Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉仲基(Chung-Kee Yeh)
dc.contributor.authorTzu-Yang Chengen
dc.contributor.author鄭子揚zh_TW
dc.date.accessioned2023-03-20T00:10:05Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-08-03
dc.identifier.citation李宏毅。2016。專題-人工智慧與 AlphaGo 什麼是深度學習。數理人文:10。 陳世銘、蔡兆胤、謝廣文、楊智凱、顏炳郎、羅筱鳳、葉仲基、謝禮丞、徐武煥、 黃國祥、陳俊仁、王毓華。2020。溫室設施蔬果生產之智慧系統。台灣農學會報20(3&4): 150-160。 維基百科。2021。樹莓派。網址: https://zh.wikipedia.org/zh-tw/%E6%A0%91%E8%8E%93%E6%B4%BE。上網日期: 2021-10-23。 Abbas, Z. and W. Yoon. 2015. A survey on energy conserving mechanisms for the internet of things: wireless networking aspects. Sensors 15(10): 24818-24847. Albawi, S., T. A. Mohammed and S. Al-Zawi. 2017. Understanding of a convolutional neural network. International Conference on Engineering and Technology: 1-6. Alexey, B., C. Y. Wang and H. Y. M. Liao. 2020. Yolov4: Optimal speed and accuracy of object detection. ArXiv preprint arXiv: 2004.10934. Bahl, P. and V. N. Padmanabhan. 2000. Radar: an in-building RF-based user location and tracking system. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies 2: 775-784. Benhamou, E. 2018. Kalman filter demystified: From intuition to probabilistic graphical model to real case in financial markets. ArXiv preprint arXiv:1811.11618. Geoawesomeness. 2013. iBeacon from Apple Inc: Will it change the indoor positioning market? Available at: https://geoawesomeness.com/ibeacon-apple-inc-will-change-indoor-positioning-market/. Accessed 25 April 2022. Girshick, R., J. Donahue, T. Darrell and J. Malik. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 580-587. Kim, J. A., J. Y. Sung and S. H. Park. 2020. Comparison of faster-rcnn, yolo, and ssd for real-time vehicle type recognition. In 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia): 1-4. Koledoye, M. A., D. D. Martini, S. Rigoni and T. Facchinetti. 2018. A comparison of rssi filtering techniques for range-based localization. 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA): 761-767. Kunhoth, J., A. Karkar, S. Al Maadeed and A. Al Ali. 2020. Indoor positioning and wayfnding systems: a survey. Human-centric Computing and Information Sciences 10(1): 1-41. Laaraiedh, M., L. Yu, S. Avrillon and B. Uguen. 2011. Comparison of hybrid localization schemes using rssi, toa, and tdoa. 17th European Wireless 2011 - Sustainable Wireless Technologies: 1-5. Lee, J., Y. Su and C. Shen. 2007. A comparative study of wireless protocols: Bluetooth, uwb, zigbee, and wi-fi. IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society: 46-51. Liu, H., Y. Zhang, X. Su, X. Li, and N. Xu. 2015. Mobile localization based on received signal strength and pearson's correlation coefficient. International Journal of Distributed Sensor Networks 11(8): 157046. Medium. 2021. Yolov4 vs yolov4-tiny: Training yolo for object detection. Available at: https://medium.com/analytics-vidhya/yolov4-vs-yolov4-tiny-97932b6ec8ec. Accessed 5 May 2022. Nordic Semiconductor. 2021. nRF51822. Available at: https://www.nordicsemi.com/products/nrf51822. Accessed 23 September 2021. Olyazadeh, R. 2012. Least square approach on indoor positioning measurement techniques. In Proceedings of the 2012 Conference on Geosciences. Geoinformation and Environment, Lisbon, Portugal 9-10. Raz, S., P. Misra, Z. He and T. Voigt. 2015. Bluetooth smart: An enabling technology for the Internet of Things. 2015 IEEE 11th International Conference. Wireless and Mobile Computing, Networking and Communications: 155-162. Redmon, J., S. Divvala, R. Girshick and A. Farhadi. 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 779-788. SciPy documentation. 2021. Scipy.optimize.curve_fit. USA. Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html. Accessed 25 September 2021. Simon, D. 2006. Optimal state estimation: Kalman, h infinity, and nonlinear approaches. Hoboken, NJ, USA: Wiley. TechGeekBuzz. 2020. Best IoT Applications. Available at: https://www.techgeekbuzz.com/iot-applications/. Accessed 28 September 2021. Tosi, J., F. Taffoni, M. Santacatterina, R. Sannino and D. Formica. 2017. Performance evaluation of bluetooth low energy: A systematic review. Sensors, 17(12): 2898. Tutorialspoint. 2021. Arduino Uno vs ESP32. Available at: https://www.tutorialspoint.com/arduino-uno-vs-esp32. Accessed 20 February 2022. Wikipedia. 2022. dBm. Available at: https://en.wikipedia.org/wiki/DBm. Accessed 22 July 2022. Zafari, F., I. Papapanagiotou, M. Devetsikiotis and T. Hacker. 2017. An iBeacon based proximity and indoor localization system. ArXiv preprint arXiv:1703.07876. Zhang, Q., Y. Sun and Z. Cui. 2010. Application and analysis of zigbee technology for smart grid. 2010 International Conference on Computer and Information Application: 171-174. Zhao, Z. Q., P. Zheng, S. T. Xu and X. Wu. 2019. Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems 30(11): 3212-3232.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86668-
dc.description.abstract近年臺灣農業受高齡化導致缺工問題日益嚴重,因此越來越多農業自動化的解決方案被用來解決人力不足的問題。過去於溫室中協助自動化採收的車輛多採用軌道的方式運行,雖能達到精準且穩定的移動,但會增添鋪設軌道的麻煩,因此本研究期望以藍牙無線通訊網路的方式對空間中的載具做定位,並使用深度學習的方式記錄栽培架上的果實數目和位置。本研究於可利用室內環境中作為參考座標的Beacon發射低功耗藍牙訊號讓載具做接收,載具則會依據接收到的低功耗藍牙的訊號強度指標(RSSI)的衰減程度做Beacon和載具之間的距離換算,通過接收到的多個訊號利用三邊定位的演算法計算載具於空間中的二維座標。溫室中果實則利用深度學習YOLO模型做物件偵測,而為了降低系統中硬體的運算量,本研究選擇較輕量化並可執行即時辨識能力的YOLO tiny模型,並使用247張牛番茄果實做YOLO tiny模型訓練。在室內定位精度上,使用訊號大小做定位精準深受環境中障礙物、硬體使用和參考座標密集程度的影響,在一維定位方面,短距離時之定位誤差可達公分級誤差,但隨著距離增加,定位誤差也隨之增加; 二維定位誤差除了受一維精準度影響,也會受Beacon密度的影響,在10個量測樣本點的試驗中,平均誤差為156.84 cm。而在應用深度學習的物件偵測成果上,使用189張測試影像對YOLO v4 tiny模型做結果評估,Precision為88.8%,Recall則為90.2%。相較於v3 tiny模型的成果,Precision小幅提升0.4%,而Recall則大幅提升了7%,且在高曝光程度的測試資料集之表現也有進步。zh_TW
dc.description.abstractIn recent years, the aging population has leaded to the labor shortage problem in Taiwan; as the result, more and more agricultural automation solutions are used to solve the insufficient manpower problem. In the past, the vehicles that assisted automated harvesting in the greenhouse are mostly operated by rails. Although highly accurate position and stable movement could be achieved, it would increase the cost and time of laying the track. Therefore, this study aimed to find the vehicle position in the greenhouse by means of Bluetooth wireless communication network, and use deep learning algorithm to record the number and position of fruits on the cultivation racks. In this study, Beacons as reference coordinates in the indoor environment were used to transmit Bluetooth Low Energy (BLE) signals for the vehicle to receive. Then, the vehicle would convert the distance between the Beacons and the vehicle according to the Bluetooth signal ‘s Received Signal Strength Indication (RSSI) and use the trilateration algorithm to calculate the vehicle ‘s two-dimensional coordinate. YOLO was used as the deep learning algorithm for fruits object detection in this study. In order to reduce the computational load of the hardware in the system, YOLO tiny with lighter model that can perform real-time identification was selected