰兒進行追蹤,記錄其能獨自行走的年齡。資料分析的第一步由物理治療師依照阿爾伯塔嬰幼兒動作量表標準觀看影片並標註動作分類結果;影片標註的標註者內信度由一位物理治療師進行重複標註,標註者間信度由3位治療師標記。動作識別模型資料和治療師標記結果之比對,使用準確度、召回率、精確率和F值進行驗證。結果: 本研究初步資料分析顯示,數據前處理步驟的阿爾伯塔嬰幼兒動作量表實際評分的施測者間信度(ICC=0.96−0.99)與影片動作標註之評估者內(ICC=0.99−1, κ=1)及評估者間信度(ICC=0.91−1, κ=0.62-0.63)都達到良好的程度。資料的後處理包括95名嬰幼兒所進行之156人次評估影片,以及所貢獻之12,212個動作資料。針對31個嬰兒動作項目之初步機器學習模型的整體辨識準確度為0.89、召回率為0.90、精確率為0.89和F值為0.89。結論:本研究所建立的數據前處理步驟呈現評估者執行量表評估和動作標記的良好信度,初步的嬰兒動作辨識模型則顯示31項達成可接受的動作辨識準確度。後續須收集更多的資料量以提供機器訓練及精進,俾幫助納入更多動作項目以及改善有些易混淆的項目之準確度。zh_TW
dc.description.abstractBackground and Purposes: Preterm infants are at high risk of neurodevelopmental disabilities, with motor impairment being the leading problem. Breakthroughs in digital technology and advances in machine learning algorithms have enabled the tracking of the skeleton of the human body that creates a precedent for motor recognition and classification models. This study was aimed to use a deep machine learning approach to develop an artificial intelligence (AI) algorithm for the primary action recognition model in term and preterm infants. Methods: This study recruited a total of 95 infants that consisted of 39 term infants and 56 preterm infants. The infants were prospectively assessed for their motor function using the Alberta Infant Motor Scale (AIMS) from 4 to 18 months of age with their motor performance recorded by five cameras. All the infants were followed up for their age of walking attainment. The movement videos were labeled according to the scoring criteria of the AIMS items by three physical therapists and the movement annotations were then used for data processing and model training. The intra-rater reliability of the labeling annotations was examined in one therapist and its inter-rater reliability was examined in three physical therapists. The primary action recognition model was developed for training and testing on the movement video records against the annotated standard using the accuracy, recall, precision, and F-score. Results: The inter-rater reliability of administering the AIMS in the laboratory (ICC=0.96-0.99) and the intra-rater reliability (ICC=0.99−1, κ=1) and inter-rater reliability (ICC=0.91-1, κ=0.62-0.63) of the labeling procedure were good. For the data processing, 95 infants have contributed a total of 156 trials of videos that yielded 12,212 videos of AIMS items. The overall recognition accuracy of the preliminary machine learning model for 31 AIMS action items which compared with the annotated standards was 0.89, recall 0.90, precision 0.89, and F-value 0.89. Conclusion: The data pre-processing showed reliable infant motor assessment and labeling annotation. The preliminary action recognition model showed acceptable level of accuracy in classifying 31 movement items. More data collection is undergoing to include more movement items for machine learning and to enhance recognition accuracy of those easily confused movement items.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:11:49Z (GMT). No. of bitstreams: 1
U0001-3107202222430900.pdf: 8179660 bytes, checksum: 4682e0a64b8800fd5818f8ece79e52d1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iv Contents vi Chapter I. Introduction 1 1.1 Developmental Disorders and Preterm Infants 1 1.2 Early Identification of Infants with Developmental Disorders 4 1.3 The Significance of Infant Motor Assessment 5 1.4 Screening and Diagnostic Tests 6 1.5 Artificial Intelligence (AI) 10 1.6 Rationale for Research on AI for Infant Motor Screening 14 1.7 Study Purpose and Hypotheses 15 Chapter II. Method 16 2.1 Subjects 16 2.2 Procedure 18 2.3 Environmental Set-Up and Camera Configuration 19 2.4 Measurements 20 2.5 Reliability of the AIMS Assessment 21 2.6 Data Processing 22 2.7 Reliability of the Movement Labeling 26 2.8 Statistical Analysis 28 Chapter III. Results 31 3.1 Study Sample 31 3.2 Inter-rater Reliability of the AIMS Assessment in Person 31 3.3 Intra- and Inter-rater Reliability of the Labeling Procedure 32 3.4 Preliminary Results of Action Recognition Model 32 Chapter IV. Discussion 35 Chapter V. Conclusion 41 Tables and Figures 42 References 62 Appendices 76
dc.language.isoen
dc.title嬰幼兒人工智慧動作評估初探zh_TW
dc.titleA Preliminary Study on the Application of Artificial Intelligence in Infant Motor Assessmenten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許永真(Yung-Jen Hsu),曹伯年(Po-Nien Tsao),陳為堅(Wei-Jen Chen),廖偉智(Wei-Chih Liao)
dc.subject.keyword早產兒,嬰兒期,動作評估,動作篩檢,人工智慧,機器學習,zh_TW
dc.subject.keywordpreterm infants,infancy,motor assessment,motor screening test,artificial intelligence,machine learning,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202201918
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
dc.date.embargo-lift2024-08-01-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
U0001-3107202222430900.pdf7.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved