請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林維怡(Wei-Yi Lin) | |
| dc.contributor.author | Hua-Jiun Chen | en |
| dc.contributor.author | 陳華俊 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:10:59Z | - |
| dc.date.copyright | 2022-10-20 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-30 | |
| dc.identifier.citation | 林素禎,洪崑煌,吳繼光 (2000)。囊叢枝內生菌根菌在台灣代表性土壤中之分布。中華農業研究, 49(4), 65-80。 張歐祈 (2021)。叢枝菌根菌共生對不同小米地方品系低磷及乾旱逆境耐受性之影響。國立臺灣大學生物資源暨農學院農藝學研究所碩士論文。 Ahammed, G. J., Xu, W., Liu, A., & Chen, S. (2018). COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity and electron transport efficiency in tomato. Frontiers in Plant ence, 9, 998. Al-Qarawi, A. A., *, M. M. A. U., & P, D. P. (2013). Report of Funneliformis mosseae (Nicoll. & Gerd.) Gerd. and Trappe from Range land Soil of Saudi Arabia. Research Journal of Biotechnology, 8(2), 92-99. Ames, B. N. (1966). [10] Assay of inorganic phosphate, total phosphate and phosphatases. Methods in Enzymology, 8, 115-118. Araya, T., Noguchi, K., & Terashima, I. (2006). Effects of Carbohydrate Accumulation on Photosynthesis Differ between Sink and Source Leaves of Phaseolus vulgaris L. Plant and Cell Physiology, 47(5), 644-652. Athinodorou, F., Foukas, P., Tsaniklidis, G., Kotsiras, A., Chrysargyris, A., Delis, C., Kyratzis, A. C., Tzortzakis, N., & Nikoloudakis, N. (2021). Morphological Diversity, Genetic Characterization, and Phytochemical Assessment of the Cypriot Tomato Germplasm. Plants, 10(8), 1698. Balliu, Astrit Sallaku, Glenda Rewald, Boris. (2015). AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings. Sustainability. 7(12), 15967-15981. Bao, X., Zou, J., Zhang, B., Wu, L., Yang, T., & Huang, Q. (2022). Arbuscular Mycorrhizal Fungi and Microbes Interaction in Rice Mycorrhizosphere. Agronomy, 12(6), 1277. Basga, S. D., DésiréTsozue, Temga, J. P., Balna, J., & Nguetnkam, J. P. (2018). Land use impact on clay dispersion/flocculation in irrigated and flooded vertisols from Northern Cameroon. International Soil and Water Conservation Research, 6(3), 8. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil. 39(1), 205-207. Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science, 10, 1068. Benhiba, L., Fouad, M. O., Essahibi, A., Ghoulam, C., & Qaddoury, A. (2015). Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees, 29(6), 1725-1733. Bingham, S. (1974). Rapid Estimates of Relative Water Content. Plant Physiology, 53(2), 258-260. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. Chai, H. C., & Paszkowski, U. (2019). Mechanisms and Impact of Symbiotic Phosphate Acquisition. Cold Spring Harbor perspectives in biology, 11(6), a034603. Chebet, D., Kariuki, W., Wamocho, L., Rimberia, F., & Agri, R. (2020). Effect of Arbuscular mycorrhizal inoculation on growth, biochemical characteristics and nutrient uptake of passion fruit seedlings under flooding stress, 16(4), 24-31. Cortleven, A., & Valcke, R. (2012). Evaluation of the photosynthetic activity in transgenic tobacco plants with altered endogenous cytokinin content: lessons from cytokinin. Physiologia Plantarum, 144(4), 394-408. Daniels, B. A., & Skipper, H. D. (1982). Methods for the recovery and quantitative estimation of propagules from soil. Methods and Principles of Mycorrhizal Research, 5, 29-35. Dudziak, K., Bulak, P., Zapalska, M., Brner, A., & Nowak, M. (2019). Using intervarietal substitution lines for the identification of wheat chromosomes involved in early responses to water-deficit stress. PLoS ONE, 14(8), e0221849. Feng, C.-Y., Han, J.-X., Han, X.-X., & Jiang, J. (2015). Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene, 573(2), 261-272. Fiorilli, V., Maghrebi, M., Novero, M., Votta, C., Mazzarella, T., Buffoni, B., Astolfi, S., & Vigani, G. (2022). Arbuscular Mycorrhizal Symbiosis Differentially Affects the Nutritional Status of Two Durum Wheat Genotypes under Drought Conditions. Plants, 11(6), 804. Gao, X., Guo, H., Zhang, Q., Guo, H., Zhang, L., Zhang, C., Gou, Z., Liu, Y., Wei, J., Chen, A., Chu, Z., & Zeng, F. (2020). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports, 10(1), 2084. Garcia, C. L., Dattamudi, S., Chanda, S., & Jayachandran, K. (2019). Effect of Salinity Stress and Microbial Inoculations on Glomalin Production and Plant Growth Parameters of Snap Bean (Phaseolus vulgaris). Agronomy, 9(9), 545. Golubkina, N., Zamana, S., Seredin, T., Poluboyarinov, P., Sokolov, S., Baranova, H., Krivenkov, L., Pietrantonio, L., & Caruso, G. (2019). Effect of Selenium Biofortification and Beneficial Microorganism Inoculation on Yield, Quality and Antioxidant Properties of Shallot Bulbs. Plants, 8(4), 102. Greggio, N., Mollema, P., & Gabbianelli, A. G. (2012). Irrigation Management in Coastal Zones to Prevent Soil and Groundwater Salinization. Resource Management for Sustainable Agriculture, 2, 21-48 Gupta, S., Chattopadhyay, M. K., Chatterjee, P., Ghosh, B., & SenGupta, D. N. (1998). Expression of abscisic acid-responsive element-binding protein in salt-tolerant indica rice (Oryza sativa L. cv. Pokkali). Plant Mol Biol, 37(4), 629-637. Hassan, Z., Ul-Allah, S., Khan, A. A., Shahzad, U., Khurshid, M., Bakhsh, A., Amin, H., Jahan, M. S., Rehim, A., & Manzoor, Z. (2021). Phenotypic characterization of exotic tomato germplasm: An excellent breeding resource. PLos one, 16(6), e0253557. Heath, R. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys, 125(1), 189-198. Hossain, M. S. (2019). Present Scenario of Global Salt Affected Soils, its Management and Importance of Salinity Research. International Research Journal of Biological Sciences, 1(1), 1-3. Huang, J.-C., Lai, W.-A., Singh, S., Hameed, A., & Young, C.-C. (2013). Response of mycorrhizal hybrid tomato cultivars under saline stress. Journal of soil science and plant nutrition, 13(2), 469-484. Jha, Yachana, Subramanian, & R., B. (2013). Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chilean Journal of Agricultural Research. 73(1), 213-219. Jyan, Chyun, Jang, and, Jen, & Sheen. (1997). Sugar sensing in higher plants. Trends in Plant Science, 2, 208-214. Kato, M., & Shimizu, S. (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65(4), 729-735. Kusse, G. G., & Tsegaye, M. K. (2019). Determination of concentration of some essential and heavy metals in roots of Moringa stenopetala using flame atomic absorption spectroscopy. Journal of medicinal plant research, 13(4), 89-95. Leshem, Y. a. Y. (1987). Membrane phospholipid catabolism and Ca2+ activity in control of senescence. Physiologia Plantarum, 69(3), 551-559. Lin, Xia, Zhao, Encai, Bao, Kai, Cao, Zhirong, & Zou. (2019). Effects of Arbuscular Mycorrhizal Fungi on Watermelon Growth, Elemental Uptake, Antioxidant, and Photosystem II Activities and Stress-Response Gene Expressions Under Salinity-Alkalinity Stresses. Frontiers in Plant Science, 10, 863-863. Lipan, L., Issa-Issa, H., Moriana, A., Zurita, N. M., Galindo, A., Martín-Palomo, M. J., Andreu, L., Carbonell-Barrachina, Á. A., Hernández, F., & Corell, M. (2021). Scheduling Regulated Deficit Irrigation with Leaf Water Potential of Cherry Tomato in Greenhouse and its Effect on Fruit Quality. Agriculture, 11(7), 669. M., GIOVANNETTI, B., & MOSSE. (1980). AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS. New Phytologist, 84, 489-500. Macadam, J. W., Nelson, C. J., & Sharp, R. E. (1992). Peroxidase Activity in the Leaf Elongation Zone of Tall Fescue 1. Plant Physiology, 99(3), 872-878. Majewska, M. L., Baszkowski, J., Nobis, M., Rola, K., Nobis, A., Akomiec, D., Czachura, P., & Zubek, S. (2015). Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties. Symbiosis, 65(3), 101-115. Mattioli, R., Costantino, P., & Trovato, M. (2009). Proline accumulation in plants: not only stress. Plant Signal Behav, 4(11), 1016-1018. Meng, C., Quan, T. Y., Li, Z. Y., Cui, K. L., Yan, L., Liang, Y., Dai, J. L., Xia, G. M., & Liu, S. W. (2017). Transcriptome profiling reveals the genetic basis of alkalinity tolerance in wheat. BMC Genomics, 18(1), 24. Mirshad, P. P., & Puthur, J. T. (2016). Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.). Environmental Monitoring and Assessment, 188(7), 425. Mohamad, Al, Hassan, Juliana, Chaura, María, P., Donat-Torres, Monica, & Boscaiu. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2), 9. Moretti, L. G., Crusciol, C., Bossolani, J. W., Calonego, J. C., & Hungria, M. (2021). Beneficial microbial species and metabolites alleviate soybean oxidative damage and increase grain yield during short dry spells. European Journal of Agronomy, 127, 126293. Morton, J. B., Bentivenga, S. P., & Wheeler, W. W. (1993). Germ plasm in the international collection of arbuscular and vesicular-arbuscular mycorrhizal fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon, 48, 491-528. Munns, R. A leaf elongation assay detects an unknown growth inhibitor in xylem sap from wheat and barley. (1992). Aust. J. Plant Physiol. 19, 127-135. Nakano, Y., & Asada, K. (1980). Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(5), 867-880. Neocleous, D., Nikolaou, G., Ntatsi, G., & Savvas, D. (2021). Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution. Agricultural Water Management, 258, 107163. Pal, K. K., Dey, R., Sherathia, D. N., Dayal, D., & Radhakrishnan, T. Alleviation of Salinity Stress in Peanut by Application of Endophytic Bacteria. Frontiers in microbiology, 12, 650771. Paloma, S. B., Pilar, T., Jordi, G., Pozo, M. J., Gemma, C. E., Miguel, C., & Víctor, F. (2016). The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato. Frontiers in microbiology, 7, 1598. Parihar, M., Rakshit, A., Singh, H. B., & Rana, K. (2019). Diversity of arbuscular mycorrhizal fungi in alkaline soils of hot sub humid eco-region of Middle Gangetic Plains of India. Acta Agriculturae Scandinavica, 69(2), 1-12. Parinita, A., Mitali, D., Prashant, M., Khantika, P., Kalyanashis, J., & Agarwal, P. K. (2016). Improved Shoot Regeneration, Salinity Tolerance and Reduced Fungal Susceptibility in Transgenic Tobacco Constitutively Expressing PR-10a Gene. Frontiers in Plant Science, 7, 217. Phillips, J. M. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158. Qin, Wenjie Yan, Hengyu, Zou, Bingyin, Guo, Runze Ci, Dunwei Tang, Zhaohui Zou, Xiaoxia Zhang, Xiaojun Yu, Xiaona Wang, Yuefu Si, Tong. (2021). Arbuscular mycorrhizal fungi alleviate salinity stress in peanut: Evidence from pot-grown and field experiments. Food and Energy Security. 10(4), e314. Raziq, A., Wang, Y., Mohi Ud Din, A., Sun, J., Shu, S., & Guo, S. (2022). A Comprehensive Evaluation of Salt Tolerance in Tomato (Var. Ailsa Craig): Responses of Physiological and Transcriptional Changes in RBOH’s and ABA Biosynthesis and Signalling Genes. International Journal of Molecular Sciences, 23(3), 1603. Reid, D. A., Gerdemann, J. W., & Trappe, J. M. (1974). The Endogonaceae in the Pacific Northwest. Kew Bulletin, 30(4), 716. Rishi, A., Sneha, S., & Chandra, S. (2014). Effect of Short Term Salt Stress on Chlorophyll Content, Protein and Activities of Catalase and Ascorbate Peroxidase Enzymes in Pearl Millet. American Journal of Plant Physiology, 9(1), A1422. Samarah, Nezar Husein Bany Hani, Mu’awia Muhsen Ibrahim Makhadmeh, Ibrahim. Mahmoud. (2021). Effect of Magnetic Treatment of Water or Seeds on Germination and Productivity of Tomato Plants under Salinity Stress. Horticulture, 7(8), 220. Sánchez-Bel, P., Sanmartín, N., Pastor, V., Mateu, D., Cerezo, M., Vidal-Albalat, A., Pastor-Fernández, J., Pozo, M. J., & Flors, V. (2017). Mycorrhizal tomato plants fine tunes the growth‐defencebalance upon N depleted root environments. Plant Cell and Environment, 41(2), 406-420. Shalini, T., Vivek, P., Chauhan, P. S., & Charu, L. (2017). Bacillus amyloliquefaciens Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice. Frontiers in Plant Science, 8, 1510. Song, J., Chen, M., Feng, G., Jia, Y., Wang, B., & Zhang, F. (2009). Effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa. Plant and Soil, 314(1), 133-141. Steinkellner, S., Hage-Ahmed, K., García-Garrido, J. M., Illana, A., Ocampo, J. A., & Vierheilig, H. (2012). A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mycorrhiza, 22(3), 189-194. Tisarum, R., Theerawitaya, C., Samphumphuang, T., Polispitak, K., Thongpoem, P., Singh, H. P., & Cha-um, S. (2020). Alleviation of Salt Stress in Upland Rice (Oryza sativa L. ssp. indica cv. Leum Pua) Using Arbuscular Mycorrhizal Fungi Inoculation. Frontiers in Plant Science, 11, 348. Wang, S., Chen, A., Xie, K., Yang, X., & Xu, G. (2020). Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proceedings of the National Academy of Sciences, 117(28), 202000926. Watts-Williams, S. J., Cavagnaro, T. R., & Tyerman, S. D. (2018). Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions. Plant Cell & Environment, 42(1), 285-294. Watts‐Williams, S., Emmett, B. D., Levesque‐Tremblay, V., Maclean, A. M., Sun, X., Satterlee, J. W., Fei, Z., & Harrison, M. J. (2019). Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. Plant, Cell & Environment, 42(5), 1758-1774. Wu, Q. S., Cao, M. Q., Zou, Y. N., Chu, W., & He, X. H. (2016). Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Scientia Horticulturae, 199, 95-102. Wu, Q. S., & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417-425. Xiang, Z., Yan, L., Jingjing, H., & Jixing, X. (2020). OsNAC45 is Involved in ABA Response and Salt Tolerance in Rice. Rice, 13(1), 79. Xiao, Y., & Chen, L. (2022). Arbuscular mycorrhizal fungi reduce potassium, cadmium and ammonium losses but increases nitrate loss under high intensity leaching events. BMC Plant Biology, 22(1), 365. Yan, & S.-P. (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & Cellular Proteomics, 5(3), 484-496. Yu, Y., Wu, G., Yuan, H., Cheng, L., Zhao, D., Huang, W., Zhang, S., Zhang, L., Chen, H., Zhang, J., & Guan, F. (2016). Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biology, 16(1), 124. Zhang, H., Jiang, C., Lei, J., Dong, J., Ren, J., Shi, X., Zhong, C., Wang, X., Zhao, X., & Yu, H. (2022). Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance. Genomics, 114(2), 110285. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86682 | - |
| dc.description.abstract | 叢枝菌根菌(arbuscular mycorrhizal fungus, AMF)為⼟壤益⽣真菌,可與⼤多數陸⽣植物建立共⽣關係,促進植物對⽔分及礦物質養分之吸收,此外,研究亦指出接種 AMF 能增進植物之逆境抗性,如鹽害抗性,然⽽,多數研究以澆灌鹽⽔的⽅式模擬⼟壤鹽害,AMF 共⽣對實際栽培在鹽(鹼)⼟的作物的影響仍有待探討;為貼近 AMF 應用於鹽(鹼)田區的情形,本研究於 2021 年⾄台南北門區之鹽鹼田區採集⼟壤,並鑑定⼟樣內 AMF 菌種,發現 Funneliformis mosseae為優勢 AMF 菌種之⼀ ,為了解接種 F. mosseae 對作物鹽鹼逆境脅迫的影響,我們選用⾼經濟產值作物 — 番茄,進⾏試驗規劃。首先評估 5 種番茄品系對 F.mosseae 之親和性,發現⽟⼥番茄與 F. mosseae 之親和性最佳,因此選用作為後續試驗的品系;⽽在鹽鹼逆境試驗發現,與未接種處理相比,接種 AMF 的植株在移植到鹽鹼⼟後,老葉外表型受損程度較低,光合作用指標 SPAD 較⾼,電解質滲漏率較低,抗氧化酵素抗壞⾎酸酶(Ascorbate peroxidase, APX)和過氧化氫酶(Catalase, CAT)活性顯著提升,⽽滲透調節物質脯胺酸和總可溶性醣含量較低,離⼦濃度量測結果顯示葉片中 Na+和Ca2+離⼦累積較少,此結果表示接種 F.mosseae 可緩解⽟⼥番茄的鹽鹼逆境脅迫,使植株維持較佳的光合作用率與抗氧化能⼒,進⽽有較⾼產量 。本試驗揭露 F. mosseae 對活化鹽鹼田區作物栽培之潛⼒,可推廣作為微⽣物肥料,以友善環境的⽅式提升⼟地的利用價值。 | zh_TW |
| dc.description.abstract | Arbuscular mycorrhizal fungus (AMF) is a kind of beneficial fungi which can form symbiosis with plants, facilitating the absorption of water and mineral nutrient for host plants. Besides, some reports pointed out that AMF could also enhance host resistance to abiotic stress, like salinity. However, in most studies, saline water was provided to mimic the salinity condition. There were few researchers using saline-alkaline soil to conduct AMF-associated experiments. Therefore, the effects of AMF on crop growth in saline-alkaline environment await for further characterization. In 2021, we went to a saline-alkaline field in Beimen district, Tainan and find out the AMF species Funneliformis mosseae enriched in the rhizosphere part of it. We hypothesized that F. mosseae can help crops to alleviate the saline-alkaline stress. First, we tested the compatibility of five different tomato cultivars to F. mosseae, which found that the cultivar “Yu-nu” showed the best mycorrhizal growth response (MGR), used for further experiments. Under saline-alkaline condition, the SPAD value, antioxidant APX, CAT, POD, and chlorophyll fluorescence indicator Y(II) were significantly increased, and osmolyte content like proline and total soluble sugar were decreased in AMF-colonized plants, compared to mock-treated ones. Our results indicated that the inoculation of F. mosseae alleviates the saline-alkaline stress in tomato and increased the fruit production. Through our studies, we see the potential of AMF inoculation on tomato under saline-alkaline conditions which is good for the development of sustainable agriculture | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:10:59Z (GMT). No. of bitstreams: 1 U0001-2909202217143900.pdf: 11011148 bytes, checksum: bb2cc97e2969c9e54838d15e3cdfd886 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 致謝 …………………………………………………………………………………. I 中⽂摘要 ……………………………………………………………………………II Abstract ……………………………………………………………………………...III 縮寫表…………………………………………………………………………….…..IV 目錄 …………………………………………………………………………………..1 圖目錄 …………………………………………………………………………..……5 表目錄 …………………………………………………………………………….….7 附表目錄 ……………………………………………………………………….…….8 第⼀章 前⾔ …………………………………………………………………………9 1. 番茄的介紹 …………………………………………………………..…9 2. 鹽害與鹽鹼逆境對作物之影響 ………………………………………10 3. 叢枝菌根菌的介紹 ……………………………………………………12 4. 研究動機與目的 ………………………………………………………13 第⼆章 材料與⽅法 ……………………………………………………………..…14 1. 鹽鹼⼟採樣與⼟樣中叢枝菌根菌種之鑑定 …………………………14 2. 叢枝菌根菌接種源 ……………………………………………………15 3. 番茄品系 ………………………………………………………………15 4. 番茄種⼦催芽前處理 …………………………………………………16 5. 育苗與介質之製備 ……………………………………………………16 6. 試驗規劃 6.1 試驗⼀:不同品系番茄的 AMF 親和性評估 ………………..…16 6.2 試驗⼆:不同鹽鹼程度對⽟⼥番茄⽣長之影響 ……..…………17 6.3 試驗三:⽟⼥番茄接種 AMF 之鹽鹼逆境盆栽試驗 ……………17 6.3.1 育苗 ……………………………………………………..…17 6.3.2 鹽鹼處理介質之製備 ……………………………………..18 6.3.3 鹽鹼逆境盆栽試驗 ……………………………………..…18 7. ⽣理指標測定 …………………………………………………………19 7.1 叢枝菌根菌染⾊及共⽣率調查 ……………………………….…19 7.2 葉綠素螢光測定 ……………………………………………….…20 7.3 以葉綠素計(SPAD)測定相對葉綠素含量 ……………………20 7.4 萃取葉片之葉綠素含量測定 ……………………………...……..20 7.5 離⼦滲漏度測定 ………………………………………………….21 7.6 相對⽔分含量(relative water content, RWC)測定 ……………21 7.7 鈉、鉀、鈣離⼦含量測定 ………………………………………..22 7.8 磷酸含量測定 ………………………………………………….....22 7.9 丙⼆醛(Malondialdehyde, MDA)含量測定 …………………..23 7.10 蛋白質定量 ………………………………………………..…….23 7.11 抗氧化酵素活性測定 ………………………………………...…24 7.11.1 過氧化氫酶(Catalase, CAT)活性測定 …………………24 7.11.2 抗壞⾎酸酶(Ascorbate peroxidase, APX)活性測定………24 7.11.3 過氧化物酶(Peroxidase, POD)活性測定..…...……………25 7.12 ROS量測 ……………………………………………………...…26 7.12.1 DAB 染⾊法…………………………………………………26 7.12.2 NBT 染⾊法………………………………………………….26 7.13 滲透壓調節物質含量測定 7.13.1 脯胺酸含量測定 ………………………………………..…26 7.13.2 總可溶性醣(Total soluble sugar)含量測定 ……………27 8. RNA 萃取、cDNA 合成與 RT-qPCR…………………………………..27 第三章 結果 ……………………………………………………………………..…28 1. 鹽鹼⼟樣分析與叢枝菌根菌菌種調查…………………………….….28 2. 不同品系番茄與叢枝菌根菌 Funneliformis mosseae 親和性之差異…29 3. ⽟⼥番茄幼苗對不同鹽鹼程度耐受性之評估………………………..33 4. ⽟⼥番茄接種叢枝菌根菌 Funneliformis mosseae 在鹽鹼處理下的⽣理 表現 ……………………………………………………………………34 4.1 ⽣理性狀 ……………………………………………………….…35 4.2 老葉之氧化逆境反應 ……………………………………….……36 4.3 植體離⼦濃度 …………………………………………………….38 4.4 老葉之滲透調節物質含量 …………………………….…………39 4.5 鹽鹼栽培下之菌根感染率以及接種叢枝菌根菌對鹽鹼栽培介質 電導度之影響 ………………………………………………….…40 4.6 產量調查 ……………………………………………………….…41 第四章 討論 …………………………………………………………………......…42 1. 叢枝菌根菌 F. mosseae 對不同品系番茄幼苗的⽣理影響 ………….42 2. 叢枝菌根菌 F. mosseae 對鹽鹼逆境下⽟⼥番茄的⽣理影響.…..……44 2.1 ⽣理性狀與光合作用指標 …………………………………….…44 2.2 抗氧化逆境反應 …………………………………………….……46 2.3 滲透調節物質 ……………………………………………….……50 2.4 植體離⼦濃度 ………………………………………………….…52 2.5 產量調查 ………………………………………………………….53 3. 結論與未來展望…………………………………………………..……53 參考⽂獻 ……………………………………………………………………………55 圖 ……………………………………………………………………………………62 表 ……………………………………………………………………………………82 附錄 …………………………………………………………………………………85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 叢枝菌根菌 | zh_TW |
| dc.subject | 番茄 | zh_TW |
| dc.subject | 鹽鹼逆境 | zh_TW |
| dc.subject | 抗氧化酵素 | zh_TW |
| dc.subject | 滲透調節物質 | zh_TW |
| dc.subject | 叢枝菌根菌 | zh_TW |
| dc.subject | 番茄 | zh_TW |
| dc.subject | 鹽鹼逆境 | zh_TW |
| dc.subject | 抗氧化酵素 | zh_TW |
| dc.subject | 滲透調節物質 | zh_TW |
| dc.subject | saline-alkaline stress | en |
| dc.subject | osmolytes | en |
| dc.subject | antioxidant enzyme | en |
| dc.subject | arbuscular mycorrhizal fungus | en |
| dc.subject | tomato | en |
| dc.subject | arbuscular mycorrhizal fungus | en |
| dc.subject | osmolytes | en |
| dc.subject | antioxidant enzyme | en |
| dc.subject | saline-alkaline stress | en |
| dc.subject | tomato | en |
| dc.title | 叢枝菌根菌共生可緩解番茄鹽鹼逆境壓力 | zh_TW |
| dc.title | Alleviation of saline-alkaline stress in tomato (Solanum lycopersicum L.) by arbuscular mycorrhizal symbiosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林素禎(Su-Chen Lin) | |
| dc.contributor.oralexamcommittee | 蔡育彰(Yu-Chang Tsai),洪傳揚(Chang-Yang Hung) | |
| dc.subject.keyword | 叢枝菌根菌,番茄,鹽鹼逆境,抗氧化酵素,滲透調節物質, | zh_TW |
| dc.subject.keyword | arbuscular mycorrhizal fungus,tomato,saline-alkaline stress,antioxidant enzyme,osmolytes, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202204239 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-09-30 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2909202217143900.pdf | 10.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