and used 247 tomatoes images filming in the greenhouse for YOLO model training. In terms of indoor positioning accuracy, using RSSI for positioning accuracy is greatly affected by obstacles in the environment, the use of hardware and the density of reference coordinates. For one-dimensional positioning, at short distances, the positioning error could reach centimeter-level errors. As the distance increased, the positioning error also increased. For two-dimensional positioning, the estimated error is affected by one-dimensional accuracy and the density of Beacons as well. In the test of 10 measurement sample points, the average estimated error is 156.84 cm. In terms of target detection results using deep learning, using 189 test images to evaluate the results of the YOLO v4 tiny model, the Precision rate was 88.8% and the Recall rate was 90.2%. Compared with the results of the YOLO v3 tiny, Precision had increased slightly by 0.4%, while Recall had increased by 7%, and the performance in the high-exposure test data set has also improved.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:10:05Z (GMT). No. of bitstreams: 1
U0001-0208202222540700.pdf: 4911822 bytes, checksum: 1b77b0da5d7432215315686a5a57da82 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 x 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 1 第二章 文獻探討 3 2.1 室內定位 3 2.2 無線網路協議 4 2.3 低功耗藍牙(Bluetooth Low Energy, BLE) 6 2.4 室內定位量測方法 7 2.4.1 到達時間TOA (Time of Arrival) 7 2.4.2 接收訊號強度指示 RSSI (Received Signal Strength Indication) 8 2.5 卡爾曼濾波 10 2.6 深度學習 11 2.7 物件偵測 12 2.7.1 R-CNN 12 2.7.2 YOLO 12 第三章 研究方法 14 3.1系統架構 14 3.2 硬體設備 15 3.2.1 Raspberry Pi 3b+ 15 3.2.2 ESP32開發板 16 3.2.3 BLE Beacon 17 3.2.4 Webcam 19 3.3 軟體使用 19 3.3.1開發程式語言 19 3.3.2 OpenCV 19 3.4 Beacon 裝置設定與通訊識別格式 20 3.5 RSSI衰減模型建置與Beacon空間配置 21 3.6 Beacon高度設置 24 3.7 卡爾曼濾波去除RSSI噪音 24 3.8 二維定位演算法 26 3.8.1 三邊定位演算法(Trilateral Localization Algorithm) 26 3.8.2 使用比例因子(Scaling Factor)改善三邊定位演算法 28 3.9室內定位實驗流程 31 3.10 深度學習模型訓練和模型評估方法 32 3.10.1 模型訓練 32 3.10.2 模型結果評估方法 33 第四章 結果與討論 35 4.1 訊號大小受環境因素影響實驗 35 4.1.1 訊號大小受環境障礙物影響實驗 35 4.1.2 Beacon放置不同高度的訊號差異比較 36 4.2卡爾曼濾波去除噪音試驗 38 4.3 RSSI衰減模型參數試驗 40 4.4 一維距離估計結果 43 4.5 二維定位結果 45 4.6 物件偵測模型訓練結果 49 4.7 YOLO tiny物件偵測模型結果分析 51 4.7.1 測試資料集選擇 51 4.7.2 測試資料集影像辨識結果 53 4.7.3 YOLO tiny物件偵測模型結果評估 54 第五章 結論與建議 56 參考文獻 58
dc.language.isozh-TW
dc.subject室內定位zh_TW
dc.subject低功耗藍牙zh_TW
dc.subject物件偵測zh_TW
dc.subject深度學習zh_TW
dc.subject低功耗藍牙zh_TW
dc.subject智慧農業zh_TW
dc.subject物件偵測zh_TW
dc.subject室內定位zh_TW
dc.subject深度學習zh_TW
dc.subject智慧農業zh_TW
dc.subjectIndoor Positioningen
dc.subjectSmart Agricultureen
dc.subjectBluetooth Low Energyen
dc.subjectObject Detectionen
dc.subjectDeep Learningen
dc.subjectSmart Agricultureen
dc.subjectDeep Learningen
dc.subjectObject Detectionen
dc.subjectBluetooth Low Energyen
dc.subjectIndoor Positioningen
dc.title基於藍牙與深度學習之溫室內定位及蔬果辨識zh_TW
dc.titleGreenhouse Indoor Positioning and Fruit Recognition Based on Bluetooth and Deep Learningen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃振康(Chen-Kang Huang),吳剛智(Gang-Jhy Wu)
dc.subject.keyword智慧農業,深度學習,物件偵測,低功耗藍牙,室內定位,zh_TW
dc.subject.keywordSmart Agriculture,Deep Learning,Object Detection,Bluetooth Low Energy,Indoor Positioning,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202201991
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
dc.date.embargo-lift2022-08-10-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-0208202222540700.pdf4.8 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved