Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86654
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志軒(Chih-Hsuan Chen)
dc.contributor.authorWei-Jen Suen
dc.contributor.author蘇唯仁zh_TW
dc.date.accessioned2023-03-20T00:09:13Z-
dc.date.copyright2022-08-18
dc.date.issued2022
dc.date.submitted2022-08-04
dc.identifier.citation[1] K. Otsuka and X. Ren, 'Physical metallurgy of Ti–Ni-based shape memory alloys,' Progress in Materials Science, vol. 50, no. 5, pp. 511-678, 2005. [2] D. Y. Cong, G. Saha, and M. R. Barnett, 'Thermomechanical properties of Ni-Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing,' (in eng), Acta Biomater, vol. 10, no. 12, pp. 5178-5192, 2014. [3] J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, 'A review of shape memory alloy research, applications and opportunities,' Materials & Design, vol. 56, pp. 1078-1113, 2014. [4] L. Cirillo, A. R. Farina, A. Greco, and C. Masselli, 'Numerical Optimization of a Single Bunch of NiTi Wires to Be Placed in an Elastocaloric Experimental Device: Preliminary Results,' Magnetochemistry, vol. 7, no. 5, 2021. [5] W. Goetzler, R. Zogg, C. J. Johnson, and J. Young, 'Energy savings potential and RD & D opportunities for non-vapor-compression HVAC,' Energy Effic Renew Energy, 2014. [6] S. Fähler, 'Caloric Effects in Ferroic Materials: New Concepts for Cooling,' Energy Technology, vol. 6, no. 8, pp. 1394-1396, 2018. [7] Z. Yang, D. Y. Cong, X. M. Sun, Z. H. Nie, and Y. D. Wang, 'Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys,' Acta Materialia, vol. 127, pp. 33-42, 2017. [8] J. Morgiel, E. Cesari, J. Pons, A. Pasko, and J. Dutkiewicz, 'Microstructure and martensite transformation in aged Ti-25Ni-25Cu shape memory melt spun ribbons,' Journal of Materials Science, vol. 37, pp. 5319-5325, 12/15 2002. [9] T.-H. Nam, J.-h. Lee, K.-w. Kim, H.-J. Ahn, and Y.-W. Kim, 'The B2-B19-B19’ transformation in a rapidly solidified Ti-45Ni-5Cu(at%) alloy,' Journal of Materials Science, vol. 40, pp. 4925-4927, 2005. [10] S.-H. Chang, S.-K. Wu, and H. Kimura, 'Crystallization Kinetics of Ti50Ni25Cu25 Melt-Spun Amorphous Ribbons,' Materials Transactions - MATER TRANS, vol. 47, pp. 2489-2492, 2006. [11] A. V. Shelyakov, N. N. Sitnikov, A. P. Menushenkov, A. A. Korneev, R. N. Rizakhanov, and N. A. Sokolova, 'Fabrication and characterization of amorphous–crystalline TiNiCu melt-spun ribbons,' Journal of Alloys and Compounds, vol. 577, pp. S251-S254, 2013. [12] J.-h. Lee, T.-h. Nam, H.-j. Ahn, and Y.-w. Kim, 'Shape memory characteristics and superelasticity of Ti–45Ni–5Cu alloy ribbons,' Materials Science and Engineering: A, vol. 438-440, pp. 691-694, 2006. [13] T.-H. Nam, J.-H. Lee, J.-M. Nam, K.-W. Kim, G.-B. Cho, and Y.-W. Kim, 'Microstructures and mechanical properties of Ti–45at.%Ni–5at.%Cu alloy ribbons containing Ti2Ni particles,' Materials Science and Engineering: A, vol. 483-484, pp. 460-463, 2008. [14] T. Tadaki and C. M. Wayman, 'Crystal structure and microstructure of a cold worked TiNi alloy with unusual elastic behavior,' Scripta Metallurgica, vol. 14, no. 8, pp. 911-914, 1980. [15] K. Otsuka and K. Shimizu, 'Pseudoelasticity and shape memory effects in alloys,' International Metals Reviews, vol. 31, no. 1, pp. 93-114, 1986. [16] A. L. McKelvey and R. O. Ritchie, 'Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material,' (in eng), J Biomed Mater Res, vol. 47, no. 3, pp. 301-8, 1999. [17] G. B. Kauffman and I. Mayo, 'The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications,' The Chemical Educator, vol. 2, no. 2, pp. 1-21, 1997. [18] R. F. Hehemann and G. D. Sandrock, 'Relations between the premartensitic instability and the martensite structure in TiNi,' Scripta Metallurgica, vol. 5, no. 9, pp. 801-805, 1971. [19] R. J. Wasilewski, S. R. Butler, J. E. Hanlon, and D. Worden, 'Homogeneity range and the martensitic transformation in TiNi,' Metallurgical Transactions, vol. 2, no. 1, pp. 229-238, 1971. [20] K. Otsuka, T. Sawamura, K. Shimizu, and C. M. Wayman, 'Characteristics of the martensitic transformation in TiNi and the memory effect,' Metallurgical Transactions, vol. 2, no. 9, pp. 2583-2588, 1971. [21] K. K. Alaneme and E. A. Okotete, 'Reconciling viability and cost-effective shape memory alloy options – A review of copper and iron based shape memory metallic systems,' Engineering Science and Technology, an International Journal, vol. 19, no. 3, pp. 1582-1592, 2016. [22] J. Frenzel, E. P. George, A. Dlouhy, C. Somsen, M. F. X. Wagner, and G. Eggeler, 'Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,' Acta Materialia, vol. 58, no. 9, pp. 3444-3458, 2010. [23] M. Nishida, C. M. Wayman, and A. Chiba, 'Electron microscopy studies of the martensitic transformation in an aged Ti-51at%Ni shape memory alloy,' Metallography, vol. 21, no. 3, pp. 275-291, 1988. [24] C. M. Hwang, M. Meichle, M. B. Salamon, and C. M. Wayman, 'Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase,' Philosophical Magazine A, vol. 47, no. 1, pp. 9-30, 1983. [25] M. Imahashi, M. I. Khan, H. Y. Kim, and S. Miyazaki, 'The effect of Pd content on microstructure and shape-memory properties of Ti–Ni–Pd–Cu alloys,' Materials Science and Engineering: A, vol. 602, pp. 19-24, 2014. [26] K. Senkevich and D. Gusev, 'Effect of Heat Treatment on the Mechanical Behavior and Fracture of TiNi Alloy,' Physical Mesomechanics, vol. 22, pp. 224-229, 2019. [27] A. I. Lotkov, V. N. Grishkov, A. V. Kuznetsov, and S. N. Kulkov, 'TiNi aging and its effect on the start temperature of the martensitic transformation,' physica status solidi (a), vol. 75, no. 2, pp. 373-377, 1983. [28] S. Miyazaki, Y. Igo, and K. Otsuka, 'Effect of thermal cycling on the transformation temperatures of Ti-Ni alloys,' Acta Metallurgica, vol. 34, no. 10, pp. 2045-2051, 1986. [29] X. Wang, J. Humbeeck, B. Verlinden, and S. Kustov, 'Thermal cycling induced room temperature aging effect in Ni-rich NiTi shape memory alloy,' Scripta Materialia, vol. 113, pp. 206-208, 2016. [30] G. Airoldi, G. Bellini, and C. D. Francesco, 'Transformation cycling in NiTi alloys,' Journal of Physics F: Metal Physics, vol. 14, no. 8, pp. 1983-1987, 1984. [31] 李芝媛、吳錫侃,科儀新知第十六卷6 (1995) 6.0921-5093. [32] T. A. Schroeder and C. M. Wayman, 'The formation of martensite and the mechanism of the shape memory effect in single crystals of Cu-Zn alloys,' Acta Metallurgica, vol. 25, no. 12, pp. 1375-1391, 1977. [33] J. J. Wang, T. Omori, Y. Sutou, R. Kainuma, and K. Ishida, 'Two-way shape memory effect induced by cold-rolling in Ti–Ni and Ti–Ni–Fe alloys,' Scripta Materialia, vol. 52, no. 4, pp. 311-316, 2005. [34] T. A. Schroeder and C. M. Wayman, 'The two-way shape memory effect and other “training” phenomena in Cu-Zn single crystals,' Scripta Metallurgica, vol. 11, no. 3, pp. 225-230, 1977. [35] T. Saburi and S. Nenno, 'Reversible shape memory in Cu-Zn-Ga,' Scripta Metallurgica, vol. 8, pp. 1363-1367, 1974. [36] M. Nishida and T. Honma, 'All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging,' Scripta Metallurgica, vol. 18, no. 11, pp. 1293-1298, 1984. [37] K. Enami, A. Nagasawa, and S. Nenno, 'Reversible shape memory effect in Fe-base alloys,' Scripta Metallurgica, vol. 9, no. 9, pp. 941-948, 1975. [38] S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, 'Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys,' Metallurgical Transactions A, vol. 17, no. 1, pp. 115-120, 1986. [39] S. Miyazaki, 'Development and Characterization of Shape Memory Alloys,' in Shape Memory Alloys, M. Fremond and S. Miyazaki Eds. Vienna: Springer Vienna, pp. 69-147, 1996. [40] L. Kubin, 'Reviews on the Deformation Behavior of Materials,' Reviews on the deformation behavior of materials, vol. 4, pp. 181-275, 1982. [41] J. Khalil-Allafi, B. Amin-Ahmadi, and M. Zare, 'Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications,' Materials Science and Engineering: C, vol. 30, no. 8, pp. 1112-1117, 2010. [42] C.M.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110, 1972. [43] T. Tadaki, C. Wayman, Electron microscopy studies of martensitic transformations in Ti50Ni50− xCux alloys. Part II. Morphology and crystal structure of martensites, Metallography 15(3) 247-258, 1982. [44] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys, Materials Transactions, JIM 31(12) 1050-1056, 1990. [45] P. Potapov, S. Kulkoval, A. Shelyakov, K. Okutsu, S. Miyazaki, and D. Schryvers, 'Crystal structure of orthorhombic martensite in TiNi-Cu and TiNi-Pd intermetallics,' Journal De Physique Iv - J PHYS IV, vol. 112, pp. 727-730, 2003. [46] T. Saburi, Y. Watanabe, S. Nenno, Morphological characteristics of the orthorhombic martensite in a shape memory Ti–Ni–Cu alloy, ISIJ international 29(5) (1989) 405-411. [47] J. Zhang et al., 'In situ synchrotron X-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite,' Applied Physics Letters, vol. 105, no. 4, p. 041910, 2014. [48] W. Buhrer, R. Gotthardt, A. Kulik, O. Mercier, and F. Staub, 'Powder neutron diffraction study of nickel-titanium martensite,' Journal of Physics F: Metal Physics, vol. 13, no. 5, pp. L77-L81, 1983/05 1983. [49] Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka, 'Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method,' Acta Metallurgica, vol. 33, no. 11, pp. 2049-2056, 1985, [50] M. Thier, A. Mick, D. Drescher, and C. Bourauel, 'Deformation behaviour of NiTi shape memory alloys in bending,' Journal of Materials Science, vol. 26, no. 23, pp. 6473-6478, 1991. [51] S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki, 'The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals,' Scripta Metallurgica, vol. 18, no. 9, pp. 883-888, 1984, [52] H. C. Ling and R. Kaplow, 'Phase transitions and shape memory in NiTi,' Metallurgical and Materials Transactions A, vol. 11, no. 1, pp. 77-83, 1980. [53] . M. Wayman, I. Cornelis, and K. Shimizu, 'Transformation behavior and the shape memory in thermally cycled TiNi,' Scripta Metallurgica, vol. 6, no. 2, pp. 115-122, 1972. [54] O. Mercier, K. N. Melton, and Y. De Préville, 'Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi,' Acta Metallurgica, vol. 27, no. 9, pp. 1467-1475, 1979. [55] G. D. Sandrock, A. J. Perkins, and R. F. Hehemann, 'The premartensitic instability in near-equiatomic TiNi,' Metallurgical Transactions, vol. 2, no. 10, pp. 2769-2781, 1971. [56] H. C. Ling and K. Roy, 'Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic NiTi,' Metallurgical Transactions A, vol. 12, no. 12, pp. 2101-2111, 1981. [57] E. Goo and R. Sinclair, 'The B2 To R Transformation in Ti50Ni47Fe3 and Ti49.5Ni50.5 alloys,' Acta Metallurgica, vol. 33, no. 9, pp. 1717-1723, 1985. [58] T. Hara, T. Ohba, E. Okunishi, and K. Otsuka, 'Structural Study of R-Phase in Ti-50.23 at.%Ni and Ti-47.75 at.%Ni-1.50 at.%Fe Alloys,' Materials Transactions, JIM, vol. 38, no. 1, pp. 11-17, 1997. [59] S. Miyazaki and K. Otsuka, 'Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3 alloy,' Philosophical Magazine A, vol. 50, no. 3, pp. 393-408, 1985. [60] S. Miyazaki and K. Otsuka, 'Deformation and transition behavior associated with theR-phase in Ti-Ni alloys,' Metallurgical Transactions A, vol. 17, no. 1, pp. 53-63, 1986. [61] K. Otsuka, T. Sawamura, and K. Shimizu, 'Crystal structure and internal defects of equiatomic TiNi martensite,' physica status solidi (a), vol. 5, no. 2, pp. 457-470, 1971. [62] G. M. Michal and R. Sinclair, 'The structure of TiNi martensite,' Acta Crystallographica Section B, vol. 37, no. 10, pp. 1803-1807, 1981. [63] T. H. Nam, T. Saburi, Y. Kawamura, K. Shimizu, rsquo, and ichi, 'Shape Memory Characteristics Associated with the B2\ ightleftarrowsB19 and B19\ ightleftarrowsB19′ Transformations in a Ti-40Ni-10Cu (at.%) Alloy,' Materials Transactions, JIM, vol. 31, no. 4, pp. 262-269, 1990, [64] T. H. Nam, T. Saburi, K. Shimizu, rsquo, and ichi, 'Cu-Content Dependence of Shape Memory Characteristics in Ti–Ni–Cu Alloys,' Materials Transactions, JIM, vol. 31, no. 11, pp. 959-967, 1990. [65] T.-H. Nam, T. Saburi, and K. i. Shimizu, 'Effect of Thermo-mechanical Treatment on Shape Memory Characteristics in a Ti-40Ni-10Cu (at%) Alloy,' Materials Transactions, JIM, vol. 32, pp. 814-820, 1991, [66] T. Saburi, T. Komatsu, S. Nenno, and Y. Watanabe, 'Electron microscope observation of the early stages of thermoelastic martensitic transformation in a Ti-Ni-Cu alloy,' Journal of the Less Common Metals, vol. 118, no. 2, pp. 217-226, 1986. [67] H. C. Donkersloot and J. H. N. Van Vucht, 'Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition,' Journal of the Less Common Metals, vol. 20, no. 2, pp. 83-91, 1970. [68] Y. Hattori, T. Taguchi, H. Kim, and S. Miyazaki, 'Effect of Stoichiometry on Shape Memory Properties and Functional Stability of Ti–Ni–Pd Alloys,' Materials, vol. 12, p. 798, 2019. [69] M. Li, Q.J.J.o.t.M. Sun, P.o. Solids, Nanoscale phase transition behavior of shape memory alloys—closed form solution of 1D effective modelling, 110 (2018) 21-37. [70] C. M. Hwang, M. Meichle, M. B. Salamon, and C. M. Wayman, 'Transformation behaviour of a Ti50Ni47Fe3 alloy II. Subsequent premartensitic behaviour and the commensurate phase,' Philosophical Magazine A, vol. 47, no. 1, pp. 31-62, 1983. [71] Y.-W. Kim and T.-H. Nam, 'The effect of the melt spinning processing parameters on the martensitic transformation in Ti50–Ni35–Cu15 shape memory alloys,' Scripta Materialia, vol. 51, no. 7, pp. 653-657, 2004. [72] H. Y. Xing, H. Y. Kim, and S. Miyazaki, 'Effect of Rotation Speed on Transformation Behavior in Ti-48at%Ni Shape Memory Alloy Melt-Spun Ribbon,' Materials Science Forum, vol. 561-565, pp. 1481-1484, 2007. [73] P. Donner and S. Eucken, 'The Shape Memory Effect in Meltspun Ribbons,' Materials Science Forum, vol. 56-58, pp. 723-728, 1990. [74] K.