請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86649完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫 | zh_TW |
| dc.contributor.advisor | Lon A. Wang | en |
| dc.contributor.author | 葉志揚 | zh_TW |
| dc.contributor.author | Chih-Yang Yeh | en |
| dc.date.accessioned | 2023-03-20T00:08:55Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] Ballato, J., et al. "Silicon optical fiber." Optics Express 16.23 (2008): 18675-18683. [2] Nordstrand, Erlend F., et al. "Alkaline oxide interface modifiers for silicon fiber production." Optical Materials Express 3.5 (2013): 651-657. [3] Healy, Noel, et al. "CO2 laser‐induced directional recrystallization to produce single crystal silicon‐core optical fibers with low loss." Advanced Optical Materials 4.7 (2016): 1004-1008. [4] Fokine, Michael, et al. "Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers." Optical Materials Express 7.5 (2017): 1589-1597. [5] Peacock, Anna C., et al. "Wavelength conversion and supercontinuum generation in silicon optical fibers." IEEE Journal of Selected Topics in Quantum Electronics 24.3 (2017): 1-9. [6] Wu, Dong, et al. "Four-wave mixing-based wavelength conversion and parametric amplification in submicron silicon core fibers." IEEE Journal of Selected Topics in Quantum Electronics 27.2 (2020): 1-11. [7] Suhailin, F. H., et al. "Kerr nonlinear switching in a hybrid silica-silicon microspherical resonator." Optics Express 23.13 (2015): 17263-17268. [8] Huang, Meng, et al. "Continuous-wave Raman amplification in silicon core fibers pumped in the telecom band." APL Photonics 6.9 (2021): 096105. [9] Huang, Yen Po, and Lon A. Wang. "In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes." Applied Physics Letters 106.19 (2015): 191106. [10] Lu, Wei-Chun, et al. "D-shaped Silicon-cored fibers as platform to build in-line Schottky photodetectors." IEEE Photonics Technology Letters 33.6 (2021): 317-320. [11] Chang, Shih-Shin, et al. "A novel silicon microsphere based optical fiber probe for refractive index sensing applications." 2017 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2017. [12] Hsu, Yung-Lin, et al. "Employing tricyclic fusion method to splice a silicon cored fiber with a single mode fiber." 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2018. [13] Kowong, Rattanachai, Wuttichai Putchana, and Amarin Ratanavis. "A development of arc discharge drawing silica nanowires." International Conference on Photonics Solutions 2015. Vol. 9659. SPIE, 2015. [14] Dupont, John N., and Arnold R. Marder. "Thermal efficiency of arc welding processes." Welding Journal-Including Welding Research Supplement 74.12 (1995): 406s. [15] Boulet, Benoit, Gino Lalli, and Mark Ajersch. "Modeling and control of an electric arc furnace." Proceedings of the 2003 American Control Conference, 2003.. Vol. 4. IEEE, 2003. [16] Fulcheri, Laurent, et al. "Three-phase AC arc plasma systems: a review." Plasma Chemistry and Plasma Processing 35.4 (2015): 565-585. [17] Bisbee, D. L. "Splicing silica fibers with an electric arc." Applied Optics 15.3 (1976): 796-798. [18] Hatakeyama, Iwao, and Haruhiko Tsuchiya. "Fusion splices for optical fibers by discharge heating." Applied Optics 17.12 (1978): 1959-1964. [19] Ye, G., J. Alexis, and E. Burström. "Metallurgical Characteristics of the MEFOS 3 MW DC Arc Furnace." Proceedings: Tenth International Ferroalloys Congress. Vol. 1. 2004. [20] Frost, Walter, Paul Ruffin, and Wayne Long. "Computational Model of Fiber Optic, Arc Fusion Splicing; Analysis." Fiber optics reliability: Benign and adverse environments II. Vol. 992. SPIE, 1989. [21] Clark, Brett, et al. "Multi-electrode system." U.S. Patent No. 7,670,065. 2 Mar. 2010. [22] Rehmet, Christophe, et al. "3D unsteady state MHD modeling of a 3-phase AC hot graphite electrodes plasma torch." Plasma Chemistry and Plasma Processing 33.2 (2013): 491-515. [23] Bonet, C. "Thermal plasma technology for processing of refractory materials." Pure and Applied Chemistry 52.7 (1980): 1707-1720. [24] Liu, Yaping, et al. "Investigation of In‐Flight Glass Melting by Controlling the High‐Temperature Region of Multiphase AC Arc Plasma." International Journal of Applied Glass Science 5.4 (2014): 443-451. [25] Wiley, Robert, and Brett Clark. "Large area isothermic plasma for large diameter and specialty fiber splicing." OFC/NFOEC 2008-2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference. IEEE, 2008. [26] Healy, Noel, et al. "Extreme electronic bandgap modification in laser-crystallized silicon optical fibres." Nature Materials 13.12 (2014): 1122-1127. [27] Hou, Chong, et al. "Crystalline silicon core fibres from aluminium core preforms." Nature Communications 6.1 (2015): 1-6. [28] El Hamzaoui, Hicham, et al. "Sol–gel silica glass-cladding semiconductor-core optical fiber." Materials Today Communications 11 (2017): 179-183. [29] Gupta, N., et al. "Annealing of silicon optical fibers." Journal of Applied Physics 110.9 (2011): 093107. [30] Kbashi, Hani J. "Fabrication of submicron-diameter and taper fibers using chemical etching." Journal of Materials Science & Technology 28.4 (2012): 308-312. [31] Ward, Jonathan M., et al. "Heat-and-pull rig for fiber taper fabrication." Review of scientific instruments 77.8 (2006): 083105. [32] Birks, Timothy A., and Youwei W. Li. "The shape of fiber tapers." Journal of Lightwave Technology 10.4 (1992): 432-438. [33] Yokota, Hirohisa, Eiichi Sugai, and Yutaka Sasaki. "Optical irradiation method for fiber coupler fabrications." Optical Review 4.1A (1997): 104-107. [34] Harun, Sulaiman Wadi, et al. "Theoretical analysis and fabrication of tapered fiber." Optik 124.6 (2013): 538-543. [35] Wiley, Robert, and Brett Clark. "High-power fused assemblies enabled by advances in fiber-processing technologies." Fiber Lasers VIII: Technology, Systems, and Applications. Vol. 7914. SPIE, 2011. [36] Texas Instruments, “LM555,” SNAS548D, February 2000. [37] Lieberman, Michael A., and Alan J. Lichtenberg. Principles of plasma discharges and materials processing. John Wiley & Sons, 2005. [38] SanTool, https://www.shop.santool.de/en/clamping-tools1/chucks-roehm/zg-hi-tru/3-jaw-lathe-chuck-type-zs-hi-tru-din-6350-o200-mm.html. [39] Lyon, L. Andrew, et al. "Raman spectroscopy." Analytical Chemistry 70.12 (1998): 341-362. [40] Mühlberger, Korbinian, Clarissa M. Harvey, and Michael Fokine. "Temperature dynamics in silicon core fibers during CO 2 laser processing." Optics Express 30.1 (2022): 92-100. [41] 許永霖。「矽核光纖與玻璃光纖熔接方法之改善及矽核光纖在中紅外波段的折射率感測應用」。碩士論文,國立臺灣大學光電工程學研究所,2019。<https://hdl.handle.net/11296/5k5df6> [42] Cassidy, Daniel T., Derwyn C. Johnson, and Kenneth O. Hill. "Wavelength-dependent transmission of monomode optical fiber tapers." Applied optics 24.7 (1985): 945-950. [43] Brambilla, Gilberto, Vittoria Finazzi, and David J. Richardson. "Ultra-low-loss optical fiber nanotapers." Optics express 12.10 (2004): 2258-2263. [44] Jin, Long, et al. "Low-loss microfiber splicing based on low-index polymer coating." IEEE Photonics Technology Letters 28.11 (2016): 1181-1184. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86649 | - |
| dc.description.abstract | 在本論文中,受到許永霖學長設計的三電極熔接架構的啟發,為改善其無法持續輸出電弧的劣勢重新設計了直接以電源供應器驅動的三相交流電弧產生器,使其能夠持續放電至少一分鐘以上;並以其電極距離、工作頻率作為可控變數,能自由調整系統的輸出溫度,輔以電控移動平台,架設了一個能自行定義移動速度的矽核光纖退火系統。第三章內,討論了以此系退火後的矽核光纖通過拉曼光譜儀檢驗其結晶度及應力狀態,作為評斷退火後樣本品質的一項根據,依此和過去雷射退火的實驗數據相互比較討論。第四章主要闡述光纖拉伸之形狀的理論以及其參數,並微調上述退火系統的參數,將其使用於漸細化光纖的製作。 | zh_TW |
| dc.description.abstract | In this work, inspired by the tricyclic fusion splicer built by the ex-teammate Yung-Lin Hsu, we redesign a 3-phase alternative current arc generator driven by the power supply. Thus, the problem of not being able to continuously provide arc was solved. The new system could remain the arc discharging for over 1 minute. The gap between the electrodes and the working frequency were also adjustable and would influence the output heating temperature of the system. Then, adding a translation stage with a fiber clamp to the system, a programmable annealing system was built. By changing the moving speed, different samples of annealed silicon-cored fibers were made. The Raman spectrometer were used to evaluate the samples after annealing, since the crystallinity and stress could be told from the spectra. The data were then compared with the old data, the Raman spectra of the samples annealed by CO2 laser. In chapter 4, we mainly reviewed the theory of fiber tapering and the important parameters. Based on the annealing system, parameters were slightly adjusted in order to produce tapered fibers. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:08:55Z (GMT). No. of bitstreams: 1 U0001-2609202214005500.pdf: 4671888 bytes, checksum: 8a2b5b2d809a2a974184406d169e8c83 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii Statement of Contributions iv Contents v LIST OF FIGURES vii LIST OF TABLES xviii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.2.1 Multi-electrode Arc Generation 2 1.2.2 Annealing Silicon-cored Fiber annealing 8 1.2.3 Fiber Taper Manufacturing 11 1.3 Organization of the Thesis 14 Chapter 2 Novel Tricyclic Arc Generator 15 2.1 Improved Design of Tricyclic Arc Generator 15 2.1.1 Tricyclic Arc Generator 15 2.1.2 Novel Circuit Design Concept 18 2.2 Circuit Schematics and Implementation 21 2.2.1 Frequency Controlling Stage 21 2.2.2 3-Phase AC Generating Stage 23 2.2.3 Voltage Conversion Stage 28 2.3 Performance and Evaluation 34 2.3.1 Transformer Output Measurement 34 2.3.2 Arc Generation 36 2.4 Summary 42 Chapter 3 Annealing with 3-phase AC Arc 43 3.1 Annealing System Construction 43 3.1.1 Setup of the Electrodes and the Translation Stage 43 3.1.2 Adjustable Parameters 49 3.2 Evaluation of Annealing 51 3.2.1 Annealing Process 51 3.2.2 Control Factors and Quick Evaluation 55 3.2.3 Raman Spectroscopy 60 3.3 Comparison to Previously-done Laser Annealing 63 3.3.1 Advantages over CO2 Laser Annealing 63 3.3.2 Comparison with Past Data 64 3.4 Summary 66 Chapter 4 Fiber Tapering Using The 3-phase AC Arc System 67 4.1 Fiber Tapering Theory 67 4.2 Initial Approach of Fiber Tapering with 3-phase AC Arc System 70 4.3 Summary 76 Chapter 5 Conclusion 77 5.1 Conclusion 77 5.2 Future Works 77 References 79 | - |
| dc.language.iso | en | - |
| dc.subject | 電弧 | zh_TW |
| dc.subject | 錐形半導體光纖 | zh_TW |
| dc.subject | 拉曼光譜儀 | zh_TW |
| dc.subject | 退火 | zh_TW |
| dc.subject | 矽核光纖 | zh_TW |
| dc.subject | 電漿炬 | zh_TW |
| dc.subject | tapered semiconductor fibers | en |
| dc.subject | electrical arcs | en |
| dc.subject | plasma torch | en |
| dc.subject | silicon-cored fibers | en |
| dc.subject | Raman spectroscopy | en |
| dc.subject | annealing | en |
| dc.title | 三相交流電弧加熱系統的建構及應用於矽核光纖退火及漸細化製程 | zh_TW |
| dc.title | Build-up of a 3-Phase AC Arc Heating System and Its Applications to Annealing and Tapering of Silicon-Cored Fibers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李奎毅;陳學禮;陳耀銘 | zh_TW |
| dc.contributor.oralexamcommittee | Kuei-Yi Lee;Hsuen-Li Chen;Yaow-Ming Chen | en |
| dc.subject.keyword | 矽核光纖,電漿炬,電弧,退火,拉曼光譜儀,錐形半導體光纖, | zh_TW |
| dc.subject.keyword | silicon-cored fibers,plasma torch,electrical arcs,annealing,Raman spectroscopy,tapered semiconductor fibers, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202204090 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-28 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-09-30 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2609202214005500.pdf | 4.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
