請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86627完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑(Hsiang-Chieh Lee) | |
| dc.contributor.author | Yu-Cheng Mei | en |
| dc.contributor.author | 梅淯逞 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:07:27Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-27 | |
| dc.identifier.citation | 1. Baumann, B., Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications. Applied Sciences, 2017. 7(5). 2. Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-81. 3. Al-Mujaini, A., U.K. Wali, and S. Azeem, Optical coherence tomography: clinical applications in medical practice. Oman medical journal, 2013. 28(2): p. 86-91. 4. Zhang, A., et al., Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt, 2015. 20(10): p. 100901. 5. Larin, K.V. and D.D. Sampson, Optical coherence elastography – OCT at work in tissue biomechanics [Invited]. Biomedical Optics Express, 2017. 8(2): p. 1172-1202. 6. Pircher, M., C.K. Hitzenberger, and U. Schmidt-Erfurth, Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res, 2011. 30(6): p. 431-51. 7. Saxer, C.E., et al., High-speed fiber–based polarization-sensitive optical coherence tomography of in vivo human skin. Optics Letters, 2000. 25(18): p. 1355-1357. 8. Pircher, M., et al., Three dimensional polarization sensitive OCT of human skin in vivo. Optics Express, 2004. 12(14): p. 3236-3244. 9. Mogensen, M., et al., Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology, 2008. 217(1): p. 14-20. 10. Burns, J.A., et al., Imaging the mucosa of the human vocal fold with optical coherence tomography. Ann Otol Rhinol Laryngol, 2005. 114(9): p. 671-6. 11. Lee, A.M.D., et al., Wide-field in vivo oral OCT imaging. Biomedical Optics Express, 2015. 6(7): p. 2664-2674. 12. Strasswimmer, J., et al., Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt, 2004. 9(2): p. 292-8. 13. Duan, L., et al., Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography. Biomed Opt Express, 2014. 5(10): p. 3717-29. 14. Louie, T., et al., Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med, 2010. 42(10): p. 738-45. 15. Tom, H., et al., Near-infrared imaging of demineralization under sealants. J Biomed Opt, 2014. 19(7): p. 77003. 16. Tom, H., et al., Near-IR image-guided laser ablation of demineralization on tooth occlusal surfaces. Lasers Surg Med, 2016. 48(1): p. 52-61. 17. de Boer, J.F., et al., Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett, 1997. 22(12): p. 934-6. 18. Fan, C. and G. Yao, Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation. Optics Express, 2010. 18(7): p. 7281-7287. 19. Götzinger, E., M. Pircher, and C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Optics Express, 2005. 13(25): p. 10217-10229. 20. Song, G., et al., First Clinical Application of Low-Cost OCT. Translational Vision Science & Technology, 2019. 8(3): p. 61-61. 21. Schuman, J.S., Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans Am Ophthalmol Soc, 2008. 106: p. 426-58. 22. Wojtkowski, M., et al., Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology, 2005. 112(10): p. 1734-46. 23. Baumann, B., et al., Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Optics Express, 2012. 20(9): p. 10229-10241. 24. Makita, S., M. Yamanari, and Y. Yasuno, Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Opt Express, 2010. 18(2): p. 854-76. 25. Baumann, B., et al., Single camera based spectral domain polarization sensitive optical coherence tomography. Opt Express, 2007. 15(3): p. 1054-63. 26. Cense, B., et al., Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci, 2004. 45(8): p. 2606-12. 27. Brink, H.B. and G.J. van Blokland, Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J Opt Soc Am A, 1988. 5(1): p. 49-57. 28. Fortune, B., et al., Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma. Investigative Ophthalmology & Visual Science, 2013. 54(8): p. 5653-5661. 29. Park, J.E., et al., Application of Polarization Sensitive-Optical Coherence Tomography to the Assessment of Phase Retardation in Subpleural Cancer in Rabbits. Tissue Eng Regen Med, 2021. 18(1): p. 61-69. 30. Schlanitz, F.G., et al., Drusen volume development over time and its relevance to the course of age-related macular degeneration. British Journal of Ophthalmology, 2017. 101(2): p. 198. 31. Schlanitz, F.G., et al., Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography. American Journal of Ophthalmology, 2015. 160(2): p. 335-344.e1. 32. Hee, M.R., et al., Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America B, 1992. 9(6): p. 903-908. 33. Everett, M.J., et al., Birefringence characterization of biological tissue by use of optical coherence tomography. Opt Lett, 1998. 23(3): p. 228-30. 34. de Boer, J.F., T.E. Milner, and J.S. Nelson, Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt Lett, 1999. 24(5): p. 300-2. 35. Yao, G. and L.V. Wang, Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt Lett, 1999. 24(8): p. 537-9. 36. Hitzenberger, C., et al., Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt Express, 2001. 9(13): p. 780-90. 37. Villiger, M., et al., Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging. Opt Express, 2013. 21(14): p. 16353-69. 38. Oh, W.Y., et al., High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt Express, 2008. 16(2): p. 1096-103. 39. Kim, K.H., et al., Polarization-sensitive optical frequency domain imaging based on unpolarized light. Opt Express, 2011. 19(2): p. 552-61. 40. Ju, M.J., et al., Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging. Opt Express, 2013. 21(16): p. 19412-36. 41. Wang, Z., et al., Depth-encoded all-fiber swept source polarization sensitive OCT. Biomedical Optics Express, 2014. 5(9): p. 2931-2949. 42. Fu, X., et al., Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring. Opt Lett, 2014. 39(17): p. 5066-9. 43. Byers, R. and S. Matcher, Attenuation of stripe artifacts in optical coherence tomography images through wavelet-FFT filtering. Biomedical Optics Express, 2019. 10(8): p. 4179-4189. 44. Li, E., et al., Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography. Biomedical Optics Express, 2017. 8(3): p. 1290-1305. 45. Klein, T. and R. Huber, High-speed OCT light sources and systems [Invited]. Biomedical Optics Express, 2017. 8(2): p. 828-859. 46. Adhi, M. and J.S. Duker, Optical coherence tomography--current and future applications. Curr Opin Ophthalmol, 2013. 24(3): p. 213-21. 47. Huber, R., M. Wojtkowski, and J.G. Fujimoto, Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. Optics Express, 2006. 14(8): p. 3225-3237. 48. Wieser, W., et al., Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Optics Express, 2010. 18(14): p. 14685-14704. 49. Gora, M., et al., Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Optics Express, 2009. 17(17): p. 14880-14894. 50. Jayaraman, V., et al. Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging. in Proc.SPIE. 2014. 51. Li, K., et al., Widely tunable 1060-nm VCSEL with high-contrast grating mirror. Optics Express, 2017. 25(10): p. 11844-11854. 52. Huang, M.C.Y., Y. Zhou, and C.J. Chang-Hasnain, A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photonics, 2007. 1(2): p. 119-122. 53. Aghaeipour, M., V. Ahmadi, and V. Qaradaghi. Modeling the Effect of Different Dimensions in High Contrast Grating Mirror. in Nano-Structures for Optics and Photonics. 2015. Dordrecht: Springer Netherlands. 54. Yaqoob, Z., J. Wu, and C. Yang, Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques, 2005. 39(6 Suppl): p. S6-13. 55. Karnowski, K., et al., Corneal topography with high-speed swept source OCT in clinical examination. Biomed Opt Express, 2011. 2(9): p. 2709-20. 56. Sakai, S., et al., In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography. Biomed Opt Express, 2011. 2(9): p. 2623-31. 57. Tsai, T.H., et al., Ultrahigh speed endoscopic optical coherence tomography for gastroenterology. Biomed Opt Express, 2014. 5(12): p. 4387-404. 58. Tufail, Y., et al., Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 2010. 66(5): p. 681-94. 59. Hoffman, A., et al., Confocal laser endomicroscopy: technical status and current indications. Endoscopy, 2006. 38(12): p. 1275-83. 60. Mollet, N., F. Cademartiri, and P. Feyter, Non-invasive multislice CT coronary imaging. Heart (British Cardiac Society), 2005. 91: p. 401-7. 61. Quirin, M., et al., Existential neuroscience: a functional magnetic resonance imaging investigation of neural responses to reminders of one’s mortality. Social Cognitive and Affective Neuroscience, 2012. 7(2): p. 193-198. 62. Subhash, H.M. and R.K. Wang, Optical Coherence Tomography: Technical Aspects, in Biomedical Optical Imaging Technologies: Design and Applications, R. Liang, Editor. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 163-212. 63. Wolfgang, D., et al., Optical coherence tomography today: speed, contrast, and multimodality. Journal of Biomedical Optics, 2014. 19(7): p. 1-34. 64. Fercher, A.F., et al., Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995. 117(1): p. 43-48. 65. Leitgeb, R., C.K. Hitzenberger, and A.F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Optics Express, 2003. 11(8): p. 889-894. 66. Bernstein, L., et al., Ultrahigh resolution spectral-domain optical coherence tomography using the 1000–1600 nm spectral band. Biomedical Optics Express, 2022. 13(4): p. 1939-1947. 67. Drexler, W. and J.G. Fujimoto, Optical coherence tomography: technology and applications. Vol. 2. 2015: Springer. 68. Wolfgang, D. and J.G. Fujimoto, Optical Coherence Tomography:Technology and Applications. 2nd ed. 2015: Springer International Publishing. 69. Jones, R.C., A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus. Journal of the Optical Society of America, 1941. 31(7): p. 488-493. 70. Using the Poincare Sphere to Represent the Polarization State. Thorlabs]. Available from: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=14200. 71. Valery, V.T., Polarized light interaction with tissues. Journal of Biomedical Optics, 2016. 21(7): p. 1-37. 72. Todorovic, M., et al., Medical Optics and Biotechnology-Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. Optics Letters, 2004. 29(20): p. 2402-2404. 73. Jiao, S., G. Yao, and L.V. Wang, Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Applied Optics, 2000. 39(34): p. 6318-6324. 74. Götzinger, E., et al., Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Optics Express, 2008. 16(21): p. 16410-16422. 75. Fan, C. and G. Yao, Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2012. 17(11): p. 110501. 76. Trasischker, W., et al., Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer. Biomedical Optics Express, 2014. 5(8): p. 2798-2809. 77. Lin, H., et al., All fiber optics circular-state swept source polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2013. 19(2): p. 021110. 78. Pircher, M., et al., Transversal phase resolved polarization sensitive optical coherence tomography. Physics in Medicine and Biology, 2004. 49(7): p. 1257-1263. 79. Todorović, M., et al., Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. Optics Letters, 2004. 29(20): p. 2402-2404. 80. Kemp, N., et al., Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt Express, 2005. 13(12): p. 4611-28. 81. Braaf, B., et al., Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions. Biomedical Optics Express, 2014. 5(8): p. 2736-2758. 82. Lim, Y., et al., Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging. Optics Letters, 2012. 37(11): p. 1958-1960. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86627 | - |
| dc.description.abstract | 偏振靈敏光學同調斷層掃描術(Polarization sensitive optical coherence tomography, PS-OCT)為一種提供高速的組織斷層甚至是三維影像的非侵入式影像技術,解析度可以達到數個微米,並且可以透過分析樣品的背向散射光的偏振態來提供影像額外的對比機制。在過去的25年間和PS-OCT有關的研究呈現逐年提升的趨勢,目前也已經廣泛的應用在生物醫學領域中,並且在眼科的應用上也已經證實具有臨床使用的價值。 隨著技術演進與發展,基於掃頻式光學同調斷層掃描術(Swept source OCT, SS-OCT)架構之SS-PS-OCT技術,由於其具有較高之成像速度以及成像深度,具有較高之未來臨床發展性。但SS-OCT系統所需使用之掃頻雷射(Wavelength-swept laser)其價格較高,也因此造成整體SS-OCT或SS-PS-OCT系統成本較高。若希望將這項技術普及到大型醫學中心以外的地方,降低掃頻光源的成本就會是相當重要的一環。作為一個高性能的掃頻光源,HCG-VCSEL (High-contrast grating vertical-cavity surface-emitting laser, HCG-VCSEL)因為製程的關係能夠有效的降低成本。HCG-VCSEL為利用高對比光柵作為共振腔頂部反射鏡的微機電系統可調垂直共振腔面射型雷射(Micro-electromechanical system tunable vertical-cavity surface-emitting laser, MEMS-VCSEL)。由於高對比光柵的特性,HCG-VCSEL在光源輸出光的偏振控制上具有一般MEMS-VCSEL所沒有的優勢,因此本篇論文中我們搭建了一套PS-OCT系統來評估此HCG-VCSEL於SS-PS-OCT技術應用上之可行性。此篇論文中所使用的HCG-VCSEL掃頻式光源(Laboratory prototype, Bandwidth10, Inc.)之掃頻速度為250 kHz,中心波長為1059 nm,頻寬為40 nm。我們同時準備了另一台商用光源(AXP50124-3, Axsun, Inc.)來作為與HCG-VCSEL之比較對照基準,此商用光源為使用分散式布拉格反射器(Distributed Bragg reflector, DBR)作為共振腔反射鏡的掃頻式光源,掃頻速度為200 kHz,中心波長為1052 nm,頻寬為88 nm。 PS-OCT根據不同的傳輸技術(光纖、自由空間)、輸入偏振態、偵測的變數數量而產生許多分支。於驗證HCG-VCSEL於SS-PS-OCT可行性所需之SS-PS-OCT架構設計上,我們採用基於光纖傳輸的單圓偏振態輸入的架構。最大的優勢在於其簡單的光機構設計,只要對實驗室原有的一般OCT系統做些許的改裝就可以量測到樣品在一般OCT中所無法取得的樣本偏振特性。在實驗中我們除了會量測與光源相關的特性作為比較的參考,包括軸向解析度、靈敏度、靈敏度滾降與偏振態均勻度。並針對手指指甲以及雞胸肉的影像來進行影像品質的分析。也因為是架設PS-OCT系統,所以可以額外計算包括相位延遲以及光軸方向來提供基於樣品雙折射特性的結構影像。 | zh_TW |
| dc.description.abstract | Polarization sensitive optical coherence tomography (PS-OCT) is a noninvasive imaging technique that can provide high-speed cross-sectional and three-dimensional imaging with a micrometer scale resolution. Also, PS-OCT can provide novel contrast mechanisms from the measurement of polarization state of backscattered light from sample. The number of PS-OCT publications keep on rising in past 25 years. Currently, PS-OCT has been applied in many biomedical fields, and it has been proven to have clinical value. Along with the technology evolution and development, SS-PS-OCT based on SS-OCT (Swept source OCT) has had a superior imaging speed and imaging depth, and because of that, it exhibits a higher potential future in clinical use. However, the price of wavelength-swept source used in SS-OCT has also increased the cost of SS-OCT system and SS-PS-OCT system. As a high performance swept source, HCG-VCSEL (High-contrast grating vertical-cavity surface-emitting laser) effectively reduce the cost due to its manufacturing process. HCG-VCSEL is a MEMS-VCSEL (Micro-electromechanical system tunable vertical-cavity surface-emitting laser) which uses a high-contrast grating as the top mirror of the laser cavity. Because of its high-contrast grating, HCG-VCSEL has the advantage in polarization control which MEMS-VCSEL lack. Therefore, in this thesis work, we developed a PS-OCT system to assess the feasibility of the HCG-VCSEL in technology application of SS-PS-OCT. The HCG-VCSEL used in this experiment provided an imaging speed of 250 kHz, center wavelength of 1059 nm and tuning range of 40 nm. Also, a commercial light source (AXP50124-3, Axsun, Inc.) is used as the comparison. This commercial light source use DBR (distributed Bragg reflector) as the mirror of the laser cavity and provided an imaging speed of 200 kHz, center wavelength of 1052 nm and tuning range of 88 nm. PS-OCT schemes differ in terms of optical technology (fiber optics vs. bulk optics), number of input polarization state, number of variables. As for the scheme design of SS-PS-OCT system that can verify the feasibility of HCG-VCSEL in SS-PS-OCT, we used the one that is based on single circular input state system in fiber optics. The biggest advantage of single circular input state PS-OCT lies in the simplicity of its optomechanical design, allowing us to measure the sample’s polarization property, which conventional OCT system is unable to get, with only few modifications to existing OCT system in our lab. We measured the characterization of the light source, including axial resolution, sensitivity, sensitivity roll-off and uniformity of polarization state to make a comparison between these two light sources. OCT imaging on nails and chicken breast were analyzed for imaging quality. Plus, phase retardation and optic axis orientation could be calculated and became structural images based on birefringent sample. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:07:27Z (GMT). No. of bitstreams: 1 U0001-2609202214325000.pdf: 3882652 bytes, checksum: f6935419ee1b659b71519857b6f7978d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i 誌謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 表目錄 x 圖目錄 xi Chapter 1 簡介 1 1.1研究動機 1 1.2偏振靈敏光學同調斷層掃描術(PS-OCT) 3 1.3高對比光柵垂直共振腔面射型雷射(HCG-VCSEL) 5 1.4論文架構 7 Chapter 2 光學同調斷層掃描術理論 8 2.1 光學同調斷層掃描術簡介 8 2.2 光學同調斷層掃描術發展 9 2.2.1 時域式光學同調斷層掃描術(TD-OCT) 9 2.2.2 頻域式光學同調斷層掃描術(SD-OCT) 10 2.2.3 掃頻式光學同調斷層掃描術(SS-OCT) 11 2.3 低同調干涉術(Low coherence interferometry) 12 2.4 系統特性 15 2.4.1 軸向解析度(Axial resolution) 15 2.4.2 橫向解析度(Lateral resolution) 15 2.4.3 影像深度(Imaging depth) 15 2.4.4 靈敏度與靈敏度滾降(Sensitivity and sensitivity roll-off) 16 Chapter 3 偏振敏感光學同調斷層掃描術 18 3.1 光的偏振性質 18 3.2 偏振的運算 19 3.2.1 瓊斯矩陣(Jones matrix) 19 3.2.2 史托克參數(Stokes parameter)與穆勒矩陣(Mueller matrices) 20 3.2.3 邦加球(Poincaré sphere) 22 3.3 偏振效應 24 3.3.1 偏振保留(Preserved polarization) 24 3.3.2 雙折射(Birefringence) 24 3.3.3 二向衰減(Diattenuation) 25 3.3.4 去偏振(Depolarization) 26 3.4 PS-OCT架構 26 3.4.1 單圓偏振輸入之PS-OCT 27 3.4.2 多偏振態輸入之PS-OCT 29 3.5 PS-OCT理論 31 Chapter 4 系統架構與偏振態校正方法 34 4.1 單圓偏振態輸入之PS-OCT架構 34 4.2 系統偏振態校正流程與方法 36 Chapter 5 實驗結果與討論 41 5.1系統特性 41 5.2偏振均勻度量測 43 5.3掃描實物影像 46 5.3.1 聚乳酸(Polylactic acid) 3D列印材料與四分之一波板 46 5.3.2手指指甲與雞胸肉影像 48 5.4討論 50 Chapter 6 結論與未來展望 52 6.1 結論 52 6.2 未來展望 52 參考文獻 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 單圓偏振輸入 | zh_TW |
| dc.subject | 偏振敏感光學同調斷層掃描術 | zh_TW |
| dc.subject | 高對比光柵垂直共振腔面射型雷射 | zh_TW |
| dc.subject | 掃頻式雷射比較 | zh_TW |
| dc.subject | 偏振敏感光學同調斷層掃描術 | zh_TW |
| dc.subject | 高對比光柵垂直共振腔面射型雷射 | zh_TW |
| dc.subject | 掃頻式雷射比較 | zh_TW |
| dc.subject | 單圓偏振輸入 | zh_TW |
| dc.subject | polarization sensitive optical coherence tomography | en |
| dc.subject | polarization sensitive optical coherence tomography | en |
| dc.subject | single input state | en |
| dc.subject | swept source comparison | en |
| dc.subject | high-contrast grating vertical-cavity surface-emitting laser | en |
| dc.subject | swept source comparison | en |
| dc.subject | single input state | en |
| dc.subject | high-contrast grating vertical-cavity surface-emitting laser | en |
| dc.title | 以高對比光柵垂直共振腔面射型雷射開發之高速偏振靈敏光學同調斷層掃描系統 | zh_TW |
| dc.title | High-speed polarization-sensitive swept source optical coherence tomography system based on high-contrast grating VCSEL | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉(Chia-Wei Sun),黃中宜(Chung-Yi Huang) | |
| dc.subject.keyword | 偏振敏感光學同調斷層掃描術,高對比光柵垂直共振腔面射型雷射,掃頻式雷射比較,單圓偏振輸入, | zh_TW |
| dc.subject.keyword | polarization sensitive optical coherence tomography,high-contrast grating vertical-cavity surface-emitting laser,swept source comparison,single input state, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202204093 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-12-31 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2609202214325000.pdf | 3.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