-N. Lin, S.-K. Wu, and L.-M. Wu, 'Martensitic Transformation of Ti50Ni25−XPd25−YCuX+Y Quaternary Shape Memory Alloys with X, Y≤10 at%,' MATERIALS TRANSACTIONS, vol. 50, pp. 2384-2390, 2009. [75] J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, 'A review of shape memory alloy research, applications and opportunities,' Materials & Design (1980-2015), vol. 56, pp. 1078-1113, 2014. [76] Hirosawa S 2006 Handbook Advanced Magn. Mater. Springer 1064 [77] M. I. Khan, H. Y. Kim, Y. Namigata, T.-h. Nam, and S. Miyazaki, 'Combined effects of work hardening and precipitation strengthening on the cyclic stability of TiNiPdCu-based high-temperature shape memory alloys,' Acta Materialia, vol. 61, no. 13, pp. 4797-4810, 2013. [78] J. I. Kim and S. Miyazaki, 'Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy,' Acta Materialia, vol. 53, no. 17, pp. 4545-4554, 2005. [79] K. Otsuka and X. Ren, 'Recent developments in the research of shape memory alloys,' Intermetallics, vol. 7, no. 5, pp. 511-528, 1999. [80] I. Aaltio, T. Fukuda, and T. Kakeshita, 'Elastocaloric cooling and heating using R-phase transformation in hot rolled Ni-Ti-Fe shape memory alloys with 2 and 4 at% Fe content,' Journal of Alloys and Compounds, vol. 780, pp. 930-936, 2019. [81] J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, 'On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys,' Acta Materialia, vol. 90, pp. 213-231, 2015. [82] H. Li, X. Meng, and W. Cai, 'Martensitic transformation and microstructure of (Ni, Cu, Pd)-rich Ti49.5Ni39-xCu11.5Pdx alloys with near-zero hysteresis and excellent thermal stability,' Intermetallics, vol. 126, p. 106927, 2020. [82] TA Instrument note (http://www.tainstruments.com/pdf/literature/TN8.pdf).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86654-
dc.description.abstract本研究利用快速凝固製程(RSP)製備Ti50Ni15Pd25Cu10 與Ti48.9Ni49.1Fe2形狀記憶合金箔帶,並針對其麻田散體相變態行為、微結構、形狀記憶效應、超彈性以及彈熱效應進行探討。本研究結果顯示,400°C、500°C的時效條件會對於Ti48.9Ni49.1Fe2箔帶的相變態溫度有提升的效果,說明熱處理對於Ti48.9Ni49.1Fe2箔帶基地成分以及顯微結構產生影響,並影響其機械性質,但對於熱循環穩定性的影響並不顯著,因為B2相與R相間的晶格相容性很好,本來就有良好的熱循環穩定性。結果也顯示出,400°C、500°C的時效條件會使Ti50Ni15Pd25Cu10箔帶長出Ti2Pd析出物,對基地成分造成影響,進而使相變態溫度降低,結果也顯示Ti50Ni15Pd25Cu10箔帶經過時效後產生Ti2Pd析出物隊熱循環穩定性有提升的效果。研究發現箔帶因為製程而具有厚度不均的問題,造成應變分布不均,進而影響其機械性質,為了使箔帶機械性質獲得改善,對箔帶嘗試利用冷加工方式來改善厚度均勻性,比較冷加工前後箔帶之形狀記憶特性以及機械性質。結果顯示,箔帶經過冷加工後其厚度的均勻度獲得提升,使應變在箔帶各處較為均勻,並可以進一步的提升其各項功能性表現,包含形狀記憶效應、超彈性以及彈熱性能。zh_TW
dc.description.abstractThis study investigated the phase transformation behavior, microstructure, shape memory effect, superelasticity, and elastocaloric effect of Ti50Ni15Pd25Cu10 and Ti48.9Ni49.1Fe2 shape memory ribbons, which were fabricated by rapid solidification process (RSP). Experimental results showed that the aging conditions of 400 °C and 500 °C increased the phase transformation temperatures of Ti48.9Ni49.1Fe2 ribbon, indicating that heat treatment had an impact on the matrix composition and microstructure of Ti48.9Ni49.1Fe2 ribbon, which in turn affected the mechanical properties. Besides, the effect of aging treatment on thermal cycling stability was not significant for the Ti48.9Ni49.1Fe2 ribbon due to the interfacial compatability was already excellent for the B2 to R-phase trasnformation. For the Ti50Ni15Pd25Cu10 ribbon, the aging conditions of 400 °C and 500 °C reduced the phase transformation temperatures due to the formation of Ti2Pd precipitates. Furthermore, the thermal cycle stability was improved by the formation of Ti2Pd. It was found that the thickness of the ribbons was uneven due to the RSP process, resulting in uneven strain distribution, which in turn affected its mechanical properties. In order to improve the mechanical properties of the ribbons, cold rolling was applied to improve the thickness homogeneity. The cold-rolled ribbons showed better shape memory characteristics due to less stress concentration, and thus the martensitic transformation was more uniform throughout the ribbon. With the additional cold-rolling process, the functional performance of shape memory ribbons, including shape memory effect, superelasticity, and elastocaloric effect, could be further improved.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:09:13Z (GMT). No. of bitstreams: 1
U0001-0408202200392000.pdf: 10884213 bytes, checksum: 2f9026e430839cda647fc6ed0122a448 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 前言 1 第二章 文獻探討 3 2-1 形狀記憶合金簡介 3 2-2 形狀記憶特性 4 2-2-1麻田散體相變態 4 2-2-2麻田散體相變態溫度 6 2-2-3形狀記憶效應 9 2-3 超彈性 12 2-4 彈熱效應 17 2-5 Ti-Ni基形狀記憶合金 17 2-5-1 Ti-Ni形狀記憶合金 17 2-5-2 Ti-Ni-Cu形狀記憶合金 19 2-5-3 Ti-Ni-Pd形狀記憶合金 21 2-5-4 Ti-Ni-Pd-Cu形狀記憶合金 21 2-5-5 Ti-Ni-Fe形狀記憶合金 22 2-6 快速凝固製程 23 第三章 實驗設備與方法 26 3-1合金熔煉以及配置 27 3-2 RSP製備之箔帶 28 3-3箔帶冷加工 29 3-4箔帶之時效處理 29 3-5 DSC實驗 30 3-5-1相變態溫度量測 30 3-5-2比熱量測 31 3-6掃描式電子顯微鏡觀察 31 3-7 XRD晶體結構分析 32 3-8拉伸超彈性實驗 33 3-9彈熱效應實驗 35 第四章 實驗結果與討論 36 4-1 Ti48.9Ni49.1Fe2箔帶之研究結果 36 4-1-1時效箔帶DSC實驗 36 4-1-2 As-spun箔帶XRD實驗 40 4-1-3比熱量測實驗 40 4-1-4時效箔帶微結構實驗 42 4-1-5時效箔帶熱循環穩定性實驗 45 4-1-6時效箔帶拉伸試驗 48 4-1-7 冷滾10%箔帶厚度分布 53 4-1-8 冷滾時效箔帶拉伸試驗 54 4-1-9時效箔帶形狀記憶效應 61 4-2 Ti50Ni15Pd25Cu10合金箔帶實驗結果 76 4-2-1 As-spun與時效箔帶DSC實驗 76 4-2-2 As-spun箔帶XRD量測實驗 80 4-2-3箔帶比熱量測實驗 80 4-2-4時效箔帶微結構實驗 82 4-2-5時效箔帶XRD量測實驗 83 4-2-6箔帶熱循環穩定性實驗 84 4-2-7箔帶形狀記憶效應 89 4-2-8箔帶拉伸試驗 100 4-2-9不同加工量箔帶之厚度分布 104 4-2-10 冷滾箔帶拉伸試驗 106 4-2-11箔帶超彈性循環 113 4-2-12箔帶彈熱效應 114 第五章 結論 118 第六章 參考文獻 120
dc.language.isozh-TW
dc.subject超彈性zh_TW
dc.subject形狀記憶效應zh_TW
dc.subject冷加工zh_TW
dc.subject形狀記憶合金箔帶zh_TW
dc.subject超彈性zh_TW
dc.subject彈熱效應zh_TW
dc.subject形狀記憶效應zh_TW
dc.subject冷加工zh_TW
dc.subject形狀記憶合金箔帶zh_TW
dc.subject彈熱效應zh_TW
dc.subjectcold rollen
dc.subjectshape memory ribbonen
dc.subjectshape memory effecten
dc.subjectsuperelasticityen
dc.subjectelastocaloric effecten
dc.subjectshape memory ribbonen
dc.subjectcold rollen
dc.subjectshape memory effecten
dc.subjectsuperelasticityen
dc.subjectelastocaloric effecten
dc.titleTi50Ni15Pd25Cu10與Ti48.9Ni49.1Fe2形狀記憶合金箔帶之麻田散體相變態行為與機械性質之研究zh_TW
dc.titleResearch on Martensitic Transformation Behaviors and Mechanical Properties of Ti50Ni15Pd25Cu10 and Ti48.9Ni49.1Fe2 Shape Memory Alloy Ribbonsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林新智(Sin-Jhih Lin),陳建彰(Jian-Zhang Chen)
dc.subject.keyword形狀記憶合金箔帶,冷加工,形狀記憶效應,超彈性,彈熱效應,zh_TW
dc.subject.keywordshape memory ribbon,cold roll,shape memory effect,superelasticity,elastocaloric effect,en
dc.relation.page126
dc.identifier.doi10.6342/NTU202202037
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2022-08-18-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0408202200392000.pdf10.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved