Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗(Xu Li)
dc.contributor.authorCheng-Hsuan Yuen
dc.contributor.author余承軒zh_TW
dc.date.accessioned2023-03-20T00:08:27Z-
dc.date.copyright2022-08-12
dc.date.issued2022
dc.date.submitted2022-08-05
dc.identifier.citation[1]K. Momoki, T. Manabe, L. Li, and J. Yan, 'Silicon nanoparticle generation and deposition on glass from waste silicon powder by nanosecond pulsed laser irradiation,' Mater. Sci. Semicond. Process, vol. 111, p. 104998, 2020. [2]A. Blakers, N. Zin, K. R. McIntosh, and K. Fong, 'High efficiency silicon solar cells,' Energy Procedia, vol. 33, pp. 1-10, 2013. [3]G. Fisher, M. R. Seacrist, and R. W. Standley, 'Silicon crystal growth and wafer technologies,' Proc. IEEE, vol. 100, no. Special Centennial Issue, pp. 1454-1474, 2012. [4]M. Ernst, A. Fell, E. Franklin, and K. J. Weber, 'Characterization of recombination properties and contact resistivity of laser-processed localized contacts from doped silicon nanoparticle ink and spin-on dopants,' IEEE J. Photovolt, vol. 7, no. 2, pp. 471-478, 2017. [5]J. B. In et al., 'Generation of single-crystalline domain in nano-scale silicon pillars by near-field short pulsed laser,' Appl. Phys. A-Mater. Sci. Process, vol. 114, no. 1, pp. 277-285, 2014. [6]P. T. Nguyen et al., 'Nanosecond laser-induced reshaping of periodic silicon nanostructures,' Curr. Appl. Phys, vol. 22, pp. 43-49, 2021. [7]V. I. Levitas and K. Samani, 'Size and mechanics effects in surface-induced melting of nanoparticles,' Nat. Commun, vol. 2, no. 1, pp. 1-6, 2011. [8]D. Lee, H. Pan, S. H. Ko, H. K. Park, E. Kim, and C. P. Grigoropoulos, 'Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles,' Appl. Phys. A-Mater. Sci. Process, vol. 107, no. 1, pp. 161-171, 2012. [9]X. Zang et al., 'Laser‐Induced Molybdenum Carbide–Graphene Composites for 3D Foldable Paper Electronics,' Adv. Mater, vol. 30, no. 26, p. 1800062, 2018. [10]E. Roduner, 'Size matters: why nanomaterials are different,' Curr. Appl. Phys, vol. 35, no. 7, pp. 583-592, 2006. [11]P. Buffat and J. P. Borel, 'Size effect on the melting temperature of gold particles,' Phys. Rev. A, vol. 13, no. 6, p. 2287, 1976. [12]M. Hirasawa, T. Orii, and T. Seto, 'Size-dependent crystallization of Si nanoparticles,' Appl. Phys. Lett, vol. 88, no. 9, p. 093119, 2006. [13]G. Schierning et al., 'Microcrystalline silicon formation by silicon nanoparticles,' J. Appl. Phys, vol. 103, no. 8, p. 084305, 2008. [14]M.-K. Kim et al., 'Laser sintering of inkjet-printed silver nanoparticles on glass and PET substrates,' IEEE Trans Nanotechnol, pp. 520-524. [15]S. Hong et al., 'Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,' ACS Nano, vol. 7, no. 6, pp. 5024-5031, 2013. [16]A. Karbalaei, R. Kumar, and H. J. Cho, 'Thermocapillarity in microfluidics—A review,' Micromachines, vol. 7, no. 1, p. 13, 2016. [17]F. Weisbuch, V. Tokarev, S. Lazare, and D. Débarre, 'Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters,' Appl. Phys. A-Mater. Sci. Process, vol. 76, no. 4, pp. 613-620, 2003. [18]J. Yeo et al., 'Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application,' J. Power Sources, vol. 246, pp. 562-568, 2014. [19]S. Siddharth, S.-L. Tsai, Y.-B. Chen, and M.-T. Lee, 'Opto-thermo-fluidic transport phenomena involving thermocapillary flow during laser microfabrication,' Int. J. Heat Mass Transf, vol. 162, p. 120303, 2020. [20]J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, 'Conductor microstructures by laser curing of printed gold nanoparticle ink,' Appl. Phys. Lett, vol. 84, no. 5, pp. 801-803, 2004. [21]S.-H. Park and H.-S. Kim, 'Flash light sintering of nickel nanoparticles for printed electronics,' Thin Solid Films, vol. 550, pp. 575-581, 2014. [22]H.-J. Hwang, W.-H. Chung, and H.-S. Kim, 'In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,' Nanotechnology, vol. 23, no. 48, p. 485205, 2012. [23]J. Kwon et al., 'Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications,' ACS Appl. Mater. Interfaces, vol. 8, no. 18, pp. 11575-11582, 2016. [24]B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, 'One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,' J. Phys. Chem. C, vol. 115, no. 48, pp. 23664-23670, 2011. [25]D. Lee, D. Paeng, H. K. Park, and C. P. Grigoropoulos, 'Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors,' Acs Nano, vol. 8, no. 10, pp. 9807-9814, 2014. [26]G. Qin, L. Fan, and A. Watanabe, 'Formation of indium tin oxide film by wet process using laser sintering,' J. Mater. Process. Technol, vol. 227, pp. 16-23, 2016. [27]K. Xie, K. Mork, J. T. Held, K. A. Mkhoyan, U. Kortshagen, and M. C. Gupta, 'Quasi continuous wave laser sintering of Si-Ge nanoparticles for thermoelectrics,' J. Appl. Phys, vol. 123, no. 9, p. 094301, 2018. [28]K. Xie, K. Mork, U. Kortshagen, and M. C. Gupta, 'High temperature thermoelectric properties of laser sintered thin films of phosphorous-doped silicon-germanium nanoparticles,' AIP Adv, vol. 9, no. 1, p. 015227, 2019. [29]S.-G. Ryu, I. Gruber, C. P. Grigoropoulos, D. Poulikakos, and S.-J. Moon, 'Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses,' Thin Solid Films, vol. 520, no. 22, pp. 6724-6729, 2012. [30]E. Drahi, A. Gupta, S. Blayac, S. Saunier, and P. Benaben, 'Characterization of sintered inkjet‐printed silicon nanoparticle thin films for thermoelectric devices,' Phys. Status Solidi A-Appl. Res, vol. 211, no. 6, pp. 1301-1307, 2014. [31]E. Astrova et al., 'Formation of Porous Silicon by Nanopowder Sintering,' Semiconductors, vol. 53, no. 4, pp. 530-539, 2019. [32]S. Bux, J.-P. Fleurial, R. G. Blair, P. K. Gogna, T. Caillat, and R. B. Kaner, 'High temperature thermoelectric properties of nano-bulk silicon and silicon germanium,' MRS Commun, vol. 1166, 2009. [33]S. K. Bux et al., 'Nanostructured bulk silicon as an effective thermoelectric material,' Adv. Funct. Mater, vol. 19, no. 15, pp. 2445-2452, 2009. [34]N. Petermann et al., 'Plasma synthesis of nanostructures for improved thermoelectric properties,' J. Phys. D-Appl. Phys, vol. 44, no. 17, p. 174034, 2011. [35]D. Schwesig et al., 'From nanoparticles to nanocrystalline bulk: percolation effects in field assisted sintering of silicon nanoparticles,' Nanotechnology, vol. 22, no. 13, p. 135601, 2011. [36]E. Drahi, S. Blayac, A. Borbely, and P. Benaben, 'Impact of ink synthesis on processing of inkjet-printed silicon nanoparticle thin films: A comparison of Rapid Thermal Annealing and photonic sintering,' Thin Solid Films, vol. 574, pp. 169-176, 2015. [37]S. Bet and A. Kar, 'Thin film deposition on plastic substrates using silicon nanoparticles and laser nanoforming,' Mater. Sci. Eng. B-Solid State Mater. Adv. Technol, vol. 130, no. 1-3, pp. 228-236, 2006. [38]D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, 'Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,' Appl. Phys. A-Mater. Sci. Process, vol. 106, no. 4, pp. 853-861, 2012. [39]J. Soeda, Y. Ikeda, and T. Shiro, 'Solution-processing of flexible thin-film negative-temperature-coefficient silicon thermistors using silicon nanoparticles,' Jpn. J. Appl. Phys, vol. 56, no. 7, p. 070310, 2017. [40]W. Shou et al., 'Feasibility Study of Single-Crystal Si Island Manufacturing by Microscale Printing of Nanoparticles and Laser Crystallization,' ACS Appl. Mater. Interfaces, vol. 11, no. 37, pp. 34416-34423, 2019. [41]J. M. Kim, V. Guccini, K.-d. Seong, J. Oh, G. Salazar-Alvarez, and Y. Piao, 'Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes,' Carbon, vol. 118, pp. 8-17, 2017. [42]I. Kim et al., 'A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring,' Nanoscale, vol. 10, no. 17, pp. 7890-7897, 2018. [43]H. Nakatsugawa, Y. Okamoto, T. Kawahara, and S. Yamaguchi, 'Electric current dependence of a self-cooling device consisting of silicon wafers connected to a power MOSFET,' J. Electron. Mater, vol. 43, no. 6, pp. 1757-1767, 2014. [44]K. Valalaki, P. Benech, and A. Galiouna Nassiopoulou, 'High Seebeck coefficient of porous silicon: study of the porosity dependence,' Nanoscale Res. Lett, vol. 11, no. 1, pp. 1-8, 2016. [45]H. Zhu et al., 'Rapid thermal annealing of Si paste film and pn-junction formation,' Nanotechnology, vol. 31, no. 38, p. 385202, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86642-
dc.description.abstract矽基材料在半導體產業發展上扮演著相當重要的地位,隨著近年來智慧生活的興起,穿戴式電子元件的製造便是其中相當關鍵的技術,因此如何結合半導體材料於可撓性基板便成為一個相當重要的技術。有別於傳統製造矽薄膜需要高溫、高真空的環境,本研究欲採用波長532 nm脈衝持續時間為8 ns之脈衝雷射,藉由其極短的脈衝停留時間以及高能量密度,搭配振鏡的圖形化掃描,燒結矽奈米顆粒 (摻雜硼,濃度為5 × 1018 atom/cm3) 成為矽薄膜,來將在大氣下以選擇性雷射燒結的低溫製程技術應用於在柔性基板上。 透過針對最基本的單條線段進行不同掃描次數以及不同雷射能量下,其表面型態以及顆粒結晶狀況進行討論。並得出線段解析度約為130 µm之緻密的矽線段。並透過對不同線段重疊率之結果進行討論,找出路徑重疊率為70%時,能得出最均勻之面狀結構,之後對不同雷射能量密度下所產生之矽薄膜進行電性以及孔隙率上的討論。為提高矽薄膜之電性,我們提出透過摻入晶粒完整性較高之矽微米顆粒並優化了雷射製程參數,最後找出在80 wt% MPs之濃度下可得最佳電率約10 Ω-cm。 我們進一步提出透過二次沉積和燒結,降低薄膜的孔隙率並提升其電性以及可撓性,最後成功使電阻率下降12%,也透過彎曲測試證實其可撓性的提升。透過二次離子質譜儀觀察結果也證實該雷射燒結技術並不會改變原始的摻雜濃度,成功展現該雷射技術的可行性。zh_TW
dc.description.abstractSilicon-based materials play a significant role in the development of the semiconductor industry. Recently, with the rise of an Intelligent Living System, wearable electronic devices are one of the key technologies. Therefore, how to apply semiconductor materials on flexible substrates has become a very important issue. Different from the traditional manufacturing of silicon thin film, which requires high temperature or high vacuum environment. This study uses a nanosecond pulse laser with a wavelength of 532 nm and a pulse duration of 8 ns to sinter p-type silicon nanoparticles. With its extremely short pulse dwell time、high energy density and the pattern control by galvanometer. We have successfully demonstrated laser sintering of a p-type Si nanoparticles (with dopant concentration of 5 × 1018 atom/cm3) on flexible substrates of PET in atmosphere environment. We investigated the surface morphology and particle crystallization states with different conditions of scanning times and laser energy density and found the optimal condition to form a silicon thin line. A dense Si line with width of about 130 µm was obtain. It is found that when the overlap ratio of line paths is 70%, the most uniform Si film can be obtained. Then the electrical properties and porosity of Si films under different laser energy density are analyzed. To further improve its electrical properties, we mixed Si micro-particles which compose large grains of Si with Si nanoparticles. The best resistivity of 10 Ω-cm can be achieved at the 80 wt% MPs. We also proposed to apply a second-time deposition of Si nanoparticles and laser sintering to reduce the porosity of Si film and improve its resistivity. The results showed a decrease of resistivity of 12% and better flexibility in the bending test. The SIMS analysis showed that the laser sintering process does not change the original doping concentration.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:08:27Z (GMT). No. of bitstreams: 1
U0001-0508202215025600.pdf: 7159973 bytes, checksum: db6a023151b16eb5c465be40e3f13d81 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 x 表目錄 xvii Chapter 1 前言 1 Chapter 2 文獻回顧與實驗動機 2 2.1雷射燒結奈米材料原理 2 2.2金屬奈米材料燒結 3 2.3金屬氧化物奈米材料燒結 3 2.4矽半導體奈米材料燒結 11 2.5奈米組合材料燒結 19 2.6實驗動機和目的 21 Chapter 3 實驗流程與實驗架構 23 3.1 矽奈微米顆粒的塗層製備 23 3.1.1 奈米/微米矽顆粒之塗層 23 3.1.2 二次沉積塗層 25 3.1.3 元件製備 26 3.2 雷射燒結實驗 28 3.2.1 脈衝雷射光路架構 30 3.2.2 振鏡掃描系統 33 3.2.3 掃描狹縫光束分析儀 34 3.2.4 微控線性走台 35 3.3薄膜表面型態成分與電性分析 36 3.3.1 鎢燈絲式掃描式電子顯微鏡 (SEM) 36 3.3.2 膜厚測定儀 37 3.3.3 能量散射X射線譜 (EDS) 38 3.3.4 二次離子質譜儀 (SIMS) 38 3.3.5 數位萬用電錶 (Digital Multimeter,DMM)。 39 3.3.6 熱電特性量測 40 Chapter 4 結果與討論 42 4.1 矽顆粒塗層厚度 42 4.1.1奈米顆粒塗層厚度 42 4.1.2奈米/微米顆粒混合塗層厚度 43 4.2 選擇性雷射燒結系統之參數研究 44 4.2.1脈衝雷射功率設定 44 4.2.2脈衝雷射光斑大小 45 4.3 矽奈米顆粒之沉積退火 46 4.3.1雷射功率對線段沉積結果之影響 47 4.3.2不同線寬重疊率對薄膜成果之影響 48 4.3.3掃描次數對薄膜沉積結果之影響 50 4.3.4雷射功率對薄膜沉積結果之影響 52 4.3.5線段表面型態分析 54 4.3.6薄膜電性分析 56 4.4 矽奈米/微米混合顆粒之沉積退火 57 4.4.1雷射功率對不同混合比例沉積結果之影響 58 4.4.2不同混合比例之表面型態分析 59 4.4.3不同混合比例之薄膜孔隙率分析 64 4.4.4不同混合比例之薄膜電性分析 65 4.5矽奈米/微米混合薄膜之二次沉積 68 4.5.1 塗布方法對二次沉積結果之討論 68 4.5.2 雷射功率對二次沉積結果之影響 70 4.5.3二次沉積後之表面型態分析 71 4.5.4二次沉積薄膜孔矽率分析 74 4.5.5 二次沉積薄膜電性分析 75 4.6摻雜濃度量測 76 4.7熱電元件之應用 77 4.8彎曲測試 79 4.8.1選擇性雷射燒結展示 81 4.9矽膜溫度感測器 82 4.10光伏元件展示 83 Chapter5結論與未來展望 86 5.1 結論 86 5.2未來展望 87 參考文獻 88
dc.language.isozh-TW
dc.subject柔性電子元件zh_TW
dc.subject雷射燒結zh_TW
dc.subject選擇性雷射燒結zh_TW
dc.subject矽奈米顆粒zh_TW
dc.subject馬侖哥尼效應zh_TW
dc.subject奈米顆粒混合zh_TW
dc.subject雷射燒結zh_TW
dc.subject選擇性雷射燒結zh_TW
dc.subject矽奈米顆粒zh_TW
dc.subject柔性電子元件zh_TW
dc.subject馬侖哥尼效應zh_TW
dc.subject奈米顆粒混合zh_TW
dc.subjectSelective laser sinteringen
dc.subjectMarangoni effecten
dc.subjectParticles mixtureen
dc.subjectSilicon nanoparticlesen
dc.subjectLaser sinteringen
dc.subjectParticles mixtureen
dc.subjectMarangoni effecten
dc.subjectFlexible electronicsen
dc.subjectLaser sinteringen
dc.subjectSelective laser sinteringen
dc.subjectSilicon nanoparticlesen
dc.subjectFlexible electronicsen
dc.title柔性基板上選擇性雷射燒結奈/微米混合矽顆粒zh_TW
dc.titleSelective laser sintering of nano/micron silicon particles on flexible substratesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊嘉揚(Jia-Yang Juang),李明蒼(Ming-Tsang Lee)
dc.subject.keyword雷射燒結,選擇性雷射燒結,矽奈米顆粒,柔性電子元件,馬侖哥尼效應,奈米顆粒混合,zh_TW
dc.subject.keywordLaser sintering,Selective laser sintering,Silicon nanoparticles,Flexible electronics,Marangoni effect,Particles mixture,en
dc.relation.page93
dc.identifier.doi10.6342/NTU202202093
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2022-08-12-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0508202215025600.pdf6.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved