請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86652完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛煥彰(Huan-Jang Keh) | |
| dc.contributor.author | Jun-Qi Liao | en |
| dc.contributor.author | 廖浚棋 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:09:07Z | - |
| dc.date.copyright | 2022-08-10 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-04 | |
| dc.identifier.citation | Basset A B 1888 A Treatise on Hydrodynamics vol 2 (Cambridge: Deighton, Bell and Co.) Brenner H and Sonshine R M 1964 Slow viscous rotation of a sphere in a circular cylinder Quart. J. Mech. Appl. Math. 17 55-63 Chang Y C and Keh H J 2006 Slow motion of a slip spherical particle perpendicular to two plane walls J. Fluids Structures 22 647-661 Chen P Y and Keh H J 2003 Slow motion of a slip spherical particle parallel to one or two plane walls J. Chin. Inst. Chem. Engrs. 34 123-133 Choi C H, Ulmanella U, Kim J, Ho C M and Kim C J 2006 Effective slip and friction reduction in nanograted superhydrophobic microchannels Phys. Fluids 18 087105 Chou C Y and Keh H J 2021 Slow rotation of a spherical particle in an eccentric spherical cavity with slip surfaces Eur. J. Mech. B Fluids 86 150-156 Chou C Y and Keh H J 2022 Low-Reynolds-number rotation of a soft particle inside an eccentric cavity Eur. J. Mech. B Fluids 91 194-201 Daddi-Moussa-Ider A, Lisicki M and Gekle S 2018 Slow rotation of a spherical particle inside an elastic tube Acta Mech 229 149-171 Dean W R and O’Neill M E 1963 A slow motion of viscous liquid caused by the rotation of a solid sphere Mathematika 10 13-24 Felderhof B U and Sellier A 2012 Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell J. Chem. Phys. 136 054703 Ganatos P, Weinbaum S and Pfeffer R 1980 A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries Part 2 Parallel motion J. Fluid Mech. 99 755-783 Goldman A J, Cox R G and Brenner H 1967 Slow viscous motion of a sphere parallel to a plane wall - II Couette flow Chem. Eng. Sci. 22 653-660 Greenstein T and Schiavina G L 1975 Torque exerted on a slowly rotating eccentrically positioned sphere within an infinitely long circular cylinder Int. J. Multiphase Flow 2 353-355 Happel J and Brenner H 1983 Low Reynolds Number Hydrodynamics (Dordrecht, Netherlands: Nijhoff) Hutchins D K, Harper M H and Felder R L 1995 Slip correction measurements for solid spherical particles by modulated dynamic light scattering Aerosol Sci. Technol. 22 202-218. Jeffery G B 1915 On the steady rotation of a solid of revolution in a viscous fluid Proc. London Math. Soc. 14 327-338. Keh H J and Chang J H 1998 Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity Chem. Eng. Sci. 53 2365-2377 Keh H J and Chou J 2004 Creeping motion of a composite sphere in a concentric spherical cavity Chem. Eng. Sci. 59 407-415 Kennard E H 1938 Kinetic Theory of Gases (New York: McGraw-Hill) Krishna Prasad M, Kaur M and Srinivasacharya D 2017 Slow steady rotation of an approximate sphere in an approximate spherical container with slip surfaces Int. J. Appl. Comput. Math. 3 987-999 Lee M C and Keh H J 2021a Effects of inertia on the slow rotation of a slip spherical particle Eur. J. Mech. B 88 67-71 Lee M C and Keh H J 2021b Slow axisymmetric rotation of a sphere in a circular tube with slip surfaces Fluid Dyn. Res. 53 065502 Lee T C and Keh H J 2013 Slow motion of a spherical particle in a spherical cavity with slip surfaces Int. J. Eng. Sci. 69 1-15 Li M X and Keh H J 2021 Transient rotation of a spherical particle in a concentric cavity with slip surfaces Fluid Dyn. Res. 53 045509 Liu Q and Prosperetti A 2010 Wall effects on a rotating sphere J. Fluid Mech. 657 1-21 Neto C, Evans D R, Bonaccurso E, Butt H J and Craig V S J 2005 Boundary slip in Newtonian liquids: a review of experimental studies Rep. Prog Phys. 68 2859-2897 Nir A 1976 Linear shear flow past a porous particle Appl. Sci. Res. 32 313-325 Papavassiliou D and Alexander G P 2017 Exact solutions for hydrodynamic interactions of two squirming spheres J. Fluid Mech. 813 618-646 Romanò F, des Boscs P-E and Kuhlmann H C 2020 Forces and torques on a sphere moving near a dihedral corner in creeping flow Eur. J. Mech. B 84 110-121 Saffman P G 1971 On the boundary condition at the surface of a porous medium Studies Appl. Math. 50 93-101 Sharipov F and Kalempa D 2003 Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient Phys. Fluids 15 1800-1806 Sherief H H, Faltas M S and Saad E I 2016 Stokes resistance of a porous spherical particle in a spherical cavity Acta Mech. 227 1075-1093 Sone Y 2007 Molecular Gas Dynamics: Theory, Techniques, and Applications (Boston: Birkhäuser) Stokes G G 1845 On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids Trans. Camb. Phil. Soc. 8 287-319 Stokes G G 1851 On the effect of the internal friction of fluids on the motion of pendulums Trans. Camb. Phil. Soc. 9 8-106 Taguchi S, Tsuji T and Kotera M 2019 Transient behaviour of a rarefied gas around a sphere caused by impulsive rotation J. Fluid Mech. 909 A6 Talbot L, Cheng R K, Schefer R W and Willis D R 1980. Thermophoresis of particles in heated boundary layer J. Fluid Mech. 101 737-758 Thompson P A and Troian S M 1997 A general boundary condition for liquid flow at solid surfaces Nature 389 360-362 Tretheway D C and Meinhart C D 2002 Apparent fluid slip at hydrophobic microchannel walls Phys. Fluids 14 L9-L12 Wan Y W and Keh H J 2011 Slow rotation of an axially symmetric particle about its axis of revolution normal to one or two plane walls Comp. Mod. Eng. Sci. 74 109-137 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86652 | - |
| dc.description.abstract | 本論文探討一個具有滑移表面的球形粒子於不可壓縮之牛頓流體中,以其垂直於具有滑移表面的單一平板或兩個平行平板之直徑為轉軸,所進行的穩定緩慢轉動。吾人以Stokes方程式在球坐標系統與圓柱坐標系統的個別流速通解組合成整體流速通解,先代入平板之邊界條件,使用Hankel轉換法解析計算,再代入粒子表面之邊界條件,使用邊界取點法數值計算,獲得流體施加於粒子之力矩。 流體施加於粒子之正規化力矩解在廣泛不同的幾何及滑移參數下皆可獲得甚佳的收斂值,且具有滑移表面的平板對轉動之滑移粒子所造成的影響很有趣。正規化力矩會隨著平板表面之黏滯程度的增加,從完全滑移至非滑移表面而單調遞增。當平板之黏滯參數大於一特定值時,粒子所受力矩會比在無邊界存在情況下轉動之粒子所受到之力矩大,且會隨粒子表面之黏滯參數及球半徑與平板間距之比值的增加,呈現單調遞增關係。相對地,當平板之黏滯參數小於此特定值時,粒子所受力矩會比在無邊界存在情況下轉動之粒子所受到之力矩小,且會隨粒子表面之黏滯參數及球半徑與平板間距之比值的增加,呈現單調遞減關係。 | zh_TW |
| dc.description.abstract | The steady creeping flow of an incompressible Newtonian fluid around a slip spherical particle rotating about its diameter perpendicular to one or two slip plane walls is analyzed in this thesis. To satisfy the Stokes equation for fluid velocity, the general solution consists of the sum of the essential solutions in spherical and cylindrical coordinates. Boundary conditions are implemented first on the plane walls by means of the Hankel transforms and then on the particle surface through a collocation method. The hydrodynamic torque exerted on the particle is obtained with excellent convergence for various values of the pertinent geometrical and stick-slip parameters, and the effect of the slip planes on the rotational motion of the slip particle is interesting. The torque increases with an increase in the stickiness of the walls from the limit of full slip to the limit of no slip. When the stick parameters of the plane walls are larger than some critical values, the hydrodynamic torque is more than that on an identical particle in the unbounded fluid and an increasing function of the stickiness of the particle surface and ratio of the particle radius to distance from the walls. When the stick parameters of the plane walls are smaller than the critical values, on the contrary, the torque is less than that on the particle in the unbounded fluid and a decreasing function of the surface stickiness and relative radius of the particle. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:09:07Z (GMT). No. of bitstreams: 1 U0001-0208202216032200.pdf: 1687240 bytes, checksum: 744b3913e745f806cd3ea947bd3d3d06 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i 謝辭 ii 摘要 iii Abstract iv Table of Contents vi List of Figures viii List of Tables xi Chapter 1 Introduction 1 Chapter 2 Analysis 5 2.1. Governing Equation and Boundary Conditions 7 2.2. Solution for the Fluid Velocity 8 Chapter 3 Results and discussion 12 3.1. Two Equally Distant and Slippery Plane Walls 17 3.2. Two Unequally Distant Plane Walls 26 Chapter 4 Concluding Remarks 32 List of Symbols 34 References 36 Appendix A. Derivation of the Second Part of the Solution in Eq. (7) 41 | |
| dc.language.iso | en | |
| dc.subject | 蠕動流 | zh_TW |
| dc.subject | 滑移平面 | zh_TW |
| dc.subject | 滑移球體 | zh_TW |
| dc.subject | 轉動之邊界效應 | zh_TW |
| dc.subject | 蠕動流 | zh_TW |
| dc.subject | 力矩 | zh_TW |
| dc.subject | 滑移平面 | zh_TW |
| dc.subject | 滑移球體 | zh_TW |
| dc.subject | 轉動之邊界效應 | zh_TW |
| dc.subject | 力矩 | zh_TW |
| dc.subject | slip sphere | en |
| dc.subject | boundary effect on rotation | en |
| dc.subject | slip plane | en |
| dc.subject | creeping flow | en |
| dc.subject | hydrodynamic torque | en |
| dc.subject | boundary effect on rotation | en |
| dc.subject | slip sphere | en |
| dc.subject | slip plane | en |
| dc.subject | creeping flow | en |
| dc.subject | hydrodynamic torque | en |
| dc.title | 一表面滑移球體垂直於兩表面滑移平板之緩慢轉動 | zh_TW |
| dc.title | Slow rotation of a sphere about its diameter normal to two planes with slip surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王大銘(Da-Ming Wang),謝之真(Chih-Chen Hsieh) | |
| dc.subject.keyword | 轉動之邊界效應,滑移球體,滑移平面,蠕動流,力矩, | zh_TW |
| dc.subject.keyword | boundary effect on rotation,slip sphere,slip plane,creeping flow,hydrodynamic torque, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU202201977 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-10 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202216032200.pdf | 1.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
